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Figure 1. Structure of natural products containing spirooxindole frame
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CuI facilitated three-component reaction of isatin derivatives, L-proline and terminal alkynes containing
an amide or ester functional group. The multi-component reaction (MCR) afforded a faster and practical
synthesis of spirooxindole derivatives. A range of novel spirooxindoles were synthesized by using this
straightforward and one-pot efficient methodology. A representative compound showed significant inhi-
bition of PDE4B enzyme in vitro and good interactions with this protein in silico.
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The unique structural features of spiro heterocycles and the
presence of spiro linkage as a basic skeleton in several natural
products have increased their importance to a great extent. The
naturally occurring spiro heterocycles for example spirooxindoles
(with five membered nitrogen containing ring) present in horsfi-
line1 (analgesic activity), spirotryprostatins A2 (inhibitors of mam-
malian cell cycle at G2/M phase), and elacomine3 showed
interesting biological properties (Fig. 1). Mitraphylline (Fig. 1), a
natural compound, containing the spirooxindole framework pos-
sesses anti-tumor activity against human brain cancer cell lines
and malignant glioma GAMG.4 Rhynchophylline, another natural
product is used as antipyretic, anti-hypertensive, and anti convul-
sant medications for the treatment of headache, vertigo, and epi-
lepsy.5 The oxindole class of compounds attracted our particular
attention due to their impressive PDE4 inhibitory properties re-
ported earlier. For example, the PDE4 inhibitor A (Fig. 2) signifi-
cantly reduced antigen-induced bronchoconstriction in animal
models and in asthmatic patients.6 This prompted us to synthesize
and assess the PDE4 inhibitory properties of novel spiro derivatives
of oxindoles B (Fig. 2) possessing an amide/ester at C-20. We antic-
ipated that this group may facilitate the interactions of B with
PDE4B. To the best of our knowledge PDE4 inhibitory properties
of B have not been reported in the literature earlier.

The most common synthetic routes reported so far for the syn-
thesis of spiro cyclic compounds include alkylation methods, rear-
rangement based approaches, ring closure of geminally substituted
compounds, radical cyclizations, organometallic processes (metals
include Rh, Pd, Cu, Ir etc.,), organocatalytic approaches, cleavage of
bridged ring systems, or cycloaddition reactions.7 Recently, the
work.
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Table 1
Effect of reaction conditions on three-component reaction of 1a, 2, and 3aa

N
H

O

O NH

O OH O NH2

1a 2 3a 4a

+ +
N
H

N
H2NOC

O
Solvent

80oC

Entry Solvent Catalyst Time (h) Temp (�C) Yieldb (%)

1 DMF No catalyst 24 80 60
2 EtOH No catalyst 24 80 55
3 CH3CN No catalyst 24 80 70
4 CH3CN CuI 2 80 92
5 CH3CN CuBr 8 80 78
6 CH3CN CuCl 12 80 75
7 i-PrOH:H2O (1:1) CuI 6 80 32

a Reactions were carried out using 1a (1.0 mmol), 2 (1.0 mmol), and propiola-
mide (3a) (1.0 mmol) in a solvent (15 mL) under nitrogen.

b Isolated yield.

Table 2
Synthesis of spirooxindoles 4 via Cu-mediated MCR of 1, 2, and 3a

N

O

O NH

O OH O R3

N

N
O

R3OC

R1 R1

1 2 3 4

+ +

R2 R2

CuI

MeCN
80 oC

Entry Isatin derivative
(R1, R2=) 1

Alkyne
(R3=) 3

Time (h) Product
4

Yieldb (%)

1 H, H
1a

NH2

3a
2.0 4a 92

2 1a NHMe
3b

2.0 4b 90

3 1a NHEt
3c

2.0 4c 91

4 5-Br, H
1b

3a 2.5 4d 85

5 1b 3b 2.5 4e 82
6 1b 3c 2.0 4f 85
7 5,7-Di-NO2, H

1c
3a 2.0 4g 90

8 5-F, H
1d

3a 2.5 4h 80

9 1a OEt
3d

3.0 4i 81

10 1b 3d 2.5 4j 80
11 1c 3d 2.5 4k 85
12 H, –CH2C6H4Cl-m

1e
3a 3.0 4l 75

a Reactions were carried out using isatin (1) (1.0 mmol), proline (2) (1.0 mmol),
alkyne (3) (1.0 mmol), and CuI (0.01 mmol) in acetonitrile (15 mL) at 80 �C under
nitrogen.

b Isolated yield.
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Figure 2. Known PDE4 inhibitor A and our target spirooxindoles B.
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multi component reaction or MCR strategy has been successfully
adopted by many researchers for the synthesis of spirooxindoles.
This reaction involved 1,3-dipolar cycloaddition of azomethine
ylide generated in situ with different dipolarophiles in a single
pot. The azomethine ylides were efficiently generated by the reac-
tion of isatin with L-proline. Chen et al. have reported the synthesis
of the spirooxindole pyrrolidine ring by three-component coupling
of isatin, L-proline, and 1,4-naphthoquinone in methanol under
ultrasound.8 Kang and co-workers reported a similar type of cou-
pling in 1,4-dioxane by varying the dipolarophile for the synthesis
of spiropyrrolidine oxindoles.9 They used dimethyl maleate instead
of 1,4-naphthoquinone. The synthesis of spiropyrrolidine was also
reported by using terminal and internal alkynes as dipolarophiles
in acetonitrile by Pardasani et al.10 that required a relatively longer
reaction time for example 20 h. Moreover, the use of only one ter-
minal alkyne that is phenyl acetylene was examined in their study.
Herein, we report a faster and efficient method leading to our tar-
get spiropyrrolidine oxindoles B or 4 (Scheme 1) using isatin (1), L-
proline (2), and terminal alkynes (3) containing ester or amide sub-
stituents in the presence of catalytic CuI in acetonitrile. Notably the
use of alkyne 3 in a similar MCR is not common in the literature.

Initially, the coupling reaction was performed by heating a mix-
ture of isatin (1a), L-proline (2), and propiolamide (3a) in DMF at
80 �C. After 24 h, the spiro compound 4a was obtained in 60% yield
(Table 1, entry 1). To improve the product yield the reaction was
carried out in different solvents like ethanol (Table 1, entry 2)
and acetonitrile (Table 1, entry 3). In case of ethanol, the yield de-
creased to 55%, but improved in acetonitrile (70%). However, the
duration of the reaction was not satisfactory for a quick access to
the compound library related to 4a. After screening a range of cat-
alysts a major improvement in yield (92%) as well as reaction time
(2 h) was observed when catalytic amount of CuI was added to the
reaction mixture in acetonitrile (Table 1, entry 4). While the reac-
tion proceeded in the presence of other copper salts for example
CuBr and CuCl, the yield of product 4a was poor (Table 1, entries
5 and 6) in these cases. The MCR was found to be less effective
in an aqueous media for example in 1:1 i-PrOH/H2O when 4a
was obtained only in 32% yield (Table 1, entry 7). Thus based on
the observation that CuI in acetonitrile decreased the reaction time
from 20 to 2 h, the combination of CuI and acetonitrile was used for
our further study.

The scope and generality of the reaction were further tested by
performing the reactions using a range of isatin derivatives (1) and
terminal alkynes (3) containing various carbonyl functionalities
(Table 2).11 Substituents such as Br, F, NO2, and aryl group on the
isatin ring were well tolerated. The terminal alkynes employed
N
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Scheme 1. Cu-mediated faster synthesis of spirooxindoles 4.
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contained an N-unsubstituted or substituted amide (e.g. NH2,
NHMe, or NHEt) or an ester moiety. The reaction proceeded well
in all these cases affording desired spirooxindoles 4 in good to
excellent yield.

All the spirooxindole derivatives (4a–l) synthesized were char-
acterized by their 1H and 13C NMR, IR, and mass spectral data. The
sharp peak at �3300 cm�1 in IR, a singlet at 10.0 ppm in 1H NMR
correspond to the spirooxindole NH group. Moreover, a sharp IR
absorption at �1640 cm�1 and appearance of a quaternary carbon
signal at �178.0 ppm in the 13C NMR indicated the presence of the
C@O group. While a sharp IR absorption at �1735 cm�1 and a
signal at �161.0 ppm in the 13C NMR indicated the presence of
the ester carbonyl group (e.g. 4i–k), the amide derivatives (4a–h)
2013), http://dx.doi.org/10.1016/j.tetlet.2013.07.126
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Figure 3. The possible regioisomers of compound 4i.
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showed IR absorption at �1640 cm�1 and a carbonyl signal at
�163.0 ppm in the 13C NMR. Based on the fact that the methodol-
ogy may lead to the formation of regioisomeric products for exam-
ple 4i–I and 4i–II of a representative compound 4i (Fig. 3), the
Figure 4. 1H NMR spectra and NOE

Please cite this article in press as: Singh, S. N.; et al. Tetrahedron Lett. (
regioselectivity of the reaction was addressed by NOE experiment
using 4i (Fig. 4). The ring juncture proton of 4i that is H30 that ap-
peared as a triplet of doublet at 4.43 ppm in the 1H NMR spectra
was irradiated to examine its relationship with other nearby pro-
tons. It was found that the intensity of the proton at 7.21 ppm
and the multiplet at �2.0 ppm for the C-40 aliphatic protons was
increased (Fig. 4). This observation suggested that (i) the proton
at 7.21 ppm is the olefinic one and (ii) the regioisomer isolated
was 4i–I and not 4i–II (because in case of 4i–II the intensity of
the olefinic proton (H10) was not expected to be affected during
the NOE experiment as it was not adjacent to H30).

A plausible mechanism that reconciles the structure of the syn-
thesized spirooxindole derivatives 4a–1 has been outlined in
Scheme 2. The reaction proceeds via the formation of an imine
experiment of compound 4i.

2013), http://dx.doi.org/10.1016/j.tetlet.2013.07.126
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Figure 5. Binding modes and interactions of molecule 4k with the inhibitor binding
site of PDE4B.
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intermediate E-1 as a result of the reaction between zwitterionic L-
proline 5 and isatin 1. This step was assisted by CuI which was
regenerated after the conversion of E-1 to a spirocyclic intermedi-
ate E-2. Elimination of CO2 from E-2 generated the dipolar azome-
thine ylide E-3 which on cycloaddition with dipolarophile that is
the terminal alkyne 3 in the presence of CuI afforded the desired
spirooxindole 4. A theoretical study10 on azomethine ylide E-3
(R1 = R2 = H) indicated that it has a planar structure where the pro-
line ring is planar instead of having an envelope shape, and co-pla-
nar with the isatin moiety. Thus, the cycloaddition of alkyne 3 on
the planar azomethine ylide can occur from either side leading to
the formation of product 4 having three chiral centers that is the
possibility of generation of 23 = 8 isomers. Once again based on
earlier theoretical studies10 the generation of four isomers as a re-
sult of front side attack was ruled out. Similarly, two isomers aris-
ing from the back side attack can also be ruled out as their
formation does not follow a concerted mechanism. Moreover, fur-
ther theoretical calculations favored an endo approach leading to
the (3S)-4 isomer instead of (3R)-4.

All the spirooxindoles (4) synthesized were tested for their
PDE4 inhibitory properties in vitro using PDE4B enzyme assay.12

Notably, recent studies have indicated that among the four sub-
types of PDE4 for example A, B, C, and D, the PDE4B subtype is
linked to inflammatory cell regulation.13 It was therefore hypothe-
sized that inhibition of the PDE4B may provide a means to achieve
efficacy while potentially mitigating the adverse effects.14 We have
used a known inhibitor rolipram15 as a reference compound in our
assay. Among all the compounds tested, 4k showed >40%
inhibition of PDE4B when tested at 30 lM. To understand its inter-
action with the PDE4B protein, docking studies were performed
using co-crystal structural coordinates of PDE4B from the protein
data bank (PDB) and the (3S)-isomer of 4k. The in silico study
showed that both C@O groups of 4k were involved in two strong
hydrogen bonds with His 278 and Met 347 residues of the active
site. Additionally, a few hydrophobic interactions with hydropho-
bic clamp residue of Q-pocket were also observed. Both nitro
groups of the molecule facilitate the deep insertion in the enzyme
pocket (Fig 5). The glide score of �5.6 obtained for 4k (see Supple-
mentary data, Table S-1) indicates its good interaction with the
PDE4B protein. Notably, 4k showed selectivity toward PDE4B over
D in silico as indicated by its docking score �3.3 obtained during
its interaction with PDE4D (see Supplementary data, Fig. S4 and
Table S-2).

In conclusion, we have reported the first Cu-mediated one-pot
three-component reaction of isatin derivatives, L-proline, and
terminal alkynes leading to spiropyrrolidine oxindoles in good
yields. This remarkably faster and operationally simple one-pot
methodology seemed to have advantages over the previously
reported methods. This also demonstrates the first use of terminal
alkynes containing an ester/amide group in the synthesis of a
range of spirooxindoles. A representative compound 4k showed
significant inhibition of PDE4B when tested in vitro. Docking
studies indicated that both the carbonyl and nitro groups of this
molecule played key roles in the interactions with the PDE4B
protein. Overall, the spirooxindole framework described here
represents a new template for the identification of novel inhibi-
tors of PDE4 and the synthetic methodology could be useful in
constructing a library of molecules related to spirooxindoles of
potential pharmacological interest.
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