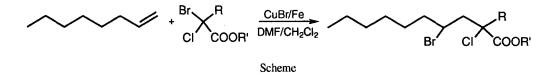


0040-4039(95)00256-1

The CuBr/Fe Promoted Olefin Alkylation by 2-Br-2-Cl-Carboxylate Methyl Esters.


Luca Forti, Franco Ghelfi* and Ugo M. Pagnoni

Dipartimento di Chimica dell'Università, Via Campi 183, I-41100, Modena (Italy)

Abstract: Methyl 2-Br-2-Cl-carboxylates react with 1-octene in DMF/CH₂Cl₂ in a radical process promoted by CuBr/Fe, yielding 2-alkyl-2-Cl-4-Br-carboxylates smoothly and efficiently.

Addition of halogenated compounds to alkenes, through the homolytic cleavage of a carbon-halogen bond, is a well investigated procedure to synthesize C-C bonds.¹ While much attention has been paid to reactions of trihaloacetate esters,^{1,2} the use of dihalogenated esters has been essentially restricted to some dichloroacetates³ or α, α -dichloro olefinic esters⁴; these reactions are assisted by transition metal salts or their complexes⁴ like CuCl,^{3b} Cu(bpy)Cl^{3a} or RuCl₂(PPh₃)₃,^{3c-d,4} and require rather vigorous conditions, such as heating to 120-160°C for long times, very likely to activate the C-Cl bond cleavage.

Recently we developed an efficient route to methyl 2-Br-2-Cl-carboxylates.⁵ These substrates give rise to radicals more quickly than the corresponding α , α -dichloro esters, likely owing to the very easy cleavage of the C-Br bond, also facilitated by the geminal chlorine;⁶ on using CuBr/Fe in dimethylformamide (DMF), indeed, the radical reductive homocoupling of methyl 2-Br-2-Cl-carboxylates occurred efficiently under mild conditions.⁷ Now we report the reaction of methyl 2-Br-2-Cl-carboxylates with 1-octene in the presence of CuBr/Fe (Scheme).

The addition products were obtained in fair yields from a number of methyl 2-Br-2-Cl-esters at room temperature (Table). The main by-products (ca. 25 mol/mol %) were dimethyl α,α' -dichloro-succinates from the homocoupling reaction, which occurred exclusively starting from methyl 2-Br-2-Cl-phenylacetate or using more substituted olefins, such as cyclohexene. Methyl 2,2-dichloro esters were quite unreactive under the same reaction conditions.

item	R	R'	product yield (mol/mol %) ^a
1	n-C4H8-	-CH3	60
2	i-C3H7-	-CH3	58
3	C6H5-CH2-	-CH3	48
4	CH3-	-CH3	62
5	C6H5-	-CH3	
6	n-C4H8-	-CH2-CH=CH2	61

Table. The Addition of Methyl 2-Br-2-Cl-Carboxylates to 1-Octene

^abased on the ester; all products are 1:1 mixtures of diastereoisomers

In a typical procedure, iron powder (5 mmol) and CuBr (5 mmol) were weighted in a Schlenk tube, and then 1:1 DMF/CH₂Cl₂ (5 ml), 1-octene (25 mmol) and methyl 2-Br-2-Cl-hexanoate (5mmol) were added under N₂ atmosphere. The mixture was stirred at room temperature, and after 48 h diluted with petroleum ether (40-60°C) (10 ml) and filtered to remove residual Cu⁰ and Fe⁰; then the filtrate was washed with 5% HCl (2 x 5 ml). The organic phase was dried over Na₂CO₃ and evaporated. The products were isolated by chromatography on silica using 1:9 diethyl ether/petroleum ether (40-60) as eluant. Structures were consistent with their MS and ¹H-NMR spectra, and gave satisfactory elemental analyses.⁸

Acknowledgments. - We thank the C.N.R. (Rome) and the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) for financial assistance.

REFERENCES AND NOTES

- Giese, B.; Ghosez, A.; Zipse, H. in *Houben-Weil*, Georg Thieme Verlag: Stuttgart, 1989, vol. E19a/2, 876 ff. Iqbal, J.; Bhatia, B.; Nayyar, N.K. *Chem. Rev.*, 1994, 94, 519-564.
- Nagashima, H.; Seki, K.; Ozaki, N.; Wakamatsu, H.; Itoh, K.; Tomo, Y.; Tsuji, J. J. Org. Chem. 1990, 55, 985-990 and references cited.
- a) Pirrung, F.O.H.; Hiemstra, H.; Speckamp, W.N. *Tetrahedron* 1994, 50, 12415-12442. b) Martin, P.; Steiner, E.; Bellus, D. *Helv. Chim. Acta* 1980, 1947-1957. c) Matsumoto, H.; Ohkawa, K.; Ikemori, S.; Nakano, T.; Nagai, Y. *Chem. Lett.* 1979, 1011-1014. d) Matsumoto, H.; Nakano, T.; Ohkawa, K.; Nagai, Y. *ibid.* 1978, 363-366. For an anomalous addition see also: Kharasch, M.S.; Urry, W.H.; Jensen, E.V. J. Am. Chem. Soc. 1945, 67, 1626-1627.
- a) Phelps, J.C.; Bergbreiter, D.E. Tetrahedron Lett., 1989, 3915-3918. b) Hayes, T.K.; Villani, R.; Weinreb, S.M. J. Am. Chem. Soc. 1988, 110, 5533-5543. c) Hayes, T.K.; Parvez, M.; Weinreb, S.M. J. Org. Chem. 1986, 51, 5503-5505.
- Boni, M.; Ghelfi, F.; Pagnoni, U.M.; Zucchi, C. Bull. Chem. Soc. Jpn., 1994, 67, 1622-1626. Bellesia, F.; Boni, M.; Ghelfi, F.; Pagnoni, U.M. Tetrahedron Lett., 1994, 2961-2964.
- 6. Terent'ev, A.B.; Vasil'eva, T.T. Russ. Chem. Rev. 1994, 63, 269-277. Channon, M.; Rajzman, M.; Channon, F. Tetrahedron 1990, 6193-6299.
- 7. Benincasa, M.; Forti, L.; Ghelfi, F.; Pagnoni, U.M. Tetrahedron Lett., in press (Ref. Number 24882).
- Mass spectra were obtained on a combined HP 5890 GC HP 5989A MS Engine. ¹H-NMR spectra were recorded on a Bruker WP80 spectrometer. Reagents and solvents were standard grade commercial products and used without further purification. DMF and CH₂Cl₂ were dried over three batches of 3Å sieves (5% w/v, 12 h).