

Bioorganic & Medicinal Chemistry 10 (2002) 457-460

A Mercapto Analogue of 5'-Noraristeromycin

Subha R. Das,^a Stewart W. Schneller,^{a,*} Jan Balzarini^b and Erik De Clercq^b

^aDepartment of Chemistry, Auburn University, Auburn, AL 36849-5312, USA ^bRega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium

Received 4 December 2000; accepted 23 August 2001

Abstract—5'-Noraristeromycin (1) and its enantiomer (2) have been found to possess a wide range of antiviral effects. In the search for analogues of 1 and 2 with improved activity, the synthesis of both enantiomers of 5'-mercapto-5'-deoxy-5'-noraristeromycin (6 and 7) has been accomplished. While (+)-7 was inactive, (-)-6 did show marginal activity against vaccinia virus, but not any other virus. © 2001 Elsevier Science Ltd. All rights reserved.

Introduction

Carbocyclic nucleosides and nucleotides have found a meaningful niche in the ongoing search for new medicinal agents.¹ Their success can be traced to their metabolic stability and their substrate compatibility with many enzymes relevant to nucleoside bio-conversions.² Several years ago, we began³ a systematic study of carbocyclic nucleosides (carbanucleosides) lacking the 5'methylene appendage (5'-norcarbanucleosides). From that effort, both enantiomers of the adenine system (1 and 2) were found to have significant biological properties.^{3b,4} In the search for compounds related to $\hat{\mathbf{1}}$ and 2 that could improve upon their effectiveness, the amino (3),⁵ epimeric (4),^{6,7} and fluoro (5)⁶ analogues and their enantiomers⁸ were investigated. To continue the series of varying the C-4' substituent, the mercapto derivatives (6 and 7) have been prepared and their antiviral effects evaluated (Fig. 1).

Chemistry

In designing a reasonable approach to **6** (and, in turn, **7**) formation of the C–S bond at the 4'-position was initially considered via the palladium catalyzed coupling of the allylic acetate 8^5 with potassium thioacetate⁹ (Scheme 1). The resultant allylic thioacetate **9**, availed the sulfur in a deactivated form¹⁰ and protected it from

the subsequent oxidation under glycolization conditions.¹¹ In that regard, subjecting **9** to osmium tetroxide/ *N*-methylmorpholine *N*-oxide (NMO) dihydroxylation provided the glycol **10**. Basic conditions, expected to deprotect **10** to yield the target **6**, proved to be too drastic, leading to decomposition. In an effort to avoid these harsh conditions, attempts to prepare debenzoylated **9** were sought. However, its preparation via the palladiumcatalyzed coupling of potassium thioacetate with **8** lacking the protecting benzoyl group was unsuccessful and no other methods were attempted.

In seeking another approach to **6** (and **7**), two variations were considered: (i) having the 2',3'-dihydroxyl groups in place prior to sulfur introduction, and (ii) avoiding the benzoyl protecting group. The chiral cyclopente-none **11**¹² (Scheme 2) provided the essential features for addressing i, and allowed for further elaboration to **6** by the Michael reaction of a thio nucleophile to its C-3

Figure 1.

^{*}Corresponding author. Tel.: +1-334-844-5737; fax: +1-334-844-5748; e-mail: schnest@auburn.edu

^{0968-0896/02/\$ -} see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0968-0896(01)00271-1

Scheme 1. Reaction conditions. (a) KSAc, 5 mol% Pd(Ph₃P)₄, 15 mol% Ph₃P, THF/DMSO (76%); (b) OsO₄, NMO, THF/H₂O (18%).

Scheme 2. Reaction conditions. (a) 4-methoxy- α -toluenethiol, K₂CO₃, THF (99%); (b) BH₃•THF (60%); (c) DIAD, Ph₃P, 6-chloropurine, THF; (d) NH₃, MeOH, 110 °C (71% from steps c and d); (e) TFA, PhOH, reflux (75%).

atom and manipulation of its C-1 carbonyl center for creating the linkage to the purine base (6-chloropurine).

Thus, 4-methoxy- α -toluenethiol (*p*-methoxybenzylmercaptan) was seen as a pro-thiol source and underwent a Michael addition to the chiral cyclopentenone 11^{12} to furnish the product 13. Reduction of 13 with borane-THF¹² afforded the alcohol 14. The stereochemistry of 13 and 14 was confirmed by correlating

 Table 1. Activity of compounds 6 and 7 against different viruses

Virus	Cell ^a	$MIC_{50} \; (\mu g/mL)^b$	
		6	7
HSV-1 (KOS)	E ₆ SM	> 80	> 80
HSV-2 (G)	E ₆ SM	240	> 80
HSV-1 TK ⁻ B2006	E ₆ SM	> 80	> 80
HSV-1 TK ⁻ VMW1837	E ₆ SM	> 80	> 80
VV	E ₆ SM	48	> 80
VSV	E ₆ SM	> 80	> 80
VSV	HeLa	> 400	> 80
RSV	HeLa	> 400	> 80
Coxsakie B4	HeLa	> 400	> 80
Coxsakie B4	Vero	> 80	> 80
Parainfluenza-3	Vero	> 80	> 80
Reovirus-1	Vero	> 80	> 80
Sindbis	Vero	> 80	> 80
Punta toro	Vero	> 80	> 80
HIV-1	CEM	> 250	> 250
HIV-2	CEM	> 250	> 250
CMV (AD-169)	HEL	> 200	> 50
CMV (Davis)	HEL	> 200	> 200
VZV (OKA)	HEL	> 200	> 200
VZV (YS)	HEL	> 200	> 200

^aMinimum cyctotoxic concentration required to cause a microscopically detectable alteration of normal E₆SM, HeLa and Vero cell morphology was $\geq 400 \ \mu g/mL$ for **6** and > 400, >80 and ≥ 80 , respectively, for **7**; in HEL and CEM cells: $> 200 \ and > 250$, respectively, for both **6** and **7**.

^bRequired to reduce virus-induced cytopathicity by 50%.

their NMR spectral properties with compounds prepared in an identical way.^{3c,12} The coupling of 6chloropurine to the alcohol **14**, under Mitsunobu conditions, followed by treatment with methanolic ammonia produced **15**. Deprotection of the isopropylidene group as well as the removal of the *p*-methoxybenzyl function⁹ of **15** was achieved in one step with trifluoroacetic acid, to provide **6**.

By an analogous route, 7 was obtained from the enantiomer of 11.¹²

Antiviral results

Compounds 6 and 7 were evaluated against a wide variety of viruses: herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), thymidine kinase-deficient (TK⁻) HSV-1, vaccinia virus (VV), vesicular stomatitis virus (VSV), respiratory syncytial virus (RSV), cytomegalovirus (CMV), varicella-zoster virus (VZV), human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), and others as indicated in Table 1. The only virus affected was vaccinia virus, by compound 6, and this only marginally. Since vaccinia virus is sensitive to agents that inhibit S-adenosylhomocysteine (AdoHcy) hydrolase, it is plasubile that 6 is acting in the same manner, albeit with much less potency than 1, which is an inhibitor of AdoHcy hydrolase.³ In addition to those viruses listed in Table 1, neither compound 6 nor 7 was active when assayed against hepatitis-B virus (HBV).

Conclusions

The limited activity of compounds 6 and 7 suggests that further efforts to improve upon the properties of compound 1 and 2 are not likely to arise following a free 4'thiol lead. Nevertheless, the activity of compound 6 towards vaccinia virus corroborates the notion that the 5'-methylene unit of traditional carbocyclic nucleosides is not a structural requirement for molecular recognition and consequent antiviral activity.

Experimental

Chemistry

Melting points were recorded on a Meltemp II melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Bruker AC 250 spectrometer (operated at 250 or 62.5 MHz, respectively). All ¹H chemical shifts are reported in δ relative to internal standard tetramethylsilane (TMS, δ 0.00). ¹³C chemical shifts are reported in δ relative to CDCl₃ (center of triplet, δ 77.23) or relative to DMSO- d_6 (center of septet, δ 39.51). The spin multiplicities are indicated by the symbols s (singlet), d (doublet), t (triplet), g (quartet), m (multiplet) and br (broad). Optical rotations were determined using the sodium-D line on a JASCO DIP-360 polarimeter. Elemental analyses were performed by either M-H-W-Laboratories, Phoenix, Arizona, or Atlantic Microlabs, Atlanta, Georgia. Reactions were monitored by thin-layer chromatography (TLC) using 0.25 mm E. Merck silica gel $60\text{-}F_{254}$ precoated silica gel plates with visualization by irradiation with a Mineralight UVGL-25 lamp or exposure to iodine vapor. Column chromatography was performed on Whatman silica gel (average particle size 5-25 µm, 60 Å) and elution with the indicated solvent system. Yields refer to chromatographically and spectroscopically (¹H and ¹³C NMR) homogeneous materials.

(1'R,4'S)-N-[9-(4'-Acetylthio-2'-cyclopentenyl)-9H-purin-**6-yl]-benzamide (9).** A solution of the allylic acetate 8^5 (3 g, 8.26 mmol) in THF (80 mL) was stirred with triphenylphosphine (Ph₃P) (0.32 g, 15 mol%) and $Pd(Ph_3P)_4$ (0.5 g, 5 mol%) under N₂ for 30 min. This solution was then added dropwise to a stirred solution of KSAc (1.88 g, 16.5 mmol) in THF/DMSO (1:1, 40 mL). After the addition was completed, the reaction mixture was stirred at 55°C under N₂ for 16 h. The reaction mixture was then filtered, evaporated under reduced pressure, extracted in CH₂Cl₂ and washed with H_2O . The organic layer was dried (Na₂SO₄), evaporated and purified by column chromatography. Elution with EtOÂc/MeOH (25:1) provided 9 (2.4 g, 76%) as a yellow foam: ¹H NMR (CDCl₃) δ 1.96 (m, 1H), 2.05 (s, 3H), 3.28 (dt, 1H), 4.66 (m, 1H), 5.86 (m, 1H), 6.06 (d, 1H), 6.28 (d, 1H), 7.52-7.68 (m, 5H), 8.02 (m, 1H), 8.80 (s, 1H), 9.19 (s, 1H); ¹³C NMR (CDCl₃) δ 30.6, 39.7, 46.6, 58.8, 128.1, 128.8, 129.0, 130.3, 132.4, 133.8, 138.0, 141.5, 149.7, 151.9, 164.9, 195.0. Anal. calcd for $C_{19}H_{17}N_5O_2S \cdot 0.25CH_3OH$: C, 59.68; H, 4.68; N, 18.08; S, 8.27. Found: C, 59.40; H, 4.78; N, 17.81; S, 7.90.

(1'R,2'S,3'S,4'S)-N-[9-(2',3'-Dihydroxy-4'-S-acetylthiocyclopentyl)-9H-purin-6-yl]benzamide (10). To a solution of 9 (1.0 g, 2.6 mmol) in THF/H₂O (1:1, 80 mL), was added a 60% aqueous solution of NMO (1.08 g, 5.5 mol) and OsO₄ (15 mg). The reaction mixture was stir459

red at room temperature for 5 days. Sodium bisulfite (1 g) was added to the reaction mixture and stirring continued for 10 min. The contents of the flask were then filtered, evaporated and the residue purified by column chromatography. Elution with EtOAc/MeOH (5:1) provided **10** (200 mg, 18%) as a white solid: mp > 60 °C (dec.); ¹H NMR (DMSO-*d*₆) δ 2.12 (m, 1H), 2.37 (s, 3H), 2.73 (m, 1H), 3.70 (m, 1H), 3.95 (br, 1H), 4.51 (br, 1H), 4.87 (dd, 1H), 5.25 (d, 1H), 5.37 (d, 1H), 7.51-7.67 (m, 5H), 8.03 (d, 1H), 8.53 (s, 1H), 8.73 (s, 1H); ¹³C NMR (DMSO-*d*₆) δ 30.4, 32.4, 44.0, 59.3, 73.8, 74.9, 126.1, 128.4, 132.3, 133.4, 144.2, 150.2, 151.1, 152.4, 165.5, 195.2. Anal. calcd for C₁₉H₁₉N₅O₄S: C, 55.20; H, 4.63; N, 16.94; S, 7.75. Found: C, 54.98; H, 5.04; N, 16.71; S, 7.53.

(2R,3S,4S)-4-S-(p-Methoxybenzyl)thio-2,3-(isopropylidenedioxy)-1-cyclo-pentanone (13). Potassium carbonate (5.6 g, 40.6 mmol) was added to a solution of the cyclopentenone 11¹² (5 g, 32.5 mmol) in dry THF (150 mL), followed by 90% 4-methoxy- α -toluenethiol (6.3 mL, 40.6 mmol). The reaction mixture was stirred under N₂ at room temperature for 3 h, then filtered and evaporated to dryness. The residual oil was purified by column chromatography (elution 8:1, hexane/EtOAc) to afford 13 (9.9 g, 99%) as a white crystalline solid: mp. 120–122 °C; ¹H NMR (CDCl₃) δ 1.34 (s, 3H), 1.41 (s, 3H), 2.24 (d, 1H), 3.00 (q, 1H), 3.34 (d, 1H), 3.77 (s, 2H), 3.80 (s, 3H), 4.36 (d, 1H), 4.68 (d, 1H), 6.86 (d, 2H), 7.25 (d, 2H); ¹³C NMR (CDCl₃) δ 25.2, 27.0, 35.4, 39.7, 40.3, 55.5, 78.3, 81.5, 113.2, 114.4, 129.0, 130.2, 159.2, 211.5. Anal. calcd for C₁₆H₂₀O₄S: C, 62.32; H, 6.54; S, 10.40. Found: C, 62.21; H, 6.59; S, 10.47.

(1S,2S,3S,4S)-4-S-(p-Methoxybenzyl)thio-2,3-(isopropylidenedioxy)-cyclopentan-1-ol (14). To a solution of 13 (5 g, 16.2 mmol) in dry THF (50 mL) cooled to -20 °C was added 1.0 M BH₃·THF complex (48.5 mL, 48.5 mmol) under N_2 . The reaction mixture was then stirred at room temperature for 3 h, cooled in an ice bath and the reaction guenched with H₂O (10 mL) added dropwise. The reaction mixture was then evaporated, extracted in CH₂Cl₂, washed with 10% NaOH (3×50 mL), brine $(2 \times 50 \text{ mL})$, dried (Na_2SO_4) and evaporated. The residual oil was purified by column chromatography (25:1, CH₂Cl₂/EtOAc) to furnish 14 (3.0 g, 60%) as a colorless oil: ¹H NMR (CDCl₃) δ 1.34 (s, 3H), 1.47 (s, 3H), 1.72 (br, 1H), 1.96 (m, 2H), 2.37 (d, 1H), 3.03 (m, 1H), 3.65 (s, 2H), 3.79 (s, 3H), 4.22 (m, 1H), 4.54 (m, 1H), 6.85 (d, 2H), 7.23 (d, 2H); ¹³C NMR (CDCl₃) & 24.5, 26.2, 35.8, 36.9, 44.6, 55.5, 72.0, 78.9, 85.0, 111.7, 114.2, 129.7, 130.2, 159.0. Anal. calcd for C₁₆H₂₂O₄S: C, 61.91; H, 7.14; S, 10.33. Found: C, 62.03; H, 7.13; S, 10.15.

9-[(1'*R***,2'***S***,3'***S***,4'***S***)-4'-***S***-(***p***-Methoxybenzyl)thio-2',3'-(isopropylidenedioxy)-cyclopentan-1'-yl]-adenine (15). A solution of diisopropyl azodicarboxylate (3.76 g, 17.7 mmol) in dry THF (30 mL) was added dropwise to a solution of Ph₃P (4.69 g, 17.7 mmol) in dry THF (50 mL). This was followed by stirring at room temperature under N₂ for 30 min. To this mixture was added 6chloropurine (2.51 g, 16.1 mmol). The mixture was stir-** red for 30 min followed by the dropwise addition of a solution of 14 (2.5 g, 16.1 mmol) in dry THF (30 mL). The reaction mixture was stirred under N₂ for 20 h. The solvent was then evaporated and the residue purified by column chromatography. Elution with 5:2 hexane/EtOAc yielded 9-[(1'R,2'S,3'S,4'S)-4'-S-(p-methoxy-benzyl)thio-2',3'-(isopropylidenedioxy)cyclopentan-1'-yl]-6-chloropurine as a pale yellow solid that was used directly in the next step.

9-[(1'R,2'S,3'S,4'S)-4'-S-(p-methoxy-The obtained benzyl)thio-2',3'-(iso-propylidenedioxy)cyclopentan-1'-yl]-6-chloropurine was added to a saturated methanolic NH₃ solution (80 mL), which was sealed in a stainless steel pressure vessel and heated at 110 °C for 20 h. After cooling to 0°C, the reaction vessel was opened and the contents evaporated to dryness to obtain a white solid residue, which was purified by column chromatography; elution with 9:1 EtOAc/MeOH furnished 15 as a pale vellow solid (2.45 g, 71% two steps): mp > 160 °C (dec); ¹H NMR (CDCl₃) δ 1.29 (s, 3H), 1.55 (s, 3H), 2.08 (br, 1H), 2.44–2.61 (m, 1H), 3.16 (m, 1H), 3.76 (s, 3H), 3.80 (s, 2H), 4.77 (m, 2H), 5.11 (m, 1H), 5.82 (s, 2H), 6.86 (d, 2H), 7.29 (d, 2H), 7.87 (s, 1H), 8.34 (s, 1H); ¹³C NMR (CDCl₃) δ 25.3, 27.5, 35.8, 37.4, 46.7, 55.5,61.3, 84.3, 87.0, 114.0, 114.2, 120.4, 130.1, 130.4, 139.8, 150.3, 153.1, 155.7, 159.0. Anal. calcd for C₂₁H₂₅N₅O₃S: C, 59.00; H, 5.89; N, 16.38; S, 7.50. Found: C, 58.92; H, 5.90; N, 16.27; S, 7.41.

(-)-(1*R*,2*S* 3*S*,4*S*)-4-Mercapto-1-(6-amino-9*H*-purin-9yl)cyclopentan-2,3-diol (6). Compound 15 (600 mg, 1.4 mmol) and phenol (190 mg, 2.1 mmol) were dissolved in trifluoroacetic acid (6 mL), and this solution was stirred and heated under reflux for 2 h. The solution was evaporated, the residue re-dissolved in EtOH (10 mL) and evaporated again. Column chromatography on the residue (elution: 2:1, EtOAc/MeOH) furnished 6 (280 mg, 74.5%) as a white solid: mp > 210 °C (dec.); $[\alpha]_{D}^{25}$ -12.90° (c 0.71, DMSO); ¹H NMR (DMSO-d₆) δ 2.03 (m, 1H), 1.8 (m, 1H), 2.64 (m, 1H), 3.06 (br, 1H), 3.89 (m, 1H), 4.54 (m, 1H), 4.66 (m, 1H), 5.10 (d, 1H), 5.20 (d, 1H), 7.22 (s, 2H), 8.13 (s, 1H), 8.19 (s, 1H); ¹³C NMR (DMSO-d₆) δ 36.7, 58.6, 59.5, 73.7, 78.9, 119.3, 140.3, 149.3, 152.1, 156.0. Anal. calcd for C₁₀H₁₃N₅O₂S: C, 44.93; H, 4.90; N, 26.20; S, 11.99. Found: C, 45.06; H, 5.03; N, 25.91; S, 11.80.

(+)-(1*S*,2*R*,3*R*,4*R*)-4-Mercapto-1-(6-amino-9*H*-purin-9-yl)cyclopentan-2,3-diol (7). This was prepared from the enantiomer of 11¹² via a route analogous to that described for 6. Physical data for 7: mp > 210 °C (dec.); $[\alpha]_D^{25}$ + 14.20° (*c* 0.63, DMSO); ¹H NMR (DMSO-*d*₆) δ 2.03 (m, 1H), 1.82 (m, 1H), 2.65 (m, 1H), 3.06 (m, 1H), 3.16 (d, 1H), 3.88 (m, 1H), 4.54 (m, 1H), 4.66 (m, 1H), 5.10 (d, 1H) 5.20 (d, 1H), 7.22 (s, 2H), 8.12 (s, 1H), 8.19 (s, 1H); ¹³C NMR (DMSO-*d*₆) δ 36.7, 58.5, 59.6, 73.7, 79.0, 119.3, 140.4, 149.4, 152.1, 155.9. Anal. calcd for C₁₀H₁₃N₅O₂S: C, 44.93; H, 4.90; N, 26.20; S, 11.99. Found: C, 44.96; H, 4.91; N, 26.09; N, 11.93.

Antiviral activity assays. The antiviral activity assays, other than the anti-HBV assays, were based on the inhibition of virus induced cytopathicity in either E_6SM , HeLa, Vero, CEM, or HEL cell cultures, following previously established procedures.^{3b} The anti-HBV assays were performed as described previously.⁴

Acknowledgements

This research was supported by funds from the Department of Health and Human Services (AI 31718 and AI 48495) and this assistance is appreciated. We are indebted to Brent Korba of Georgetown University Medical Center, Rockville, Maryland for the anti-HBV activity assays. We also express our gratitude to Dr. Katherine Seley of the Georgia Institute of Technology for assistance in obtaining the optical rotation data.

References and Notes

1. (a) For recent reviews see: Crimmins, M. T. *Tetrahedron* **1998**, *54*, 9229. (b) Zhu, X.-F. *Nucleosides Nucleotides Nucleic Acids* **2000**, *19*, 651.

2. (a) Herdewijn, P.; De Clercq, E.; Balzarini, J.; Vanderhaeghe, H. *J. Med. Chem.* **1985**, *28*, 550. (b) Desgranges, C.; Razaka, G.; Rabaud, M.; Bricaud, H.; Balzarini, J.; De Clercq, E. *Biochem. Pharmacol.* **1983**, *32*, 3583.

3. (a) See, for example: Patil, S. D.; Schneller, S. W.; Hosoya, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1992, 35, 3372. (b) Siddiqi, S. M.; Chen, X.; Schneller, S. W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1994, 37, 551. (c) Siddiqi, S. M.; Chen, X.; Schneller, S. W. Nucleosides Nucleotides 1993, 12, 267.

4. Seley, K. L.; Schneller, S. W.; Korba, B. Nucleosides Nucleotides 1997, 16, 2095.

5. Hegde, V. R.; Seley, K. L.; Schneller, S. W.; Elder, T. J. J. J. Org. Chem. **1998**, 63, 7092.

6. Siddiqi, S. M.; Oertel, F. P.; Chen, X.; Schneller, S. W. J. Chem. Soc., Chem. Commun. 1993, 708.

7. Siddiqi, S. M.; Chen, X.; Schneller, S. W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. *J. Med. Chem.* **1994**, *37*, 1382.

8. (a) Hegde, V. R.; Schneller, S. W. Unpublished results. (b) Seley, K. L.; Schneller, S. W.; Korba, B. *J. Med. Chem.* **1998**, *41*, 2168.

9. Divekar, S.; Safi, M.; Soufiaoui, M.; Sinou, D. Tetrahedron 1999, 55, 4369.

10. (a) Sammakia, T.; Hurley, T. B.; Sammond, D. M.; Smith, R. S.; Sobolov, S. B.; Oeschger, T. R. *Tetrahedron Lett.* **1996**, *37*, 4427. (b) Das, S. R. Doctoral Dissertation, Auburn University, 2000.

 (a) Kaldor, S. W.; Hammond, M. *Tetrahedron Lett.* 1991, 32, 5043. (b) Priebe, W.; Grynkiewicz, G. *Tetrahedron Lett.* 1991, 32, 7353.

12. Siddiqi, S. M.; Schneller, S. W.; Ikeda, S.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. *Nucleosides Nucleotides* **1993**, *12*, 185.