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The first terminal organometallic alkylphosphanylidenetan-
talum(V) complexes [Cp*Ta{1,2-(NSiMe3)2C6H4}(PR)] were
obtained with cyclohexyl (2) and isopropyl groups (3) at
phosphorus, whereas adamantyl and tert-butyl substituents
resulted in the formation of the paramagnetic tantalum(IV)

Introduction

Terminal transition-metal phosphanylidene complexes
[LnM=PR][1] are phosphorus analogues of the well-known
carbene complexes, which have many applications in me-
tathesis reactions and natural product synthesis.[2] As is the
case for carbene complexes, phosphanylidene complexes
can be regarded as electrophilic[1e,3a–3c] or nucleophil-
ic,[1e,3d–3f] depending on the reactivity of the phosphorus
atom.[3g] Reactions with alkynes, ketones, and protic rea-
gents[1e,3a–3f] have been reported. Remarkably, phospha-
alkenes can be obtained in a phospha-Wittig reaction of
nucleophilic phosphanylidene complexes.[3e,3f]

Since the first report of a stable organomolybdenum
complex with a terminal phosphanylidene ligand, namely,
[Cp2Mo(PMes)] (Cp = cyclopentadienyl, Mes = 2,4,6-
Me3C6H2),[4] organometallic terminal phosphanylidene
complexes have been reported for most d block elements.[5]

Organotantalum complexes with bridging phosphanylidene
ligands[6b,6d,6e] and one phosphanylphosphanylidene com-
plex[6f] are known, but there is only one report on a ter-
minal organometallic tantalum arylphosphanylidene com-
plex, in which the reactive terminal metal–phosphorus
bond is stabilized by sterically demanding ligands at tanta-
lum and phosphorus.[6c] The first terminal phosphanylidene
complexes of tantalum, [Ta(PR){N(CH2CH2NSiMe3)3}] [R

[a] Faculty of Chemistry and Mineralogy, Institute of Inorganic
Chemistry, Universität Leipzig,
Johannisallee 29, 04103 Leipzig, Germany
Fax: +49-341-973-9319
E-mail: hey@uni-leipzig.de
Homepage: http://www.uni-leipzig.de/chemie/hh

[b] Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai
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complex [Cp*Ta{1,2-(NSiMe3)2C6H4}Cl] (4). DFT studies
showed that the terminal cyclohexyl and isopropyl phos-
phanylidene complexes are stable towards dimerization and
dissociation.

= Ph, cyclohexyl (Cy), tBu][3e] and [Ta(PPh){OSi-
(tBu)3}3],[6a] were reported in 1993 and 1994, respectively.
Subsequent reactions include phospha-Wittig reactions[3e]

and insertion of acetone.[6c]

Results and Discussion

We herein report the synthesis of the first organometallic,
nucleophilic, terminal alkylphosphanylidenetantalum(V)
complexes. Upon treatment of [Cp*TaCl4][7] (Cp* = C5Me5)
with two equivalents of LiPHR[8] in toluene (to maintain a
low concentration of LiPHR in solution) at low tempera-
ture (to reduce side reactions), the deep-red phosphanylid-
ene-bridged tantalum(IV) complexes trans-[{Cp*TaCl(μ-
PR)}2] (R = Cy, tBu, Ph, Mes) were obtained in high
yields.[6d,6e] Reduction could be avoided by employing the
bisamido complex [Cp*Ta{1,2-(NSiMe3)2C6H4}Cl2][9] (1)
as the starting material. Thus, complexes [Cp*Ta{1,2-
(NSiMe3)2C6H4}(PR)] [R = Cy (2), iPr (3)] are readily avail-
able from 1 and two equivalents of lithium phosphanide
(LiPHCy, LiPHiPr)[8a] in toluene at –80 °C (Scheme 1).

Scheme 1. Synthesis of terminal alkylphosphanylidenetantalum(V)
complexes 2 and 3.

The 31P NMR spectra of compounds 2 and 3 exhibit a
broad singlet at δ = 443.0 and 454.7 ppm, respectively,
which is indicative of a bent MPR group, as was observed
in [Ta(PPh){OSi(tBu)3}3][6a] (δ = 334.6 ppm). Complexes
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with linear MPR groups are observed at higher field, for
example, [Ta(PR){N(CH2CH2NSiMe3)3}][3e] [209.8 (R =
Cy) and 227.3 ppm (R = tBu)]. A low-field shift of the ipso-
carbon atoms [13C NMR: C4, 46.0 ppm (for 2); C13,
35.3 ppm (for 3); Figures 1 and 2] and their protons [1H
NMR: 4.67 ppm (for 2); 4.78 ppm (for 3)] is caused by the
electron deficiency of these organometallic complexes.

Figure 1. ORTEP diagram of 2 (ellipsoids are drawn at the 50%
probability level, hydrogen atoms are omitted for clarity). Selected
bond lengths [pm] and angles [°]: Ta–P 227.20(8), Ta–N1 202.9(2),
P–C4 186.6(3), N1–C14 141.7(2), Ta–P–C4 136.46(9), P–Ta–N1
105.87(4), N1–Ta–N1� 85.26(6).

Figure 2. ORTEP diagram of 3 (ellipsoids are drawn at the 50%
probability level, hydrogen atoms are omitted for clarity). Selected
bond lengths [pm] and angles [°]: Ta–P 226.5(1), Ta–N1 201.9(2),
P–C13 186.7(5), N1–C7 141.2(4), Ta–P–C13 138.2(2), P–Ta–N1
104.12(8), N1–Ta–N1� 85.5(1).

X-ray structure analysis of 2 and 3[10] confirmed the bent
geometry of the MPR unit [Ta–P–C4/C13 136.46(9)/
138.2(2)°] and short Ta–P bonds [Ta–P 227.20(8) pm in 2,
226.5(1) pm in 3]. The dependence of the Ta–P bond length
on the substituents and geometrical arrangement at phos-
phorus is also demonstrated in the complexes
[Ta(PCy){N(CH2CH2NSiMe3)3}][3e] [214.5(7) pm, TaPC is
linear] and [Ta(PPh){OSi(tBu)3}3][6a] [231.7(4) pm, Ta–P–C
110.2(4)°, bent TaPC]. These Ta–P bonds are shorter than
the sum of the covalent radii of Ta and P (277 pm).[11]
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Furthermore, the tantalum-bisamido group forms a five-
membered ring with an envelope conformation (Figures 1
and 2) and fold angles TaN2/N2C2 of 137.0(1) (for 2) and
135.6(2)° (for 3). The fold angle in the starting material 1
[129.6(1)°, see Supporting Information] is about 7° smaller
than in 2 and 3 but 8° larger than that in the bis(triiso-
propylsilyl) derivative [Cp*Ta{1,2-(NSiiPr3)2C6H4}Cl2]
(121.3°).[12] This difference is caused by the lower steric de-
mand of the phosphanylidene unit and the higher steric de-
mand of the isopropyl substituents. The nitrogen atoms are
in a trigonal-planar environment [sum of bond angles:
358.0(5)° (for 2), 359.5(3)° (for 3)]. The N–C bond lengths
of 141.7(2) pm (for 2) and 141.2(4) pm (for 3) are in the
range of single bonds; the corresponding bond lengths of
diimine complexes are about 128 pm.[13]

Density functional theory (DFT) calculations have
shown that only the highest occupied molecular orbitals
(HOMOs) of 2 and 3 are accessible, and their lowest unoc-
cupied molecular orbitals (LUMOs) are shielded by the
bulky substituents on the nitrogen atom (see the Supporting
Information for details). Thus, dimerization of these com-
plexes involving transfer of electron density from the
HOMO of one monomer to the LUMO of another cannot
occur. Furthermore, homolytic cleavage of the Ta–P double
bond with formation of a tantalum(III) species and cyclic
oligophosphanes can also be excluded (Supporting Infor-
mation). However, owing to the availability of the HOMOs,
2 and 3 should readily react with suitable small molecules.

Attempts to extend the synthetic approach shown in
Scheme 1 to the corresponding adamantyl and tert-butyl
phosphanylidene derivatives resulted in a redox reaction
and the formation of the corresponding tantalum(IV) com-
plex [Cp*Ta{1,2-(NSiMe3)2C6H4}Cl] (4, Scheme 2). The
EPR spectrum of 4 shows an eight-line pattern (g = 1.794,
A = 44 mT) caused by the spin I = 7/2 of 181Ta (N =
99.98 %).[14] The formation of oligophosphanes, such as cy-
clotetraphosphanes and cyclotriphosphanes, as oxidation
products could be verified by 31P NMR spectroscopy. The
calculated thermodynamic properties alone do not explain
why reactions of 1 with Ad- and tBu-substituted lithium
phosphanides give tantalum(IV) species 4, whereas reac-
tions of 1 with the Cy- and iPr-substituted lithium phos-
phanides result in formation of 18 valence-electron terminal
phosphanylidene complexes 2 and 3 (PR as 4e– donor, bis-
amido ligand as 8e– donor; see the Supporting Information).

Scheme 2. Redox reaction with formation of [Cp*Ta{1,2-(NSiMe3)2-
C6H4}Cl] (4).

Compound 4 crystallized from n-pentane and was struc-
turally characterized.[10] The molecule has a piano-stool
geometry with a four-coordinate tantalum atom (Figure 3).
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The five-membered TaN2C2 ring has only a slightly folded
envelope conformation [fold angle TaN2/N2C2 160.7(1)°
compared to 129.6(1)° in 1, see the Supporting Infor-
mation], as removal of one chloro ligand in the coordina-
tion sphere of tantalum leads to less steric interaction and
therefore to greater planarity of the chelate ring.

Figure 3. ORTEP diagram of 4 (ellipsoids are drawn at the 50%
probability level, hydrogen atoms are omitted for clarity). Selected
bond lengths [pm] and angles [°]: Ta–Cl 234.22(8), Ta–N1 204.7(2),
Ta–N2 203.3(2), N1–C11 140.7(3), N2–C16 141.7(3), N1–Ta–N2
78.98(9), N1–Ta–Cl 109.41(8), N2–Ta–Cl 109.31(7).

Conclusions

In summary, the formation of alkylphosphanylidenetan-
talum(V) complexes depends on the steric demand of the
substituent on the phosphorus atom. Thus, the first ter-
minal organometallic alkylphosphanylidenetantalum(V)
complexes were obtained with cyclohexyl and isopropyl
groups at phosphorus, whereas adamantyl and tert-butyl
substituents resulted in the formation of paramagnetic tan-
talum(IV) complex 4. The stability of 2 and 3 with respect
to dimerization was clarified by DFT calculations. Future
studies will focus on investigating the reactivity of these
compounds.

Experimental Section
2: At 0 °C, nBuLi (1.44 m in n-hexane, 11 mL, 16 mmol) was added
dropwise to a solution of CyPH2 (1.90 g, 16 mmol) in n-hexane
(15 mL). After 2 h of stirring at room temperature, the reaction
mixture was filtered. At –80 °C, a suspension of the white precipi-
tate in toluene (20 mL) was added dropwise to a solution of 1
(4.79 g, 8 mmol) in toluene (40 mL). The reaction mixture was
stirred for 15 h at room temperature. After removal of the volatile
material, the remaining solid was extracted with n-pentane. Red
crystals of 2 were obtained at –20 °C, yield 2.24 g (41%). 1H NMR
(400 MHz, C6D6): δ = 0.49 [s, 18 H, Si(CH3)3], 1.10–1.58 (m, 6 H,
Cy), 1.70 [s with sh., 17 H, C5(CH3)5 and Cy], 2.10 (d, 3JHP =
11 Hz, 2 H, Cy), 4.67 (m, 1 H, Cy), 7.04 (m, 2 H, o-CH), 7.22 ppm
(m, 2 H, m-CH). 13C{1H} APT NMR (100 MHz, C6D6): δ = 3.5
[s, Si(CH3)3], 10.7 [s, C5(CH3)5], 26.2 [s, CH2, Cy(6,6�)] (numbering
scheme in Figure 1), 27.5 [s, CH2, Cy(7)], 36.0 [s, CH2, Cy(5,5�)],
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46.0 [d, 1JCP = 39 Hz, CH, P-C(4)], 115.3 [s, C5(CH3)5], 123.0 (s,
m-CH), 124.5 (s, o-CH), 133.6 ppm (s, N–C). 31P NMR (160 MHz,
C6D6): δ = 443.0 ppm (s). ESI-MS (n-pentane/CH3CN, 1:2): m/z =
681.27 [M + H]+.

3: At –80 °C, nBuLi (1.57 m in n-hexane, 7 mL, 11 mmol) was
added dropwise to a solution of iPrPH2 (0.85 g, 11 mmol) in n-
pentane (20 mL). The reaction mixture was stirred and slowly
warmed to room temperature over 3 h and then filtered. A suspen-
sion of the slightly green precipitate in toluene (20 mL) was added
dropwise to a solution of 1 (2.20 g, 3 mmol) in toluene (30 mL) at
–80 °C. The reaction mixture was stirred for 15 h at room tempera-
ture. The volatile material was removed, and the remaining solid
was extracted with n-pentane. Red crystals of 3 were obtained at
7 °C, yield 0.81 g (36%). 1H NMR (400 MHz, C6D6): δ = 0.48 [s,
18 H, Si(CH3)3], 1.34 [m, 6 H, CH(CH3)2], 1.75 [s, 15 H,
C5(CH3)5], 4.78 [m, 1 H, CH(CH3)2], 7.05 (m, 2 H, o-CH),
7.21 ppm (m, 2 H, m-CH). 13C{1H} APT NMR (100 MHz, C6D6):
δ = 3.5 [s, Si(CH3)3], 10.7 [s, C5(CH3)5], 26.0 [s, CH(CH3)2], 35.3
[d, 1JCP = 41 Hz, PCH(CH3)2], 115.4 [s, C5(CH3)5], 123.0 (s, m-
CH), 124.5 (s, o-CH), 133.4 ppm (s, N–C). 31P NMR (160 MHz,
C6D6): δ = 454.7 ppm (s). ESI-MS (n-pentane): m/z = 641.2 [M +
H]+.

4: R = tBu: nBuLi (2.22 m in n-hexane, 8 mL, 19 mmol) was added
dropwise to a solution of tBuPH2 (1.69 g, 19 mmol) in n-hexane
(20 mL). The reaction mixture was stirred for 20 min and then fil-
tered. A suspension of the white precipitate in toluene (20 mL) was
added dropwise to a solution of 2 (4.73 g, 7 mmol) in toluene
(30 mL) at –80 °C. After stirring for 15 h, the solvent was removed,
and the residue was extracted with n-pentane. Red crystals of 4
were obtained at –60 °C, yield 1.61 g (36%).

4: R = Ad: nBuLi (2.22 m in n-hexane, 6 mL, 14 mmol) was added
dropwise to a solution of AdPH2 (2.46 g, 15 mmol) in n-hexane
(20 mL). The reaction mixture was stirred for 2 h and then filtered.
A suspension of the yellow precipitate in toluene (30 mL) was
added dropwise to a solution of 2 (4.40 g, 7 mmol) in toluene
(30 mL) at –80 °C. After stirring for 15 h, the solvent was removed,
and the residue was extracted with n-pentane. Red crystals of 4
were obtained at –60 °C, yield 1.28 g (16%). EPR: g = 1.794, A =
44 mT. ESI-MS (n-pentane/CH3CN, 1:2): m/z = 601.17 [M]+.

Supporting Information (see footnote on the first page of this arti-
cle): DFT calculations and further experimental details.
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