Tetrahedron 57 (2001) 8067-8074

New *p*-menthanetriols and their glucosides from the fruit of caraway[☆]

Tetsuko Matsumura, Toru Ishikawa and Junichi Kitajima*

Showa Pharmaceutical University, Higashi-Tamagawagakuen 3, Machida, Tokyo 194-8543, Japan Received 16 May 2001; accepted 25 July 2001

Abstract—Ten new *p*-menthanetriols, including eight stereoisomers of *p*-menthane-2,8,9-triol, and five new glucosides were isolated from the water-soluble portion of the methanol extract of the fruit of caraway (*Carum carvi* L.), which has been used as a spice and medicine. Their structures were clarified by spectral investigation. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Caraway [Carum carvi L.; Umbelliferae] has been used as a popular aromatic herb and spice since antiquity and has been cultivated in Europe since the Middle Ages.^{1,2} Its fruit has been used for medicine and in cooking, and is listed in British, German and European pharmacopoeia.^{2,3} For medicinal purpose, it is used to relieve flatulent indigestion, colic and bronchitis.^{1,2} Studies on the fruit were made on the essential oil, and many monoterpenoids [d-carvone (main; 50–60%), *l*-limonene, carvacrol, *trans*-carveol, *d*-dihydrocarveol, l-dihydrocarveol, etc.] were reported as the constituents.4 However, no report has been published on the water-soluble portion of this fruit. In continuation of our studies on the water-soluble constituents of spices, and to reveal the relationship between the essential oil and the water-soluble constituent, we undertook a detailed investigation on the constituents of this fruit. In this paper, we discuss the isolation and the characterization of 10 new monoterpenoid triols and five new monoterpenoid triol glucosides.

2. Results and discussion

Commercial caraway was extracted with 70% methanol, and the methanolic extract was suspended in water and successively extracted with ether and ethyl acetate. The aqueous layer was chromatographed on Amberlite XAD-II to give water and methanol eluate fractions. The methanol

Keywords: caraway; *Carum carvi* fruit; *p*-menthanetriol; *p*-menthanetriol glucoside; *p*-menthane-2,8,9-triol; stereoisomers.

eluate fraction was chromatographed on Sephadex LH-20, and subjected to a combination of silica gel, Lobar RP-8 column chromatography and HPLC to isolate monoterpenoid triols (1–10) and their glucosides (11–15). All glucosides described in this paper were β -D-glucopyranosides as shown by their ¹³C NMR data (Table 2), and this was confirmed by hydrolysis to yield D-glucose or by a comparison of the $[\alpha]_D$ or $[M]_D$ values with those of their aglycones except 15. Their molecular formulae were suggested from the accurate mass number of $[M+H]^+$ or $[M+Na]^+$ or $[M+K]^+$ ion peaks in the high-resolution positive FAB-MS.

Triol 1 ($C_{10}H_{20}O_3$, an amorphous powder, $[\alpha]^{21}_D+14^\circ$) and **2** ($C_{10}H_{20}O_3$, an amorphous powder, $[\alpha]^{21}_D + 8^{\circ}$) showed $[M+H]^+$ ion peaks at m/z 189 in the positive FAB-MS. They revealed quite similar ¹H and ¹³C NMR spectral features (Tables 1 and 2), and have one tert-methyl, one sec-methyl, four methylenes (one of them was oxygenated), three methines (one of them was oxygenated) and one oxygenated quaternary carbon. From the analysis of HMBC spectral data of 1, they were suggested to be p-menthane-2,8,9-triol. Hirai et al. isolated two monoterpenoidtriols, (1R,2R,4R,8S)- and (1R,2R,4R,8R)-pmenthane-2,8,9-triol (1a and 2a) from the fruiting body of Flammulina velutipes (Tricholomataceae), and 1 and 2 showed the identical ¹H and ¹³C NMR spectral data with those of 1a and 2a. Furthermore, 1a and 2a had the opposite optical rotation values to that of **1** and **2** (**1a**; $[\alpha]^{24}_{D}$ – 17.0°, 2a; $[\alpha]^{24}$ D = 5.3°). Therefore, **1** and **2** were concluded to be (1S,2S,4S,8R)- and (1S,2S,4S,8S)-p-menthane-2,8,9-triol, respectively.

Triol **3** ($C_{10}H_{20}O_3$, mp 119–122°C, $[\alpha]^{25}_D$ –31°) and **4** ($C_{10}H_{20}O_3$, mp 115–117°C, $[\alpha]^{21}_D$ –35°) were indicated to be *p*-menthane-2,8,9-triol by the ¹H and ¹³C NMR spectral data (Tables 1 and 2) and the result of HMBC experiment of **3**. The observed NOE interactions between

[★] This is the first report of the isolation of all eight stereoisomeric terpenoids having four asymmetric carbons in the molecule, from the plant.

^{*} Corresponding author. Tel.: +81-427-21-1577; fax: +81-427-21-1576; e-mail: kitajima@ac.shoyaku.ac.jp

Table 1. ^{1}H NMR chemical shifts of 1–15 (in pyridine-d₅, 500 MHz)

_	1	2	3	4	
H-1 _{ax}	1.56 m	1.56 m	_	_	
eq	_	_	2.28 m	2.28 m	
H-2 _{ax}	3.44 ddd (3.0, 10.0, 11.0)	3.45 ddd (3.5, 10.0, 11.0)	4.10 ddd (3.5, 3.5, 11.0)	4.10 ddd (4.0, 4.0, 11.0)	
H-3 _{ax}	1.64 ddd (11.0, 12.0, 12.0)	1.73 ddd (11.0, 12.0, 12.0)	1.84 ddd (11.0, 12.0, 12.0)	1.94 ddd (11.0, 12.0, 12.0)	
eq H-4 _{ax}	2.58 dddd (3.0, 3.0, 3.0, 12.0) 2.09 dddd (3.0, 3.0, 12.0, 12.0)	2.83 dddd (3.5, 3.5, 3.5, 12.0) 2.10 dddd (3.5, 3.5, 12.5, 12.0)	2.24 ddd (3.5, 3.5, 12.0) 2.05 dddd (3.5, 3.5, 12.0, 12.0)	2.48 ddd (3.5, 4.0, 12.0) 2.06 dddd (3.5, 3.5, 12.0, 12.0)	
$H-5_{ax}$	1.43 dddd (3.0, 12.0, 12.0, 12.0)	1.30 dddd (3.5, 12.0, 12.0, 12.0)	1.64 dddd (3.5, 12.0, 12.0, 12.0)	1.58 dddd (4.0, 12.0, 12.0, 12.0)	
eq	2.20 dddd (3.0, 3.0, 3.0, 12.0)	1.92 dddd (3.5, 3.5, 3.5, 12.0)	1.92 dddd (3.5, 3.5, 3.5, 12.0)	1.65 m	
H-6 _{ax}	1.09 dddd (3.0, 12.0, 12.0, 12.0)	1.09 dddd (3.5, 12.0, 12.0, 12.0)	1.58 dddd (3.5, 3.5, 12.0, 12.0)	1.58 dddd (4.0, 4.0, 12.0, 12.0)	
eq	1.81 dddd (3.0, 3.0, 3.0, 12.0)	1.79 dddd (3.5, 3.5, 3.5, 12.0)	1.72 dddd (3.5, 3.5, 3.5, 12.0)	1.67 dddd (4.0, 6.0, 12.0, 12.0)	
H_{3} -7	1.24 d (6.5)	1.25 d (6.5)	1.22 d (7.0)	1.22 d (7.0)	
H_2-9	3.91 d (10.5)	3.91 d (11.0)	3.92 d (11.0)	3.92 d (11.0)	
H ₃ -10	3.96 d (10.5) 3.94 d (11.0) 1.42 s 1.41 s		3.96 d (11.0) 1.45 s	3.95 d (11.0) 1.44 s	
113-10					
	5	6	7	8	
H-1 _{ax}	1.55 m	1.55 m	- 2.12 ···	- 2.11	
eq H 2	- 4.13 br dd (3.0, 3.0)	- 4.16 br dd (3.0, 3.0)	2.13 m 4.11 br dd (3.0, 3.0)	2.11 m 4.12 br dd (3.0, 3.0)	
H-2 _{eq} H-3 _{ax}	1.60 ddd (3.0, 13.0, 13.0)	1.68 ddd (3.0, 13.0, 13.0)	1.83 ddd (3.0, 13.0, 13.0)	1.88 ddd (3.0, 13.0, 13.0)	
eq	2.37 ddd (3.0, 3.0, 13.0)	2.62 ddd (3.0, 3.0, 13.0)	2.13 ddd (3.0, 3.0, 13.0)	2.34 ddd (3.0, 3.0, 13.0)	
H-4 _{ax}	2.64 dddd (3.0, 3.0, 13.0, 13.0)	2.66 dddd (3.0, 3.0, 13.0, 13.0)	2.67 dddd (3.0, 3.0, 13.0, 13.0)	2.66 dddd (3.0, 3.0, 13.0, 13.0)	
H-5 _{ax}	1.49 dddd (3.0, 13.0, 13.0, 13.0)	1.35 dddd (3.0, 13.0, 13.0, 13.0)	1.71 dddd (3.0, 13.0, 13.0, 13.0)	1.54 dddd (3.0, 13.0, 13.0, 13.0)	
eq	2.30 dddd (3.0, 3.0, 3.0, 13.0)	2.03 dddd (3.0, 3.0, 3.0, 13.0)	2.01 dddd (3.0, 3.0, 3.0, 13.0)	1.73 dddd (3.0, 3.0, 3.0, 13.0)	
$H-6_{ax}$	1.85 dddd (3.0,13.0, 13.0, 13.0)	1.84 dddd (3.0, 13.0, 13.0, 13.0)	2.35 dddd (3.0, 3.0, 13.0, 13.0)	2.31 dddd (3.0, 3.0, 13.0, 13.0)	
eq	1.54 dddd (3.0, 3.0, 3.0, 13.0)	1.51 dddd (3.0, 3.0, 3.0, 13.0)	1.49 br ddd (3.0, 3.0, 13.0)	1.43 br ddd (3.0, 3.0, 13.0)	
H ₃ -7 H ₂ -9	1.17 d (7.0)	1.17 d (7.0) 3.89 d (10.5)	1.02 d (7.0) 3.92 d (10.5)	0.99 d (7.0) 3.88 d (10.5)	
П2-9	3.91 d (10.5) 3.95 d (10.5)	3.96 d (10.5)	3.96 d (10.5)	3.93 d (10.5)	
H ₃ -10	1.44 s	1.42 s	1.46 s	1.42 s	
	9	10	11	12	
H-1 _{eq} H-2 _{ax}	_	_	2.46 m 4.30 br d (12.0)	2.25 m 4.03 ddd (4.5, 4.5, 12.0)	
eq	4.26 dd (3.0, 3.0)	4.18 dd (3.5, 3.5)	4.30 bi d (12.0)	- -	
H-3 _{ax}		1.10 dd (5.5, 5.5)	1 91 444 (12 0 12 0 12 0)	4.70 111 (40.0 40.0 40.0)	
II Jay	2.43 ddd (3.0, 12.5, 12.5)	2.33 ddd (3.5, 13.0, 13.0)	1.81 add (12.0, 13.0, 13.0)	1.73 ddd (12.0, 12.0, 12.0)	
eq	2.43 ddd (3.0, 12.5, 12.5) 2.36 ddd (3.0, 3.0, 12.5)	2.33 ddd (3.5, 13.0, 13.0) 2.04 ddd (3.5, 3.5, 13.0)	1.81 ddd (12.0, 13.0, 13.0) 2.29 br d (13.0)	1.73 ddd (12.0, 12.0, 12.0) 2.24 br d (12.0)	
eq					
eq H-4 _{ax}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0)	
eq H-4 _{ax} H-5 _{ax} eq	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃ -7	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9 H ₂ -9	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0)	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃₋₇ H-8 H ₃₋₉ H ₂₋₉ H ₃₋₁₀ Glc-1	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.3	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) -	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃₋₇ H-8 H ₃₋₉ H ₂₋₉ H ₃₋₁₀ Glc-1 H-2 _{eq}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) - 14 4.16 dd (3.0, 3.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.3 4.18 dd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) - 14 4.16 dd (3.0, 3.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-3-7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax}	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 12.5, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.44 s - 2.4 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0) 2.50 m	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-3-7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax} H-5 _{ax} eq	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 2.4 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0, 12.0)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 3.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
$\begin{array}{c} \text{eq} \\ \text{H-}4_{ax} \\ \text{H-}5_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ \text{eq} \\ \text{H_3-}7 \\ \text{H-}8 \\ \text{H_3-}9 \\ \text{H_2-}9 \\ \text{H_3-}10 \\ \text{Glc-}1 \\ \text{H-}2_{\text{eq}} \\ \text{H-}3_{ax} \\ \text{eq} \\ \text{H-}4_{ax} \\ \text{H-}5_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ \end{array}$	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 2.36 ddd (3.0, 3.0) 2.36 ddd (3.0, 3.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 2.20 ddd (3.0, 12.0, 12.0)	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) - 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 3.0, 13.0) 2.06 ddd (3.0, 13.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 3.0, 13.0) 2.07 ddd (3.0, 13.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
$\begin{array}{c} \text{eq} \\ \text{H-}4_{ax} \\ \text{H-}5_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ \text{eq} \\ \text{H_3-}7 \\ \text{H8} \\ \text{H_3-9} \\ \text{H_2-9} \\ \text{H_3-10} \\ \text{Glc-}1 \\ \text{H-}2_{\text{eq}} \\ \text{H-}3_{ax} \\ \text{eq} \\ \text{H-}4_{ax} \\ \text{H-}5_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ \text{eq} \\ \text{eq} \end{array}$	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 13.0) 1.59 ddd (3.0, 13.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 2.07 ddd (3.0, 13.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H ₃ -7	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.44 dd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0) 1.81 s	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0) 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0)	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 12.5, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.44 s - 2.4 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 2.20 ddd (3.0, 12.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 3.0, 13.0) 1.79 ddd (3.0, 13.0, 13.0) 1.81 s 2.41 m	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.82 s	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H ₃ -7 H-8 H ₃ -9	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 12.5, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.44 s - 1.45 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 2.20 ddd (3.0, 12.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.69 s - 1.46 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0) 1.81 s 2.41 m	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.78 ddd (3.0, 13.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.82 s	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-3-7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-9 _a H-9 _a	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 12.5, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.44 s - 2.4 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 2.20 ddd (3.0, 12.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.69 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 ddddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0) 1.81 s 2.41 m 3.73 dd (7.0, 10.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.82 s - 5.10 br s	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-6 _{ax} eq H-3-7 H-8 H ₃ -9 H ₂ -9 H ₃ -10 Glc-1 H-2 _{eq} H-3 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-4 _{ax} H-5 _{ax} eq H-6 _{ax} eq H-9a b	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 12.5, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.44 s - 2.4 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 12.0, 12.0, 12.0) 2.20 ddd (3.0, 3.0, 12.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.85 ddd (3.0, 3.0, 12.0) 1.69 s - 1.46 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 13.0) 1.79 ddd (3.0, 3.0, 13.0) 1.81 s 2.41 m	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.78 ddd (3.0, 13.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.82 s	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	
$\begin{array}{c} \text{eq} \\ \text{H-}4_{ax} \\ \text{H-}5_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ \text{eq} \\ \text{H_3-}7 \\ \text{H-}8 \\ \text{H_3-}9 \\ \text{H_2-}9 \\ \\ \text{H_3-}10 \\ \text{Glc-}1 \\ \\ \text{H-}2_{eq} \\ \text{H-}3_{ax} \\ \text{eq} \\ \text{H-}4_{ax} \\ \text{H-}5_{ax} \\ \text{eq} \\ \text{H-}6_{ax} \\ $	2.36 ddd (3.0, 3.0, 12.5) 2.48 dddd (3.0, 3.0, 12.5, 12.5) 2.13 dddd (3.0, 12.5, 12.5, 12.5) 2.02 ddd (3.0, 3.0, 12.5) 2.27 ddd (3.0, 12.5, 12.5) 1.93 ddd (3.0, 3.0, 12.5) 1.69 s - 1.44 s - 1.44 s - 1.44 s - 1.45 ddd (3.0, 3.0) 2.36 ddd (3.0, 12.0, 12.0) 2.42 ddd (3.0, 3.0, 12.0) 2.54 dddd (3.0, 3.0, 12.0, 12.0) 2.55 dddd (3.0, 3.0, 12.0, 12.0) 2.00 dddd (3.0, 3.0, 12.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 1.95 ddd (3.0, 3.0, 12.0) 1.96 s - 1.46 s - 1.46 s	2.04 ddd (3.5, 3.5, 13.0) 1.86 m 2.05 dddd (3.5, 13.0, 13.0, 13.0) 1.71 dddd (3.5, 3.5, 3.5, 13.0) 2.22 ddd (3.5, 13.0, 13.0) 1.85 ddd (3.5, 3.5, 13.0) 1.69 s 2.42 m 1.46 s 3.78 dd (7.0, 10.5) 3.99 dd (5.5, 10.5) 1.17 d (7.0) 14 4.16 dd (3.0, 3.0) 2.22 ddd (3.0, 13.0, 13.0) 2.33 ddd (3.0, 3.0, 13.0) 1.80 m 2.00 dddd (3.0, 13.0, 13.0, 13.0) 1.54 dddd (3.0, 3.0, 3.0, 13.0) 1.79 ddd (3.0, 13.0, 13.0) 1.81 s 2.41 m 3.73 dd (7.0, 10.0) 3.93 dd (6.0, 10.0)	2.29 br d (13.0) 1.93 dddd (3.0, 3.0, 13.0, 13.0) 1.57 dddd (3.0, 13.0, 13.0, 13.0) 1.85 m 1.43 dddd (3.0, 3.0, 13.0, 13.0) 1.6 br dd (3.0, 13.0)3 1.20 d (7.0) - 3.87 d (11.0) 3.90 d (11.0) 1.38 s 5.03 d (7.5) 15 4.20 dd (3.0, 3.0) 2.49 ddd (3.0, 3.0, 13.0, 13.0) 2.50 m 3.00 dddd (3.0, 3.0, 13.0, 13.0) 2.14 dddd (3.0, 13.0, 13.0, 13.0) 1.75 dddd (3.0, 3.0, 3.0, 13.0) 1.75 dddd (3.0, 3.0, 13.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0, 13.0) 1.78 ddd (3.0, 3.0, 13.0) 1.82 s - 5.10 br s 5.41 br s	2.24 br d (12.0) 2.03 br dd (12.0, 12.0) 1.56 dddd (3.0, 12.0, 12.0, 12.0) 1.84 br d (12.0) 1.53 dddd (3.0, 3.0, 12.0, 12.0) 1.67 br d (12.0) 1.18 d (7.0) - 3.83 d (10.0) 4.30 d (10.0) 1.35 s	

 δ in ppm from TMS [coupling constants (*J*) in Hertz are given in parentheses].

Table 2. ¹³C NMR chemical shifts of 1–15 and 18 (in pyridine-d₅, 125 MHz)

	1	2	3	4	5	6	7	8	9	10
C-1	41.11	41.11	34.90	34.91	37.46	37.41	35.06	35.07	70.82	71.09
C-2	76.28	76.37	72.53	72.58	70.16	70.20	71.44	71.48	74.47	74.24
C-3	38.18	37.30	31.22	30.29	36.01	35.21	29.95	29.10	31.48	32.73
C-4	44.31	44.20	44.13	44.01	38.04	37.94	38.55	38.49	42.31	41.40
C-5	26.74	27.64	20.14	21.12	27.21	28.05	20.94	21.88	23.26	26.45
C-6	34.01	34.05	31.20	31.27	29.09	29.07	27.06	27.06	34.97	34.91
C-7	19.37	19.34	11.55	11.58	19.29	19.31	17.04	17.07	28.87	28.59
C-8	74.01	73.92	74.08	74.02	74.16	74.10	74.25	74.18	71.63	32.65
C-9	69.05	69.13	69.00	69.15	69.03	69.14	68.91	69.00	27.77 ^a	65.75
C-10	21.75	21.55	21.96	21.74	21.86	21.50	21.93	21.67	27.93 ^a	14.52
	11	12	13	14	15	18				
C-1	30.32 (-4.6)	34.73	70.78	70.73 (-0.4)	70.41	30.29 (-4.6)				
C-2	78.61 (+6.1)	72.43	74.45	84.72 (+10.5)	84.14	78.44 (+5.9)				
C-3	29.15(-2.1)	31.08	31.10	30.38(-2.3)	33.94	28.21(-2.1)				
C-4	44.02	43.99	40.94(-1.4)	40.91	34.35	44.09				
C-5	19.99	19.91	23.17	26.13	27.61	21.00				
C-6	30.78	31.08	35.03	35.40	35.30	30.88				
C-7	11.41	11.41	28.71	28.26	28.27	11.41				
C-8	74.06	73.55(-0.5)	79.77 (+8.1)	32.43	156.13	73.93				
C-9	68.90	77.43 (+8.4)	24.28^{a} (-3.5)	65.60	107.01	69.00				
C-10	21.75	21.63	24.41^{a} (-3.5)	13.95	64.75	21.63				
Glc-1	101.35	106.00	98.63	106.47	106.31	101.28				
Glc-2	75.42	75.30	75.52	75.73	75.70	75.45				
Glc-3	78.63	78.65	78.95	78.73	78.74	78.71				
Glc-4	71.75	71.64	71.88	71.61	71.74	71.73				
Glc-5	78.39	78.55	78.10	78.30	78.34	78.52				
Glc-6	62.75	62.73	63.02	62.86	62.90	62.75				

 $[\]delta$ in ppm from TMS. $\Delta\delta$ (δ glucoside– δ aglycone) are given in parentheses. a Assignments may be interchanged in each column.

Figure 1. Structures of 1-15, and NOE interactions between H_2-9 and H_2-3 or H_2-5 observed in the NOESY spectra of 1-8, 11 and 12.

H₃-7/H-3_{ax}, H-5_{ax} and between H-2/H-4 of both triols suggested that the configuration of C-1 methyls was axial and that of C-2 hydroxyls was equatorial, and the conformation of the cyclohexane rings were chair-form with 7–8 cis relation (Fig. 1). So, 3 and 4 were concluded to be stereoisomers of cis-p-menthane-2_{eq},8,9-triol at C-8. The stereochemical relationship between 3 and 4 was established by comparison of their ¹³C NMR spectra with those of epimeric pairs of 1 and 2, and (4R,8R)- and (4R,8S)-p-menth-8,9-diol (16 and 17), where C-3 signals in $(4R^*,8S^*)$ -forms (1; δ 38.18, 16; δ 26.93) appeared significantly downfield to those in the $(4R^*,8R^*)$ -forms (2; δ 37.30, 17; δ 25.81), and C-5 in $(4R^*,8S^*)$ -forms (1; δ 26.74, 16; δ 23.05) appeared significantly upfield to those in the $(4R^*,8R^*)$ forms (2; δ 27.64, 17; δ 24.30). For 3 and 4, the ¹³C chemical shift at C-3 of 3 (δ 31.22) was downfield to that of 4 (δ 30.29), whereas C-5 of 3 (δ 20.14) was upfield to that of 4 (δ 21.12). Thus, the stereochemical relationship between C-4 and C-8 was considered to be $4R^*$,8 S^* in 3 and $4R^*$,8 R^* in 4 as in the pair of 1 and 2. This was also supported by the results of the NOESY spectrum which showed interactions between H_3 -10/ H_2 -3, H_2 -5, and between H_2 -9/H-3_{eq} in **1** and 3, and interactions between H₃-10/H₂-3, H₂-5, and between H₂-9/H-5_{eq} in **2** and **4**. Glucoside **11** ($C_{16}H_{30}O_8$, an amorphous powder, $[\alpha]^{25}_D-46^\circ$) and **12** ($C_{16}H_{30}O_8$, an amorphous powder, $[\alpha]^{21}_D-35^\circ$) showed $[M+H]^+$ ion peaks at m/z 351 in the positive FAB-MS. Both glucosides were hydrolyzed with hesperidinase and, from the hydrolyzed mixtures, 3 and D-glucose were obtained. Consequently, 11 and 12 were monoglucosides of 3, respectively. The position of the β -glucosyl unit of 11 was proved to be C-2 from the HMBC correlation of glucosyl H-1/C-2, and from the observed NOE interaction between the glucosyl H-1/H-2 in the NOESY spectrum. The absolute configuration at C-2 of 3 was indicated as R by the values of the glycosylation shift of the α - and β -carbon and the chemical shift of the glucosyl anomeric carbon as shown in Table 2.8 Thus, 3 and 11 were characterized as (1S,2R,4R,8S)-p-menthane-2,8,9-triol and (1S,2R,4R,8S)-pmenthane-2,8,9-triol 2-O-β-D-glucopyranoside, respectively. The position of the β-glucosyl unit of 12 was proved to be C-9 by the downfield shift of the C-9 (by 8.4 ppm) signal and upfield shift of C-8 (by 0.5 ppm) signal, and from the observed NOE interaction between the glucosyl H-1/H₂-9 in the NOESY spectrum. So, 12 was characterized as (1S,2R,4R,8S)-p-menthane-2,8,9-triol 9-O- β -D-glucopyranoside. On the other hand, the absolute configuration of 4 was indicated to be 1S,2R,4R,8R as (1S,2R,4R,8R)-p-menthane-2,8,9-triol 2-O-β-D-glucopyranoside (18), which was isolated from the fruit of Anethum gravealens (Dill) by us,⁹ gave an aglycone identical to 4. Therefore, 4 was suggested to be (1S,2R,4R,8R)-p-menthane-2,8,9-triol.

Triol **5** ($C_{10}H_{20}O_3$, mp 123–126°C, $[\alpha]^{21}_D$ –22°) and **6** ($C_{10}H_{20}O_3$, an amorphous powder, $[\alpha]^{21}_D$ –30°) showed $[M+K]^+$ ion peaks at m/z 227 and were indicated to be p-menthane-2,8,9-triol by the 1H and ^{13}C NMR spectral data (Tables 1 and 2) and the result of HMBC experiment of **5**. The configuration of C-2 hydroxyls was suggested to be axial by the H-2 signals which found double doublets with half bandwidths of 3 Hz in their 1H NMR spectra. The conformation of **5** and **6** was found to be 7,8-*trans* form from the observed NOE interactions between H-1/H-3_{ax},

between H_3 -7/H-2_{eq}, H_2 -6, and between H_3 -10/H-3_{ax}, H-5_{ax} in their NOESY spectra. So, **5** and **6** were revealed to be stereoisomers of *trans-p*-menthane-2_{ax},8,9-triol at C-8, respectively. Further, the ¹³C chemical shift of C-3 of **5** (δ 36.01) showed downfield to that of **6** (δ 35.21) and C-5 of **5** (δ 27.21) appeared upfield to that of **6** (δ 28.05); the relationship between **5** and **6** was indicated to be the same as that between **3** and **4**. This conclusion was supported by the results of the NOESY spectra of **5** and **6**, which showed the same interactions as **3** (between H_3 -10/ H_2 -3, H_2 -5, and between H_2 -9/H-3_{eq}) and **4** (between H_3 -10/ H_2 -3, H_2 -5, and between H_2 -9/H-5_{eq}). Then, **5** and **6** were concluded to be rel-(1*R*,2*S*,4*R*,8*S*)-*p*-menthane-2,8,9-triol and rel-(1*R*,2*S*,4*R*,8*R*)-*p*-menthane-2,8,9-triol, respectively.

Triol 7 ($C_{10}H_{20}O_3$, mp 130–133°C, $[\alpha]^{21}D^{-7}$) and 8 $(C_{10}H_{20}O_3$, an amorphous powder, $[\alpha]^{21}D-13^{\circ}$ were indicated to be p-menthane-2,8,9-triol by the same way described for 1-6, and the configuration of C-2 hydroxyls was concluded to be axial by the equatorial H-2 signal patterns of their ¹H NMR spectra (Table 1). The stereochemical relationship between C-7 and C-8 was suggested to be cis from the observed NOE interactions between H₃-7/ $H-2_{eq}$, $H-3_{ax}$, $H-5_{ax}$, $H-6_{eq}$, and between H_3 -10/ $H-3_{ax}$, $H-5_{ax}$ in their NOESY spectra. So, **7** and **8** were concluded to be stereoisomers of cis-p-menthane-2_{ax},8,9-triol at C-8, respectively. The 13 C chemical shifts of C-3 (7; δ 29.95, $\hat{\bf 8}$; δ 29.10) and C-5 (7; δ 20.94, **8**; δ 21.88) indicated the relative configuration at C-4 and C-8 was $4R^*,8S^*$ for 7 and $4R^*,8R^*$ for 8. In addition, the NOESY spectrum of 7 showed NOE interactions between H₃-10/H₂-3, H₂-5 and between H₂-9/H-3_{eq} which were also shown in the NOESY spectra of 1, 3 and 5, and the NOESY or 1D-NOE spectra of 8 showed the NOE interactions between H₃-10/H₂-3, H₂-5 and between H₂-9/H- 5_{eq} which were also observed in the NOESY spectra of 2, 4 and 6. Then, 7 and 8 were concluded to be rel-(1S,2S, 4R,8S)-p-menthane-2,8,9-triol and rel-(1S,2S,4R,8R)-pmenthane-2,8,9-triol, respectively.

Triol **9** ($C_{10}H_{20}O_3$, mp 134–135°C, $[\alpha]^{23}_D$ –25°) showed $[M+H]^+$ ion peaks at m/z 189 in the positive FAB-MS, and the ¹H and ¹³C NMR spectral data (Tables 1 and 2) revealed the presence of three tert-methyls, three methylenes, two methines (one of them was oxygenated) and two oxygenated quaternary carbons. From the analysis of the HMBC spectral data, 9 was suggested to be p-menthane-1,2,8-triol. By comparison of NMR data with those of (4R)-p-menthane-1,2,8-triols, which were synthesized by Carman et al., 10 9 was indicated to be $(1S^*, 2S^*, 4R^*)$ -form. Furthermore, (1S,2S,4R)-p-menthane-1,2,8-triol showed a positive optical rotation $([\alpha]^{24}_{D}+44^{\circ}(CHCl_{3}))$ contrary to that of **9** $([\alpha]^{21}_D-47^\circ(CHCl_3))$, and **9** was characterized as (1R,2R,4S)-p-menthane-1,2,8-triol. Glucoside **13** (C₁₆H₃₀O₈, an amorphous powder, $[\alpha]^{23}_{D}-31^{\circ}$) showed $[M+H]^{+}$ ion peaks at m/z 351 and $[M-C_6H_{12}O_6+H]^+$ ion peaks at m/z171 in the positive FAB-MS, and gave an aglycone, which was identical to 9, and D-glucose by enzymatic hydrolysis. The position of attachment of the glucosyl unit was revealed to be C-8 of 9 from the H-C long-range correlation between the glucosyl anomeric proton signal and the C-8 carbon in the HMBC spectrum. Therefore, 13 was determined to be (1R,2R,4S)-p-menthane-1,2,8-triol 8-O- β -D-glucopyranoside.

Triol 10 ($C_{10}H_{20}O_3$, an amorphous powder, $[\alpha]^{24}_D + 25^\circ$) was also indicated to be monoterpenoidtriol by ¹H and ¹³C NMR spectral data (Tables 1 and 2), and its planar structure was revealed to be p-menthane-1,2,9-triol by the HMBC experiment. The configuration of C-1 methyl, C-4 isopropyl was suggested to be equatorial, and the conformation of the cyclohexane ring was found to be chair-form from the NOE interactions between H₃-7/H-2, H₂-6, and between H-4_{ax}/H-6_{ax} observed in the NOESY spectrum. The configuration of C-2 hydroxyl was indicated to be axial by the narrow equatorial H-2 signal of its ¹H NMR spectrum (Table 1). The stereochemical relationship between C-4 and C-8 was revealed to be $4R^*,8R^*$ from the observed NOE interactions between H₃-10/H₂-3 and between H-3_{ax}/H-8 in the NOESY spectrum. Then, the relative configuration was concluded to be $1S^*, 2S^*, 4R^*, 8R^*$, respectively. Glucoside 14 ($C_{16}H_{30}O_8$, mp 174–178°C, $[\alpha]^{24}_{D}+21^{\circ}$) showed $[M+H]^{+}$ ion peaks at m/z 351 and $[M-C_6H_{12}O_6+H]^+$ ion peaks at m/z 171 in the positive FAB-MS. 14 was hydrolyzed with β -glucosidase and, from the hydrolyzed mixtures, 10 and D-glucose were obtained. So, 14 was a monoglucoside of 10. The position of the β-glucosyl unit was suggested to be C-2 from the HMBC correlation of glucosyl H-1/C-2, and from the observed NOE interaction between the glucosyl H-1/H-2 in the NOESY spectrum. The absolute configuration at C-2 of **10** was indicated as S by the values of the glycosylation shift of the α - and β -carbon and the chemical shift of the glucosyl anomeric carbon as shown in Table 2.8 Thus, 10 and 14 were characterized as (1S,2S,4R,8R)-p-mentane-1,2,9-triol and (1S,2S,4R,8R)-p-menthane-1,2,9-triol 2-Oβ-D-glucopyranoside, respectively.

Glucoside **15** ($C_{16}H_{28}O_8$, an amorphous powder, $[\alpha]^{23}_D + 7^\circ$) showed $[M+H]^+$ ion peaks at m/z 349 and $[M-C_6H_{12}O_6+H]^+$ $[M-C_6H_{12}O_6+H]^+$ ion peaks at m/z 169 in the positive FAB-MS. The 1H , ^{13}C and $^{13}C-^{1}H$ COSY NMR spectral data (Tables 1 and 2) showed the presence of one β-glucopyranosyl, one tert-methyl, four methylenes (one of them was oxygenated), two methines (one of them was oxygenated), one oxygenated quaternary carbon and one terminal-methylene group. By comparison of its ¹³C NMR data with that of 14, 15 was suggested to be a dehydro-derivative of 14 having a double bond at C-8. The NOE interactions between $H-2_{eq}$ glucosyl H-1, between H₃-7/H-2_{eq}, H₂-6, glucosyl H-1, between H-9b/H-5_{ax}, and between H₂-10/H₂-3 also supported the suggested structure, and the configuration of the C-2 hydroxyl group was confirmed to be axial by the coupling constant (dd, J=3.0, 3.0 Hz) of the H-2 signal proton. Since this glucose was considered to be D-form the same as other glucosides, the absolute configuration at C-2 should be S. So, 15 was concluded to be (1S,2S,4R)-p-menth-8-ene-1,2,10-triol 2-O- β -D-glucopyranoside.

This is the first report of the isolation of all eight stereo-isomeric monoterpenoids, except the optical isomer, having four asymmetric carbons in the molecule (1–8). Furthermore, the relationship between the essential oil and the water-soluble constituent was confirmed by the isolation of these monoterpenoids and glucosides which showed a biosynthetic relation to *d*-carbone.

3. Experimental

3.1. General procedures

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Optical rotations were measured on a JASCO DIP-370 digital polarimeter. FAB-MS were recorded with a JEOL HX-110 spectrometer using glycerol as matrix. ¹H and ¹³C NMR spectra were taken on JEOL JNM GX-270 and A-500 spectrometers with tetramethylsilane as an internal standard, and chemical shifts were recorded in δ value. ¹H-¹³C COSY, HMBC and NOESY spectra were obtained with the usual pulse sequence, and data processing was performed with standard JEOL software. Column chromatography (C. C.) was carried out under TLC monitoring using Kieselgel 60 (70–230 mesh, Merck), Sephadex LH-20 (25– 100 μm, Pharmacia), Lobar RP-8 column (Merck) and Amberlite XAD-II (Organo). TLC was performed on silica gel (Merck 5721) and spots were detected with p-anisaldehyde-H₂SO₄ reagent. HPLC separation was carried out on a JASCO chromatograph (980-system) with a JASCO RI-930 detector, and Symmetryprep C18 7 µm [Waters; column size, 7.8×300 mm; ODS], Carbohydrate Analysis [Waters; column size, 3.9×300 mm; CHA] were used as columns. Acetylation was done in the usual way using Ac2O and pyridine, and no acetoxyl group was detected by NMR spectral data for those acetylated fractions.

3.2. Plant material, extraction and isolation

Commercial caraway (the fruit of Carum carvi L.; purchased from Asaoka Spices Ltd., Lot. No. 93010; 2.0 kg) was extracted with 70% methanol (4**L×2) at room temperature for two weeks. After evaporation of the solvent, the residue (402.3 g) was partitioned into etherwater, ethyl acetate-water. Removal of the solvent from each phase gave the ether (200.9 g), ethyl acetate (3.6 g) and aqueous (40.6 g) extracts, The aqueous extract was chromatographed over Amberlite XAD-II (H₂O-MeOH). The methanol eluate (27.6 g) was subjected to Sephadex LH-20 (MeOH) to give eight fractions (frs. A–H). Fraction B (18.9 g) was chromatographed over silica gel [CHCl₃-MeOH-H₂O (17:3:0.2-4:1:0.1-7:3:0.5)-MeOH] to give 14 fractions (frs. B₁-B₁₄). Fraction B₃ (1.70 g) was passed through a Lobar RP-8 column [MeCN-H₂O (3:17)] to give nine fractions (frs. B₃₋₁-B₃₋₉), and fr. B₃₋₅ was subjected to HPLC [ODS, MeCN-H₂O (3:37)]. The main fraction was acetylated with Ac2O and pyridine, and the acetylated fraction was subjected to HPLC [ODS, MeCN-H₂O (2:3)] to give two fractions. These two fractions were deacetylated by heating in a water bath with 5% NH₄OH-MeOH for 2 h, and passed through Sephadex LH-20 (MeOH) to give 9 (6 mg) and 10 (2 mg). Fraction B_{3-7} was subjected to HPLC [ODS, MeCN-H₂O (1:9)] to give **3** (4 mg), **1** (10 mg), **4** (43 mg) and **2** (9 mg). Fraction B₃₋₇ was subjected to HPLC [ODS, MeCN-H₂O (1:9)] to give 7 (8 mg), **8** (1 mg), **5** (9 mg) and a mixture of **6** and an alkyl glucoside. From this mixture, 6 (3 mg) was isolated by silica column chromatography [CHCl₃-MeOH-H₂O (9:1:0.1)]. Fraction B₉ (0.83 g) was subjected to a Lobar RP-8 column [MeCN-H₂O (3:17)] and HPLC [CHA,

- MeCN–H₂O (9:1)] to give **12** (5 mg). Fraction B₁₁ (0.71 g) was also subjected to a Lobar RP-8 column [MeCN–H₂O (3:17)] and HPLC [CHA, MeCN–H₂O (9:1)] to give **13** (6 mg). Fraction B₁₀ (1.38 g) was passed through a Lobar RP-8 column [MeCN–H₂O (3:17)] to give eight fractions (frs. B₁₀₋₁–B₁₀₋₈). Fraction B₁₀₋₄, fr. B₁₀₋₅ and B₁₀₋₇ were subjected to HPLC [CHA, MeCN–H₂O (9:1)]. to give **15** (2 mg), **14** (11 mg) and **11** (610 mg), respectively.
- **3.2.1.** (1*S*,2*S*,4*S*,8*R*)-*p*-Menthane-2,8,9-triol (1). An amorphous powder, $[\alpha]^{21}_{D}+14^{\circ}$ (c=0.2, MeOH). Positive FAB-MS m/z: 377 $[2M+H]^{+}$, 211 $[M+Na]^{+}$, 189.1486 $[M+H]^{+}$ (base, Calcd for $C_{10}H_{21}O_{3}$; 189.1490), 171 $[M-H_{2}O+H]^{+}$, 153 $[M-2H_{2}O+H]^{+}$, 135 $[M-3H_{2}O+H]^{+}$. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-1_{ax}/C-2, C-3, C-5, C-6, C-7; H-3_{ax}/C-1, C-2, C-4, C-5, C-8; H-3_{eq}/C-1, C-2, C-4, C-5, C-8; H-4_{ax}/C-2, C-3, C-5, C-6, C-8, C-9, C-10; H-5_{ax}/C-1, C-2, C-4, C-5, C-7; H-6_{eq}/C-1, C-2, C-4, C-5, C-7; H-6_{eq}/C-1, C-2, C-4, C-5, C-7; H₃-7/C-1, C-2, C-4, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.
- **3.2.2.** (**1S,2S,4S,8S**)-*p*-Menthane-2,8,9-triol (**2**). An amorphous powder, $[\alpha]^{21}_{D}+8^{\circ}$ (c=0.2, MeOH). Positive FAB-MS m/z: 377 [2M+H]⁺, 211 [M+Na]⁺, 189.1476 [M+H]⁺ (base, Calcd for C₁₀H₂₁O₃; 189.1490), 171 [M-H₂O+H]⁺, 153 [M-2H₂O+H]⁺, 135 [M-3H₂O+H]⁺. ¹H NMR (pyridine-d₅, 500 MHz) δ: Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ: Table 2.
- **3.2.3.** (1S,2R,4R,8S)-p-Menthane-2,8,9-triol (3). Colorless needles (MeOH), mp 119–122°C, $[\alpha]_D^{25}$ –31° (c=3.1, MeOH). Positive FAB-MS m/z: 377 $[2M+H]^+$, 227 $[M+K]^+$, 211 $[M+Na]^+$, 189.1502 $[M+H]^+$ (base, Calcd for $C_{10}H_{21}O_3$; 189.1490), 171 $[M-H_2O+H]^+$, 153 $[M-2H_2O+H]^+$, 135 $[M-3H_2O+H]^+$. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-1_{eq}/C-2, C-3, C-5, C-6, C-7; H-2_{ax}/C-1, C-3, C-4, C-6, C-7; H-3_{ax}/C-1, C-2, C-4, C-5, C-8; H-3_{eq}/C-1, C-2, C-4, C-5; H-4_{ax}/C-2, C-3, C-5, C-6, C-8, C-9, C-10; H-5_{ax}/C-1, C-3, C-4, C-6, C-8; H-5_{eq}/C-1, C-3, C-4, C-6, C-8; H-6_{eq}/C-1, C-2, C-4, C-5, C-7; H-6_{eq}/C-1, C-2, C-4, C-5, C-7; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.
- **3.2.4.** (1*S*,2*R*,4*R*,8*R*)-*p*-Menthane-2,8,9-triol (4). Colorless needles (MeOH), mp 115–117°C, $[\alpha]_D^{21}$ –35° (c=0.4, MeOH). Positive FAB-MS m/z: 377 [2M+H]⁺, 211 [M+Na]⁺, 189.1493 [M+H]⁺ (base, Calcd for C₁₀H₂₁O₃; 189.1490), 171 [M-H₂O+H]⁺, 153 [M-2H₂O+H]⁺, 135 [M-3H₂O+H]⁺. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2.
- **3.2.5.** Rel-(1*R*,2*S*,4*R*,8*S*)-*p*-menthane-2,8,9-triol (5). Colorless needles (MeOH), mp 123–126°C, $[\alpha]^{21}_{D}$ –22° (*c*=0.2, MeOH). Positive FAB-MS *m/z*: 377 [2M+H]⁺, 227.1040 [M+K]⁺ (Calcd for C₁₀H₂₀KO₃; 227.1050), 171 [M-H₂O+H]⁺, 153 [M-2H₂O+H]⁺ (base), 135 [M-3H₂O+H]⁺. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-1_{ax}/C-2, C-5, C-7; H-3_{ax}/C-4, C-5; H-3_{eq}/C-2, C-4, C-5; H-4_{ax}/C-3, C-5, C-6, C-8, C-10; H-5_{ax}/

- C-1, C-3, C-4, C-6; H-5_{eq}/C-3, C-4, C-6; H-6_{ax}/C-2, C-4, C-5, C-7; H-6_{eq}/C-2, C-4, C-5, C-7; H₃-7/C-1, C-2, C-6; H₂-9/ C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.
- **3.2.6.** Rel-(1*R*,2*S*,4*R*,8*R*)-*p*-menthane-2,8,9-triol (6). An amorphous powder, $[\alpha]^{21}_{D}$ -30° (c=0.4, MeOH). Positive FAB-MS m/z: 377 $[2M+H]^+$, 227.1051 $[M+K]^+$ (Calcd for $C_{10}H_{20}KO_3$; 227.1050), 171 $[M-H_2O+H]^+$, 153 $[M-2H_2O+H]^+$ (base), 135 $[M-3H_2O+H]^+$. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2.
- **3.2.7. Rel-**(1*S*,2*S*,4*R*,8*S*)-*p*-menthane-2,8,9-triol (7). Colorless needles (MeOH), mp 130–133°C, $[\alpha]^{21}_{D}$ –7° (c=0.3, MeOH). Positive FAB-MS m/z: 399 [2M+Na]⁺, 377 [2M+H]⁺, 227.1032 [M+K]⁺ (Calcd for C₁₀H₂₀KO₃; 227.1050), 189 [M+H]⁺, 171 [M-H₂O+H]⁺, 153 [M-2H₂O+H]⁺ (base), 135 [M-3H₂O+H]⁺. ¹H NMR (pyridine-d₅ 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-2_{eq}/C-3; H-3_{ax}/C-4, C-8; H-4_{ax}/C-3, C-8, C-10; H-5_{ax}/C-4, C-8; H-6_{eq}/C-1; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9.
- **3.2.8.** Rel-(1*S*,2*S*,4*R*,8*R*)-*p*-menthane-2,8,9-triol (8). An amorphous powder, $[\alpha]_D^{21} 13^\circ$ (c=0.1, MeOH). Positive FAB-MS m/z: 399 $[2M+Na]^+$, 377 $[2M+H]^+$, 227.1047 $[M+K]^+$ (Calcd for $C_{10}H_{20}KO_3$; 227.1050), 189 $[M+H]^+$, 171 $[M-H_2O+H]^+$, 153 $[M-2H_2O+H]^+$ (base), 135 $[M-3H_2O+H]^+$. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2.
- **3.2.9.** (1R,2R,4S)-p-Menthane-1,2,8-triol (9). Colorless needles (MeOH), mp 134–135°C, $[\alpha]^{23}$ D–25° (c=0.2, MeOH), $[\alpha]^{21}_D - 47^{\circ}$ (c=0.1, CHCl₃). Positive FAB-MS m/z: 377 $[2M+H]^+$, 211.1305 $[M+Na]^+$ (Calcd for 211.1310), $[M+H]^+$ $C_{10}H_{20}NaO_3$; 189 171 $[M - H_2O + H]^+$ $153 [M-2H₂O+H]^+$ (base), 135 $[M-3H_2O+H]^+$. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. 13 C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-3_{ax}/C-1, C-2, C-5; H-3_{eq}/C-1, C-2, C-5; H-5_{ax}/C-3, C-4, C-6; H-6_{ax}/C-4, C-5; H-6_{eq}/C-1, C-2, C-4, C-5; H₃-7/C-1, C-2, C-6; H₃-9/ C-4, C-8, C-10; H₃-10/ C-4, C-8, C-9.
- **3.2.10.** (1S,2S,4R,8R)-p-Menthane-1,2,8-triol (10). An amorphous powder, $[\alpha]^{24}_D + 25^{\circ}$ (c=0.2, MeOH). Positive FAB-MS m/z: 377 [2M+H]⁺, 211.1323 [M+Na]⁺ (Calcd for $C_{10}H_{20}NaO$; 211.1310), 189 [M+H]⁺, 171 [M-H₂O+H]⁺, 153 [M-2H₂O+H]⁺ (base), 135 [M-3H₂O+H]⁺. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-2_{eq}/C-1, C-3, C-6; H-3_{ax}/C-2, C-4, C-5, C-8; H-3_{eq}/C-1, C-2, C-4, C-5, C-8; H-4_{ax}/C-2, C-3, C-5, C-6, C-8, C-9, C-10; H-5_{ax}/C-1, C-4, C-6; H-5_{eq}/C-1, C-3, C-6, C-8; H-6_{ax}/C-1, C-5, C-7; H-6_{eq}/C-1, C-2, C-5, C-7; H₃-7/C-1, C-2, C-6; H₂-9/ C-4, C-8, C-10; H₃-10/ C-4, C-8, C-9.
- **3.2.11.** (1*S*,2*R*,4*R*,8*S*)-*p*-Menthane-2,8,9-triol 4-*O*-β-**D**-glucopyranoside (11). An amorphous powder, $[\alpha]^{25}_{D}$ -46° (*c*=1.8, MeOH). Positive FAB-MS *m/z*: 373 [M+Na]⁺, 351.2048 [M+H]⁺ (base, Calcd for C₁₆H₃₁O₈;

351.2019), 189 [M $-C_6H_{10}O_5+H]^+$. ¹H NMR (pyridine-d₅, 500 MHz) δ : Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ : Table 2. HMBC correlations: H-1_{eq}/C-2; H-2_{ax}/C-3, C-4, C-7, Glc C-1; H-3_{ax}/C-1, C-2, C-4, C-5; H-3_{eq}/C-1, C-2, C-4, C-5; H-4_{ax}/C-3, C-8, C-10; H-5_{ax}/C-4, C-6; H-5_{eq}/C-1, C-3, C-4, C-6; H-6_{ax}/C-1, C-4, C-5, C-7; H-6_{eq}/C-2, C-4, C-5; H₃-7/C-1, C-2, C-6; H₂-9/C-4, C-8, C-10; H₃-10/C-4, C-8, C-9; Clc H-1/C-2.

3.3. Enzymatic hydrolysis of 11

A mixture of **11** (12 mg) and hesperidinase (5 mg, ICN Biomedicals Inc., Lot. 72635) in water (5 ml) was shaken in a water bath at 37°C for 20 days. The mixture was evaporated in vacuo to dryness and the residue was chromatographed over silica gel [CHCl₃–MeOH–H₂O (4:1:0.1 and 1:1:0.1)] to afford **3** (6 mg) and a sugar fraction. The sugar fraction was passed through Sephadex LH-20 (MeOH) to give a syrup, and HPLC [carbohydrate analysis (waters), detector; JASCO RI-930 detector and JASCO OR-990 chiral detector, solv.; MeCN–H₂O (17:3), 2 ml min⁻¹; *t R* 4.50 min (same location as that of D-glucose)] show the presence of D-glucose.

3.3.1. (1*S*,2*R*,4*R*,8*S*)-*p*-Menthane-2,8,9-triol 9-*O*-β-D-glucopyranoside (12). An amorphous powder, $[\alpha]^{21}_{D}$ -35° (*c*=0.2, MeOH). Positive FAB-MS m/z: 723 [2M+Na]⁺, 701 [2M+H]⁺, 389 [M+K]⁺, 373 [M+Na]⁺, 351.2018 [M+H]⁺ (Calcd for C₁₆H₃₁O₈; 351.2019), 171 [M-C₆H₁₂O₆+H]⁺ (base). ¹H NMR (pyridine-d₅, 500 MHz) δ: Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ: Table 2.

3.4. Enzymatic hydrolysis of 12

A mixture of 12 (9 mg) and hesperidinase (5 mg) in water (5 ml) was shaken in a water bath at 37°C for 20 days. The mixture was treated in the same way described for 11 to afford 3 (2 mg) and a sugar fraction. From the sugar fraction, the presence of D-glucose was revealed as 11.

3.4.1. (1S,2R,4S)-*p*-Menthane-1,2,8-triol 8-*O*-β-D-glucopyranoside (13). An amorphous powder, $[\alpha]^{23}_{D}$ -31° (c=0.4, MeOH). Positive FAB-MS m/z: 701 $[2M+H]^+$, 389 $[M+K]^+$, 373.1847 $[M+Na]^+$ (base, Calcd for C₁₆H₃₀NaO₈; 373.1838), 351 $[M+H]^+$, 171 $[M-C_6H_{12}O_6+H]^+$. ¹H NMR (pyridine-d₅, 500 MHz) δ: Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ: Table 2. HMBC correlations: H-2_{eq}/C-4; H-3_{ax}/C-4, C-5; H-3_{eq}/C-1, C-2, C-4, C-5; H-4_{ax}/C-5, C-8, C-9, C-10; H-5_{ax}/C-1, C-3, C-4, C-6; H-5_{eq}/C-1, C-6; H-6_{ax}/C-1, C-4, C-5; H-6_{eq}/C-1, C-2, C-4; H₃-7/C-1, C-2, C-6; H₂-9/ C-4, C-8, C-10; H₃-10/ C-4, C-8, C-9; Clc H-1/C-8.

3.5. Enzymatic hydrolysis of 13

A mixture of 13 (5 mg) and β -glucosidase (5 mg, TOYOBO Co. Ltd Lot. 52275) in water (5 ml) was shaken in a water bath at 37°C for 7 days. The mixture was treated in the same way described for 11 to afford 9 (2 mg) and a sugar fraction. From the sugar fraction, the presence of D-glucose was revealed as 11.

3.5.1. (1*S*,2*S*,4*R*,8*R*)-*p*-Menthane-1,2,9-triol 2-*O*-β-D-glucopyranoside (14). Colorless needles (MeOH), mp 174–178°C, $[\alpha]^{24}_{D}+21^{\circ}$ (c=0.2, MeOH). Positive FAB-MS m/z: 723 $[2M+Na]^{+}$, 701 $[2M+H]^{+}$, 389 $[M+K]^{+}$, 373 $[M+Na]^{+}$, 351.2018 $[M+H]^{+}$ (Calcd for $C_{16}H_{31}O_{8}$; 351.2019), 171 $[M-C_{6}H_{12}O_{6}+H]^{+}$ (base). ¹H NMR (pyridine-d₅, 500 MHz) δ: Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ: Table 2. HMBC correlations: H-2_{eq}/C-1, C-6, C-7, Glc C-1; H-3_{ax}/C-1, C-2, C-4, C-5, C-8; H-3_{eq}/C-1, C-2, C-4, C-5, C-8; H-4_{ax}/C-8, C-9, C-10; H-5_{ax}/C-1, C-4, C-6; H-5_{eq}/C-1, C-3, C-4, C-8; H-6_{ax}/C-1, C-5, C-7; H-6_{eq}/C-1, C-3, C-5; H₃-7/C-1, C-2, C-6; H₂-9/ C-4, C-8, C-10; H₃-10/C-4, C-8, C-9; Clc H-1/C-2.

3.6. Enzymatic hydrolysis of 14

A mixture of 14 (8 mg) and β -glucosidase (5 mg) in water (5 ml) was shaken in a water bath at 37°C for 7 days. The mixture was treated in the same way described for 11 to afford 10 (4 mg) and a sugar fraction. From the sugar fraction, the presence of D-glucose was revealed as 11.

3.6.1. (1*S*,2*S*,4*R*)-*p*-Menthane-1,2,10-triol 2-*O*-β-D-glucopyranoside (15). An amorphous powder, $[\alpha]^{23}_{D}$ +7° (c=0.1, MeOH). Positive FAB-MS m/z: 371.1681 $[M+Na]^+$ (Calcd for $C_{16}H_{30}NaO_8$; 371.1681), 349 $[M+H]^+$, 169 $[M-C_6H_{12}O_6+H]^+$ (base). ¹H NMR (pyridine-d₅, 500 MHz) δ: Table 1. ¹³C NMR (pyridine-d₅, 125 MHz) δ: Table 2.

Acknowledgements

The authors thank Messrs Y. Takase and H. Suzuki of the Analytical Center of this University for NMR and MS measurements.

References

- 1. Norman, J. *The Complete Book of Species*; Dorling Kindersley: London, 1990; pp. 29.
- Herbal Drugs and Phytopharmaceuticals; Wichtl, M., Ed.; CRC: Stuttgart, 1994; pp. 128–129.
- 3. (a) *British Pharmacopoeia 1*. The Stationary Office, **1999**; pp. 260–261. (b) *European Pharmacopoeia 3rd edition*. Council of Europe Publishing, **1997**; pp. 536–537.
- 4. (a) Rothbaecher, H.; Suteu, F. *Plant Med.* 1975, 28, 112–123.
 (b) Salveson, A.; Baerheim, S. A. *Plant Med.* 1976, 30, 93–96.
 (c) Bouwmeester, H. J.; Davies, J. A. R.; Toxopeus, H. *J. Agric. Food Chem.* 1995, 43, 3057–3064.
- (a) Klyne, W. In *Determination of Organic Structure by Physical Methods*; Braude, E., Nachod, E. A., Eds.; Academic: New York, 1975; p. 73. (b) Klyne, W. *Biochem. J.* 1950, 47, XIi–XIii.
- Hirai, Y.; Ikeda, M.; Murayama, T.; Ohata, T. *Biosci. Biotechnol. Biochem.* 1998, 62, 1364–1368.
- Carman, R. M.; Greenfield, K. L.; Robinson, W. T. Aust. J. Chem. 1986, 39, 21–30.
- 8. (a) Kasai, R.; Suzuo, M.; Asakawa, J.; Tanaka, O. *Tetrahedron Lett.* **1977**, 175–178. (b) Tori, K.; Seo, S.; Yoshimura, Y.; Arita, Y.; Tomita, Y. *Tetrahedron Lett.* **1977**, 179–182. (c) Kasai, R.; Okihara, M.; Asakawa, J.; Mizutani, k.; Tanaka,

- O. Tetrahedron 1979, 35, 1427–1432. (d) Mizutani, K.; Kasai, R.; Tanaka, O. Carbonhydr. Res. 1980, 87, 19–26. (e) Kitajima, J.; Ishikawa, T.; Tanaka, Y. Chem. Pharm. Bull. 1998, 46, 1643–1646. (f) Ishikawa, T.; Kitajima, J.; Tanaka, Y.; Ono, M.; Ito, Y.; Nohara, T. Chem. Pharm. Bull. 1998, 46, 1738–1742. (g) Kitajima, J.; Kimizuka, K.; Tanaka, Y. Chem. Pharm. Bull. 2000, 48, 77–80.
- 9. (a) Ishikawa, T.; Kudo, M.; Kitajima, J. Abstract papers II,
- 121st Annual Meeting of Pharmaceutical Society of Japan. Gifu, March 2000, 74.
- (b). The absolute configuration at C-2 of **4** was indicated as *R* by the values of the glycosylation shift of the α -carbon (δ **18**– δ **4**) and the chemical shift of the glucosyl anomeric carbon of **18** as shown in Table 2.
- 10. Carman, R. M.; Fletcher, M. T. Aust. J. Chem. 1984, 37, 2129-2136.