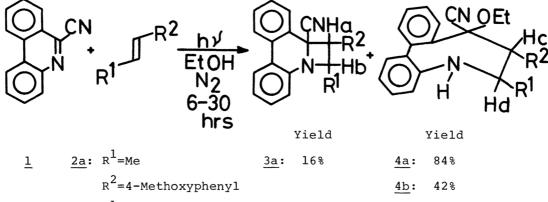
PHOTOCYCLOADDITION OF 6-CYANOPHENANTHRIDINE TO ELECTRON-RICH OLEFINS

Shigeru FUTAMURA, Hiroyuki OHTA^{*}, and Yoshio KAMIYA Department of Reaction Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113


Irradiations of 6-cyanophenanthridine in the presence of electron-rich olefins afforded the corresponding azocine and azetidine derivatives regiospecifically via their exciplex intermediates.

Intermolecular photocycloaddition reactions of the carbon-nitrogen double bond are known only for the systems which are conjugated with the imino¹⁾ or the carbonyl group.^{2,3)} Phenanthridine, which is isoelectronic to phenanthrene, can be also expected to undergo photocycloaddition reactions with olefins similar to phenanthrene derivatives.⁴⁻⁷⁾ In order to explore the synthetic potential of these reactions, we have investigated the photocycloaddition of 6-cyanophenanthridine to electron-rich olefins such as trans-anethole and phenyl vinyl ether. This communication describes the novel photocycloaddition reaction of 6-cyanophenanthridine which gives eight-membered nitrogen heterocycles as final products.

On irradiation of 6-cyanophenanthridine (1) $(10^{-2}M)$ and an electron-rich olefin (2) (10⁻¹M) with a 400 W high pressure mercury arc in ethanol under nitrogen, an azetidine derivative (3) and an azocine derivative (4) were afforded in the yields listed below.

The IR and NMR data of $\underline{3}$ and $\underline{4}$ are summarized in Table 1 and Table 2, respectively.

LC analysis and NMR spectroscopy revealed that this photocycloaddition reaction proceeds regiospecifically. 4 was given as a mixture of the two stereoisomers. The molar ratio of A to B is 4:3 in 4a, and 8:5 in 4b. A predominated over B, and the above ratio reflects the ratio of $\underline{3}$ which is the precursor of $\underline{4}$. The irradiation of 1 and 2a in benzene afforded 3a in 52% yield as a mixture of the

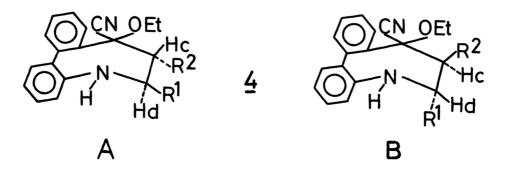
2b: $R^{1}=H$

 $R^2 = PhO$

PhO

Table	1	IR	Data	of	<u>3</u>	and	$\underline{4}^{\perp}$

Compd	ν _{C≡N}	ν _{MeO}	$\nu_{\rm N-H}$
<u>3a</u>	2250	2860	
<u>4a</u>	2250	2860	3330
<u>4b</u>	2250		3320


Table 2 NMR Data of 3 and 4	le 2 NMR I	R Data of	and	4 ²⁾
-----------------------------	------------	-----------	-----	-----------------

Compd	На	Hb	Нс	Hd	Rl	R ²	NH	OEt	Aromatic H
3aA	2.65	3.46			1.24	3.75			6.75-8.74
	Ja,b='	7.2 Hz			(Me)	(MeO)			
<u>3aB</u>	2.83	3.53			1.51	3.79			6.75-8.74
	Ja,b=6	6.8 Hz			(Me)	(MeO)			
<u>4aA</u>			3.37	3.78	1.21	3.62	3.70	3.70	7.10-8.59
			Jc,d=6	5.0 Hz	(Me)	(MeO)		1.05	
<u>4aB</u>			3.41	3.81	1.23	3.62	3.70	3.70	7.10-8.59
			Jc,d=6	5.0 Hz	(Me)	(MeO)		1.05	
4bA			5.12	4.47	4.62		3.39	3.36	6.50-8.47
		Jc,d=	=6.4 Hz	, Jc,e($R^{1} = H) = 7$	4 Hz		0.95	
4bB			5.24	4.04	4.17		3.39	3.36	6.50-8.47
		Jc,d=	=6.4 Hz,	, Jc,e(1	$R^{1}=H)=7$	4 Hz		0.95	

1) Wavenumber in cm⁻¹

2) $\boldsymbol{\delta}$ in ppm, relative to internal TMS

stereoisomers in a 5:2 ($\underline{3aA}$: $\underline{3aB}$) ratio. As Table 2 shows, the Hb proton of $\underline{3aA}$ appeared at the higher field than that of $\underline{3aB}$. This fact can be explained in terms of the diamagnetic anisotropy of the cyano group which is trans to the Hb proton. Although about 50% of recovered anethole (60%) isomerized to its cis form, no

incorporation of <u>cis</u>-anethole into the cycloadduct was observed. The stereochemical assignment was based on the fact that the methyl protons of the cycloadduct absorb at the magnetic field lower than 1 ppm.⁸⁾ This fact suggests that the photo-isomerization from <u>2a</u> to <u>cis</u>-anethole competes with the photocycloaddition reaction of <u>1</u> to <u>2a</u> and that the collapse of the exciplex to a biradical which gives a stereoisomeric mixture of the adducts is unfavorable.

The quantum yield for the formation of $\underline{3a}$ in benzene was obtained as $\overline{\mathcal{P}}=0.04.^{9}$. This value is around a tenth as large as that for the formation of the cycloadduct between 9-cyanophenanthrene and 2a.⁶

1,3-Pentadiene did not quench formation of $\underline{3a}$ in the photochemical reaction of $\underline{1}$ with $\underline{2a}$ in benzene. This fact suggests that $\underline{3a}$ is formed via the lowest excited singlet state of $\underline{1}$.

The fluorescence of <u>1</u> in ethanol (λ_{max} =410 nm) was quenched efficiently by <u>2a</u> (K_{SV} =105 M⁻¹), accompanied by a weak exciplex emission at 503 nm. This exciplex emission was attenuated by acrylonitrile, while it did not quench the fluorescence of <u>1</u>. LC analysis revealed that it also quenched formation of <u>3a</u>. These facts afford spectroscopic evidence that the exciplex is the precursor of the cyclo-adduct.

Irradiation of $\underline{3a}$ in ethanol under nitrogen for 1 h afforded $\underline{4a}$ in 50% yield. This finding supports that $\underline{3a}$ is the intermediate of $\underline{4a}$.

Scheme $\underline{1} \xrightarrow{h_{1}} \underline{1} \xrightarrow{2} (\underline{1} \cdots \underline{2})^{*}$ Exciplex

Therefore, the mechanism of this photocycloaddition reaction would be written as the above scheme shows.

It is well known that exciplexes dissociate into radical ions in polar solvents.¹⁰⁾ In this investigation, however, the anti-Markownikov adduct derived from the cation radical of 2a and ethanol was formed only in trace amounts, making contrast to the photochemical reactivity of the exciplex formed between 2a and 6-methylphenanthridine.¹¹⁾ When 2b was used, a cyclobutane derivative derived from the cation radical of 2b could be obtained, but its yield is low and its reaction mechanism remains to be seen.

References and Notes

- O. Tsuge, M. Tashiro, and K. Oe, Tetrahedron Lett., 3971(1968); O. Tsuge, K. Oe, and M. Tashiro, Tetrahedron, 29, 41(1973).
- T. H. Koch and K. H. Howard, Tetrahedron Lett., <u>1972</u>,4035; D. R. Anderson, J. S. Keute, T. H. Koch, and R. H. Moseley, J. Am. Chem. Soc., <u>99</u>, 6332(1977).
- 3) J. A. Hyatt and J. S. Swenton, J. Chem. Soc., Chem. Commun., 1144(1972); J. S. Swenton and J. A. Hyatt, J. Am. Chem. Soc., 96, 4879(1974).
- 4) S. Farid, J. C. Doty, and J. L. R. Williams, J. Chem. Soc., Chem. Commun., 761(1972).
- 5) K. Mizuno, C. Pac, and H. Sakurai, J. Am. Chem. Soc., <u>96</u>, 2993(1974).
- 6) R. A. Caldwell and L. Smith, ibid., 96, 2994(1974).
- 7) R. A. Caldwell, N. I. Ghali, C.-K. Chien, D. DeMarco, and L. Smith, ibid., 100, 2857(1978).
- A. Gaudemer, "Stereochemistry", vol. 1, H. B. Kagan, ed., Georg Thieme Publishers Stuttgart, 1977, pp. 83-89.
- 9) Benzophenone-benzhydrol actinometry was used (λ_{irrad} =366 nm).
- 10) R. A. Neunteufel and D. R. Arnold, J. Am. Chem. Soc., <u>95</u>, 4080(1973).
- 11) 1-(4-Methoxyphenyl)-2-ethoxypropane was afforded in 80% yield based on consumed <u>trans</u>-anethole, S. Futamura, H. Ohta, and Y. Kamiya, unpublished results.

(Received February 22, 1980)