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ABSTRACT

Racemization-free deacylation of N-acylimidazolidine-2-ones using lithium

hydroperoxide affords the corresponding a-substituted chiral carboxylic

acids in high yield while permitting recovery of the chiral auxiliary.

Key Words: Alkylation; Chiral; Enantioselctive; Lithium hydroper-

oxide.

a-Substituted carboxylic acids are useful chiral synthons for many natural

products,[1] and auxiliary-mediated asymmetric alkylation reactions for the
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production of enantiomerically pure a-substituted acid derivatives have

recently received a great deal of attention.[2] In this regard, base-assisted alkyl-

ation[6a,b] of N-acylimidazolidine-2-one has created a lot of interest in this

field. Lithium hydroperoxide has been used in chiral auxiliary removal of

N-acylated-oxazolidin-2-one derivatives,[3] D-xylose-derived N-acylated-

oxazolidin-2-one derivatives,[4] N-acylated-dihydropyprimidin-4-one deriva-

tives,[5a] and N-acyl-imidazolidine-2-ones leading to amino acids[5b – f] with

variable ee of newly created chiral centers. In our hands, a number of reagents

were tried for hydrolysis, and here we report the details of our investigation on

the alkylation of N-acylated-imidazolidine-2-one derivatives[6] and the use of

lithium hydroperoxide at 508C for racemization-free deacylation to provide

a-alkylcarboxylic acids. This approach afforded the desired a-substituted car-

boxylic acids in high chemical yield and high enantiomeric purity with conco-

mitant recovery of the chiral auxiliary. The synthetic route is outlined in

Sch. 1.

At the outset, we chose to prepare (4S,5R)-1,5-dimethyl-4-phenyl imid-

azolidine-2-one, 3 according to the procedure of Close.[7] Treatment of 3

Scheme 1. (a) 1708C–1758C, 1.5 hr, 2008C–2108C, 1 hr. (b) n-Butyllithium, 08C,

1 hr, propanoyl chloride, 08C, 2.5 hr. (c) LDA, –788C, 1 hr alkyl halide, 08C, 12 hr.

(d) LiOH/H2O2, H2O/THF, 508C, 24 hr.

Shirali and Zhang3436
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with an equimolar quantity of n-butyllithium in tetrahydrofuran at 08C,

followed by propanoyl chloride gave 4 in quantitative yield. Further alkylation

of 4 with lithium diisopropylamide, alkyl iodide, and hexamethylphosphor-

amine (HMPA) gave the alkylated acylimidazolidinone 5. Compounds 5a–

5d were very easily hydrolyzed with lithium hydroxide monohydrate/hydro-

gen peroxide at 508C for 24 hr to give the corresponding chiral acids in high

yields and enantiomeric purity along with 70%–80% recovery of the chiral

auxiliary (Table 1).

The distereomeric excesses and absolute configurations were determined

by 1H nuclear magnetic resonance (NMR) and 13C NMR spectroscopy by

observing the doublet of the CHPh proton of the auxiliary moiety 5, which

shows a different chemical shift in the two diastereomers. The enantiomeric

excesses of (R)-2-methylalkanoic acids were obtained by gas chromatographic

analyses using a b-cyclodextrin-derived chiral column. Having established a

practical pathway to a-substituted carboxylic acids, we studied the generality

of the method, as shown in the scheme, by making analogs 6a–d.

In summary, N-acylation of chiral imidazolidine-2-one 3, stereoselective

alkylation, and racemization-free deacylation of the alkylated N-acylated-

imidazolidine-2-ones 5a–d using lithium hydroperoxide was accomplished

to provide a-substituted chiral carboxylic acids in high yield and high enan-

tiomeric purity (97%–99%) while permitting recovery of the chiral auxiliary.

EXPERIMENTAL

NMR-spectra were recorded in C6D6 CDC13 (Aldrich) solution on a

Bruker QE Plus spectrometer at 300 MHz for 1H and 75 MHz for 13C, respect-

ively. The chemical shifts are expressed in ppm relative to the residual solvent

for 1H (CDCl3 at d 7.25 ppm) or to the central peak of CDCl3
13C signal (at

Table 1. Alkylation of N-acylated-imidazolidine-2-one derivatives.

Entry Substrate

Yield

(%)a
ee

(%) [a]D
b

Recovery

(%)c

a R ¼ CH2CH3 76 97 –10.0 75

b R ¼ (CH2)4CH3 83 99 –4.1 79

c R ¼ (CH2)3Ph 81 99 –6.6 72

d R ¼ CH2CH ¼ C(CH3)2 80 97 –8.3 78

aIsolated yield of 6.
b(c 0.1, MeOH).
cIsolated yield of chiral auxiliary 3.

Enantioselective Synthesis of (R)-2-Methylalkanoic Acids 3437
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77.0 ppm). Chiral gas chromotography (GC) analyses were carried on a HP

6890 GC equipped with a 30-m � 0.25-mm ID, 0.25-mm film-thickness

b-DEX 120 [20% permethylated alpha-cyclodextrin in SPB-35 poly (35%

phenyl/65% dimethylsiloxane)] capillary column (Supelco, Inc., Bellefonte,

PA) in the split mode (100 : 1) with hydrogen as carrier (55 cm/sec, 1008C iso-

thermal). Optical rotations were measured on a Perkin-Elmer 241 polarimeter

at 258C. Melting points were determined on a hot stage and are uncorrected.

Flash column chromatography was carried out on silica gel (70–230 mesh,

Aldrich Chemical Company, Milwaukee, WI) unless otherwise stated.

(4S,5R)-1,5-Dimethyl-3-propionyl-4-phenylimidazolidine-2-one, 4. A

solution of (4S,5R)-1,5-dimethyl-4-phenylimidazolidine-2-one 3 71.0 g

(5.2 mmol) in dry tetrahydrofuran (20 mL) was treated with an equimolar

amount of n-butyllithium (1M) at 08C. After the solid had dissolved, the clear

solution was stirred an additional 0.5 hr at 08C, then propanoyl chloride

0.5 mL (5.5 mmol) dissolved in tetrahydrofuran (10 mL) was added drop-wise

and the mixture was stirred for 1 hr at 08C. Work-up with saturated ammonium

chloride and extraction with dichloromethane (100 mL � 2) followed by flash

chromatography (ethyl acetate : hexanes 1 : 1) afforded pure 4 1.1 g in 86%

yield. m.p.: 908C–918C (lit.[6a] 908C); GC/MS: 246 (11), 189 (15), 175 (4),

132 (100), 105 (4), 77 (21), 58 (76); optical rotation: [a]D þ 65 (c 1, MeOH).

General procedure for alkylation of 3-propanoylimidazolidine-2-one,

5a–d. To a cooled solution of 3-acylimidazolidine-2-one 4, 4.1 g

(24.4 mmol) lithium diisopropylamide (LDA) (24.4 mmol) in THF was

added drop-wise at 2788C. After 1 hr a solution of the appropriate alkyl

halide (29.28 mmol) and HMPA (29.28 mmol) in THF (15 mL) was slowly

added and the mixture was allowed to warm to 08C in 12 hr. Work-up with

HCl (2M) and extraction with CH2Cl2 (100 mL � 2) followed by flash chrom-

atography (hexanes : ethyl acetate, 2 : 1) yielded the products 5a–d as distereo-

meric mixtures, the ratios of which were determined on the basis of spectral

data. (5a) m.p., 1058C–1078C; 1H NMR: d 0.78 (t, 3H, J ¼ 7 Hz), 0.79

(d, 3H, J ¼ 7Hz), 1.1 (d, 3H, J ¼ 6 Hz), 2.8 (s, 3H), 1.3 (m, 1H), 1.7 (m, 1H),

2.8 (s, 3H), 3.9 (m, 2H), 5.29 (d, 1H, J ¼ 6.0 Hz), 7.1–7.35 (m, 5H, Ar); 13C

NMR: d 152.2, 136.9, 128.4, 127.9, 127.0, 126.9, 77.4, 77.0, 76.7, 59.4,

53.7, 39.0, 38.9, 28.2, 27.0, 16.2, 15.0, 11.4; MS m/z: 274 (100), 259 (66),

246 (9), 217 (4), 189 (66), 175 (17), 132 (69), 118 (15), 105 (6), 91 (8), 77

(10), 58 (31); [a]D þ 71.8 (c 1, MeOH). (5b) m.p., 708C–728C; 1H NMR: d

0.8 (d, 3H, J ¼ 6.0 Hz), 0.81 (t, 3H, J ¼ 6.0 Hz), 1.1 (d, 3H, J ¼ 6.0 Hz),

1.15–1.3 (m, 5H), 1.65 (m, 2H), 2.82 (s, 3H), 3.9 (dq, 1H, J ¼ 6.0 Hz), 5.3

(d, 1H, J ¼ 7.0 Hz), 7.3 (m, 5H, Ar); 13C NMR: d 177.6, 155.4, 137.0,

126.5, 125.9, 59.2, 53.7, 37.2, 35.4, 31.2, 28.4, 27.9, 22.6, 16.0, 14.6, 14.0;

MS m/z: 316 (11), 259 (100), 246 (73), 189 (74), 175 (12), 132 (10), 113

(15), 77 (2), 58 (43); [a]D þ 41.66 (c 1, MeOH). (5c) m.p., 808C–828C; 1H

NMR: d 0.84 (d, 3H, J ¼ 6.5 Hz), 1.15 (d, 3H, J ¼ 6.8 Hz), 1.4–1.8 (m, 2H),

Shirali and Zhang3438
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2.55 (m, 2H, CH2Ph), 2.86 (s, 3H), 3.9 (m, 1H), 5.3 (d, 1H, J ¼ 7.0 Hz), 7.3

(m, 10H, 2Ar); 13C NMR: d 176.9, 155.4, 148.3, 137.0, 128.8, 128.5, 126.5,

125.9, 59.2, 53.7, 38.2, 36.2, 34.6, 28.5, 16.6, 14.6; MS m/z: 364 (11), 321

(2), 273 (2), 259 (17), 246 (9), 189 (100), 175 (6), 132 (26), 117 (8), 91 (90),

77 (10), 58 (25); [a]D þ 30.0 (c 1, MeOH). (5d) m.p., 1508C–1538C; 1H

NMR: d 1.16 (d, 3H, J ¼ 6.8 Hz), 1.6 (s, 3H), 2.1–2.5 (m, 1H), 3.85 (m, 1H),

5.0 (m, 1H), 5.3 (d, 1H, J ¼ 9 Hz), 7.3 (m, 5H, Ar); 13C NMR: d 169.8, 156.3,

134.5, 137.0, 126.5, 125.9, 124.4, 54.1, 53.7, 40.0, 28.4, 28.1, 25.6, 17.6, 15.8,

14.6; MS m/z: 314 (2), 246 (5), 189 (61), 175 (7), 132 (39), 113 (53), 104 (11),

91 (17), 81 (24), 69 (32), 58 (100), 41 (29); [a]D þ 65.0 (c 1, MeOH).

General procedure for the preparation of (R)-2-methylalkanoic acids,

6a–6d. To a solution of (4S,5R,20R)-1,5-dimethyl-4-phenyl-3-[(20alkyl)]

imidazolidine-2-one, 5, 2.2 g (8.33 mmol) in THF : H2O (20 mL, 3 : 1) was

added 30% H2O2 11.33 g (12 eq, 99.9 mmol) and LiOH, 1.05 g (3 eq,

24.99 mmol) at ice-bath temperature. The reaction mixture was heated to

508C in an oil bath for 24 hr. After the reaction was complete, it was quenched

with 10% Na2S2O3 at 08C and the pH was adjusted to 9–10. THF was removed

with a rotary evaporator and the residual oil was extracted with petroleum

ether (50 mL � 3) to obtain (R)-2-methyl alkanoic acids 6a–d. The chiral

auxiliary was recovered in quantitative yield by filtering the colorless solid.

(6a) b.p. 708C–728C/12 mm (lit.[9a] 748C–758C/12 mm). 1H NMR: d 0.9

(t, 3H, J ¼ 7.0 Hz), 1.17 (3H, J ¼ 7 Hz), 1.7 (m, 2H), 2.39 (m, 1H), 10.3

(bs, 1H); 13C NMR: d 183.4, 41.0, 26.6, 16.4, 11.4; MS m/z: 102 (12), 87

(33), 74 (100), 57 (51), 50 (1), 41 (36). (6b) b.p. 1248C–1268C/12 mm

(lit.[9b] 1288C/12 mm); 1H NMR: d 0.87 (t, 3H, J ¼ 7 Hz), 1.18 (d, 3H,

J ¼ 6.0 Hz), 1.3–1.7 (m, 8H), 2.45 (m, 1H); 13C NMR: d 182.8, 34.0, 32.1,

27.3, 22.5, 16.2, 14.0; MS m/z: 144, 101 (12), 87 (29), 74 (100), 69 (6), 57

(18), 45 (18), 41 (32). (6c) b.p. 1408C–1438C/12 mm (lit.[9c] 1418C–

1438C/12 mm); 1H NMR: d 1.2 (d, 3H, J ¼ 7.0 Hz), 1.5–1.7 (m, 4H), 2.5

(m, 1H), 2.65 (t, 2H, CH2Ph, J ¼ 7.0 Hz), 7.1–7.4 (m, 5H); 13C NMR: d

182.1, 140.7, 129.4, 128.5, 125.8, 39.1, 35.1, 33.1, 28.2, 16.8; MS m/z: 192

(15), 174 (21), 146 (3), 131 (9), 117 (15), 104 (38), 91 (100), 74 (32), 65

(17), 45 (16). (6d) b.p. 1208C–1228C/15 mm (lit.[9d] 124–1258C/15 mm);
1H NMR: d 1.15 (d, 3H, J ¼ 7.0 Hz), 1.6 (s, 3H), 1.69 (s, 3H), 2.16 (m, 1H),

2.36 (m, 1H), 2.5 (m, 1H), 5.1 (m, 1H, HC55C); 13C NMR: d 182.9, 131.9,

121.2, 40.5, 28.9, 25.6, 17.8, 16.0; MS m/z: 142 (11), 96 (3), 87 (4), 81 (7),

74 (17), 69 (100), 55 (17), 45 (11), 41 (71).
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