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3,5-Me,CH.), and some related chemistry
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Abstract

The interaction of Sg with ArBBr, (Ar = Ph, 4-MeC¢H,) at 140-160°C was reinvestigated and found to give poor yields of
3,5-diaryl-cyclo-1,2,4-trithia-3,5-diborolanes, Ar,B,S;, and larger quantities of oligomeric/polymeric material containing ArBS,,
species. Reaction of ArBBr, (Ar =Ph, 2-C,H,, 3-MeC.H,, 4$MeC.H,, 4-EtC{H,, 3,5-Me,C.H;) with 'Bu,S, in refluxing
toluene gave the thermally-stable, moisture-sensitive Ar,B,S; compounds in moderate yields. Previously reported (Ar = Ph,
4-MeC¢H,) and new (Ar = 2-MeCH,, 3-MeCH,, 4-EtC,H,, 3,5-Me,CH;) compounds were characterized by NMR (!B,
'H, *C), IR and MS. The reaction of ArBBr, (Ar = Ph, 2-MeC¢H ,, 3-MeC4H,) with (Me,Si),S in toluene or benzene solution
at room temperature rapidly (in minutes) afforded 2,4,6-triaryl-cyclo-1,3,5-trithia-2,4,6-triborinanes (borthiins, Ar;B;S;) and not
the expected 2,4-diaryl-cyclo-1,3-dithia-2,4-diboretanes (Ar,B,S,). The BS heterocycles have been modelled by use of semi-em-
pirical (AM1) methods. Lowest energy conformations, heats of formation, and barriers to rotation about the B-C bonds are
discussed.
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1. Introduction

The first report of the five-membered heterocyclic
B,S; ring with substituents at boron and a S-S bond
(R,B,S;, cyclo-1,2,4-trithia-3,5-diborolanes, Fig. 1(a))
was made by Schmidt and Siebert in 1964 [1]. Since
then diffraction studies have confirmed the hetero-
cyclic structure of Me,B,S;, Cl,B,S;, and Ph,B,S,
[2-4). Preparative routes to trithiadiborolanes include
the reactions of halogenoboranes BX; or RBX, with
H,S, (x> 1), [1,5], Na,S, [6], ‘Bu,S, [7], or Sq [8-10];
substituted derivatives have been obtained from X,-
B,S; [9-11]. In this paper we report on the synthesis
and characterization of some new 3,5-diaryl-cyclo-
1,2,4-trithia-3,5-diborolanes obtained from the reaction
of ‘Bu,S, with ArBBr,. We also report on a reinvesti-
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gation of the reaction of Sg with PhBBr, and on
attempts to prepare 2,4-diaryl-cyclo-1,3-dithia-2,4-di-
boretanes (Ar,B,S,, Fig. 1(b)) by reactions of
(Me,;Si),S with ArBBr,. Molecular modelling studies
involving semi-empirical (AM1) calculations on the
conformations of these and related aryl-substituted BS
heterocycles are also reported.

2. Results and discussion

2.1. Synthesis

The interaction of PhBBr, with S; has been re-
ported to yield BBr; and Br,B,S, [10], Ph,B,S; [12],
or Ph,B,S, (Fig. 1(c)) [13]. The reaction of PhBBr,
with an excess of S; was reinvestigated by g {(1H)-
NMR spectroscopy and by mass spectrometry in order
to clarify these contradictory reports and to determine
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whether this might be a general method for the prepa-
ration of Ar,B,S; compounds. A neat reaction mixure
was heated at ca. 160°C for 16 h and a black viscous
liquid /solid was obtained. The ''B-{'"H} NMR spec-
trum (C,D, solution) of this material revealed three
clearly resolved peaks; the strongest signal was due to
unchanged PhBBr, (55%), and Ph,B,S, [9] was identi-
fied as the minor product (5%). The major product
(6 +52.2 ppm, 40%) was of interest, and attempts
were made to isolate and identify it. Distillation of the
black residue under reduced pressure removed starting
materials and left a viscous black oil which would not
distil further. Mass spectrometry (MS) on this material
revealed ions with m /e values consistent with [PhBS,]*
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(n =2 to 8) fragments; no molecular ions arising from
Ph,B,S, were evident. The ''B chemical shift of the
‘product’ is consistent with strain-free cyclic {PhBS,}
structures as detected by MS; species such as PhBS;
have been postulated previously as reaction intermedi-
ates [14]. It is likely that the major ‘product’ is a
complex mixture of both cyclic and polymeric species,
and it is evident that this is a poor synthetic route to
Ph,B,S;. Analogous results were obtained for a 4-
MeC¢H BBr,/S; reaction.

Thermal reactions of PhBCl, or PhBI, with ‘Bu,S,
have been reported to give Ph,B,S; [7]. We now
report that ArBBr, compounds react with ‘Bu,S, in
toluene under thermal conditions to yield the diaryl-
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Fig. 1. Structures of the aryl BS heterocyclic ring systems. (a) 3,5-diaryl-1,2,4,3,5-trithiadiborolane; (b) 2,4-diaryl-1,3,2,4-dithiadiboretane; (c)
3,6-diaryl-1,2,4,5,3,6-tetrathiadiborinane; (d) 2,4,6-triaryl-1,3,5,2,4,6-trithiatriborinane. Numbers represent the calculated (AM1) bond lengths (A
and bond angles (°) for the optimized structures of the Ar = 4-MeC¢H 4 derivatives.
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cyclo-trithiadiborolane derivatives (Eq. (1): Ar = Ph,
2-MeC¢H,, 3-MeC¢H,, 4-MeC;H,, 4-EtC,H,, 3,5-
Me,CcH,). Typically, reaction mixtures were heated
under reflux for 120 h and the product was obtained as
the residue after removal of all volatile material by
vacuum distillation in ca. 50% yield. The compounds
Ph,B,S; and (4-MeCH,),B,S; have been previously
reported but the other derivatives are new. The trithi-
adiborolanes are thermally robust and moisture-sensi-
tive, and were characterized by NMR ("'B, 'H, Q)
and by IR spectroscopy and MS (Table 1, and see
below for discussion).

2ArBBr, + 2'Bu,S, - Ar,B,S, + 4'BuBr + 1/8S,
(1)

No6th and Rattay have reported the preparation
2,4-diphenyl-cyclo-1,3-dithia-2,4-diboretane (Ph,B,S,)
from PhBCI, and (Me,Si),S in refluxing benzene [15]
and we attempted to prepare a series 2,4-diaryl deriva-
tives of this B,S, ring system from ArBBr,. We were
unsuccessful in this respect but within minutes at room
temperature in toluene or benzene the reactions gave

Table 1
Spectroscopic data for 3,5-diaryl-cyclo-1,2,4-trithia-3,5-diborolanes ?

the 2,4,6-triaryl-1,3,5-trithia-2,4,6-triborinane (triaryl-
borthiin, Fig. 1(d)) in high yields (Eq. (2): Ar=Ph,
2-MeCH,, 3-MeC¢H ). We were unable to detect by
1B NMR spectroscopy any signal attributable to
Ph,B,S, (+45 ppm, thf) [15] in the PhBX,/(Me;Si),S
(X = Cl, Br) reaction mixtures, which, like the substi-
tuted aryl derivatives, cleanly gave Ph;B,S;. Products
were identified by comparison of their spectroscopic
properties with those of authentic samples [16]. This is
a very convenient procedure for the preparation of
triarylborthiins.

3ArBBr, + 3(Me;Si),S - Ar;B;S; + 6Me,SiBr  (2)

We recently reported that the reaction of HgS with
2-MeC,H ,BBr, in refluxing benzene gave an unidenti-
fied product in addition to the expected triaryborthiin
[16]); NMR data reported herein supports the formula-
tion of this product as (2-MeC¢H,),B,S;. We have
also found that other, less sterically demanding, triaryl-
borthiins (eg. Ar =Ph, 4-MeCH,), slowly thermally
decompose over a period of several months to give the
related diaryltrithiadiborolanes even when stored un-
der nitrogen at —20°C in the dark.

Ph,B,S;

NMR: 5(11B): +66.4 (+65.9, ref. 9); 5(*H): 7.2m; 5§(*’C): 128.2, 128.4, 132.8, 134.8, Ar.

IR: 1594m, 1432s, 1332m, 1308m, 1220s, 1163w, 1072w, 1024w, 991m, 966s (B-S?), 928m,

885s (B-S?), 747s, 691s, 628w.

MS: 272, M*(67%); 152, PhBS; (100%); 119, C¢H,BS (10%); 77, Ph* (89%).

(2-MeC4H,),B,S,

NMR: 6(1'B): +64.8; 5('H): 2.50s (3H) Me; 7.0-7.25m (3H), 7.85d (1H), Ar.

8(13C): 21.6, Me; 122.9, 128.0, 128.7, 133.1, 1332, 139.0, Ar.
IR: 3058w, 1596m, 1565w, 1457s, 1374s, 1290s, 1206s, 1032w, 1069w, 964m (B-S?), 887m (B-S?),

747s, 631s.

MS: 300, M™ (44%); 166, ArBS; (100%); 133, C,H BS* (47%); 91, Ar* (50%); accurate mass:
found 300.0444 + 0.004 amu, calculated 300.0444.,

(3-MeC4H,),B,S,

NMR: 8(*1B): +65.1; 5(*H): 2.05s (3H) Me; 6.9-7.10m (3H), 7.75m (1H), Ar;

8(13C): 20.8, Me; 128.2, 131.6, 132.8, 135.0, 137.6, 156.2(7), Ar.
IR: 1597w, 1576w, 1400w, 1253s, 1181m, 1167m, 969m (B—S?), 947m, 924w, 890w, (B—S?), 780s,

693m, 638w.

MS: 300, M™* (68%); 166, ArBSS (100%); 133, C;H BS* (53%); 91, Ar* (29%); accurate mass:
found 300.0444 + 0.004 amu, calculated 300.0444.

(4-MeC4H,),B,S,

NMR: 8(!!B): +65.7; 6(*H): 2.60s (3H) Me; 7.40d (2H), 8.05d (2H), Ar.

8(13C): 22.5, Me; 129.7, 136.7, 136.8, 143.6, Ar.
IR: 1602m, 1376s, 1222w, 1208w, 1183m, 962m (B—S?), 885m (B-S?), 803m, 775w, 732s.
MS: 300, M* (39%); 166, ArBSS (100%); 133, C;H BS* (37%); 91, Ar*+ (47%).

(3,5-Me,C4H ), B,S,

NMR: 8(11B): +65.4; 6('H): 2.20s (6H) Me; 6.95 (1H), 7.70 (2H), Ar.

8(12C): 21.7, Me; 137.7 (x27), 140.5, 148.7, Ar.
IR: 1601m, 1330m, 1290m, 1185m, 1038m, 989w, 959m (B~S?), 926m, 895m (B-S?), 850m, 816m,

726s, 694w.

MS: 328, M™* (64%); 180, ArBSS (100%); 147, CgHgBS * (49%); 105, Ar* (25%); accurate mass:
found 328.0757 + 0.004 amu, calculated 328.0757.

(4-EtC4H,),B,S,

NMR: 8("'B): +66.1; (*H): 1.15t (3H), 2.50q (2H), 7.05d (2H), 7.90d (2H);

8(13C): 14.6, Me; 28.6, CH »; 127.3, 134.3, 134.6, 148 3, Ar.
IR: 1605s, 1510w, 1403m, 1224s, 1187m, 1140w, 1057w, 990m, 968s (B—S?), 924m, 889s (B-S?),

852w, 824s, 761m.

MS: 328, M* (60%); 180, ArBS3 (100%); 165 (50%); 147, CgHBS* (15%); 105, Ar (37%); accurate mass:
found 328.0757 + 0.004 amu, calculated 328.0757.

* NMR data in C¢Dy, IR in nujol mull (s, strong; m, medium; w, weak).
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2.2. Spectroscopic studies on 3,5-diaryl-cyclo-1,2,4-tri-
thia-3,5-diborolanes

The trithiadiborolanes have been characterized by
NMR ("'B, 'H, **C) and by IR spectroscopy and MS
(Table 1). The compounds Ph,B,S; and (4-MeC,
H,),B,S; have been previously prepared but, with the
exception of 1B data for the former, no spectroscopic
data were reported [7,9]. The "'B NMR shifts for the
diaryltrithiadiborolanes are within a narrow range cen-
tred at +65.5 ppm, and lie downfield (ca. 5 ppm) from
those for the related 6-membered borthiin ring systems
[14]). Any upfield shift that could be expected as a
result of increased w-shielding, associated with an in-
creased S/B ratio, is outweighed by the effects of
changing the bond angles at boron as a consequence of
incorporating the sp? hybridized boron atoms into a
5-membered ring [17]. The chemical shift for (2-
MeC,H,),B,S; is consistent with those for the other
trithiadiborolanes, indicating that steric congestion be-
tween the ortho-methyl groups and the heterocyclic
ring system is not as pronounced (see below for results
of molecular modelling) as in the case of (2-
MeC¢H,);B;S;, for which an anomolously lowfield
shift was observed [16,18]. The IR spectra show two
bands in the region 965 cm™~! and 890 cm~! that are
attributable either to B-S stretches [19] or to ring
breathing modes. These stretches are at lower energy
than those for the related triarylborthiins [16]). Mass
spectra (El, 70 eV) were generally characterized by a
relatively strong molecular ion peak, with [ArBS,]" as
the parent ion and [ArBS]™ notably absent. This
breakdown pattern contrasts with that for related tri-
arylborthiin systems for which [ArBS]*™ were the par-
ent ions and [ArBS,]* ions were not observed [16]. An
ion consistently found in all spectra of the tolyl deriva-
tives was at m/e 133, and this we assign, by analogy
with an ion reported [20] for the breakdown of
Ph;B,S;, to C,H¢BS™ (with 4-membered BSC, ring).
The corresponding ions at m /e 147 and 119 were also
observed in the mass spectrum of (3,5-Me,C H3),B,S;,
(4-EtC¢H,),B,S;, and Ph,B,S;, respectively. High
resolution mass spectra confirmed the molecular ions
for the new diarytrithiadiborolanes.

2.3. Molecular Modelling studies on BS heterocyclic rings

Semi-empirical calculations were performed using a
commercially available AM1 program. To assess the
accuracy of the method on molecules containing B and
S atoms in heterocyclic rings the calculated structures
of Me,B,S; and Ph,B,S; were compared with their
experimentally determined structures [2,3]. Similarly,
the heterocyclic ring structure of Br;B;S; [21] was
compared with calculated parameters of Ph;B;S;. The
calculated parameters of all three compounds are gen-

erally within a few per cent of the experimental values,
with the AM1 method tending slightly to systematically
shorten the B-S bond distances, decrease internal ring
angles at sulphur, increase internal ring angles at boron,
and elongate the S-S bond distance in the trithiadi-
borolanes. However, for the purposes of this study it
was concluded that the AM1 method models these BS
heterocycles satisfactorily.

Geometry minimizations were performed on the 4-
MeCsH, and 2-MeC.H, derivatives of Ar,B,S,,
Ar,B,S;, and Ar;B;S, to assess steric effects in these
compounds. Calculated optimized structure for 4-
MeC H, derivatives are given in Fig. 1(a), 1(b), and
1(d) other selected data are given in the Experimental
section. The BS heterocycles are, with the exception of
(2-MeC¢H,);B,S;, approximately co-planar at mini-
mum energy (CCBS torsion angles < 3.0°). This pre-
ferred co-planar geometry is indicative of a B-C ()
interaction. Rotational barriers about the B—C bonds
in these compounds are calculated at 0.3-1.8 kcalmol ~!
with the aryl ring in the destabilized conformation
perpendicular to the heterocyclic ring. The rotational
barrier about the B-N bond in (Me,N),B,S,, for
which "B NMR chemical shift data support a strong
interaction [13], is calculated to be 16.3 kcalmol L.
The approximately co-planar (CCBS torsion angles of
ca. 2.8°) calculated optimized geometry of Ph,B,S,
differs significantly from the experimentally deter-
mined solid state structure which shows the Ph rings to
be tilted 18.8° to the B,S, ring. This discrepancy could,
in the light of the low calculated B-C rotational bar-
rier, be attributable to the effects of crystal packing
forces on the solid state conformation. In (2-
MeC.H,);B,S, the aryl rings are substantially tilted
(av. 67°) with respect to the planar heterocyclic ring in
its lowest energy conformation. The B-C rotational
barrier is higher (3.9 kcalmol ~!) than in the other BS
heterocycles and the co-planar structure is destabilized
by steric (ortho-CH; - - - S) interactions. This interac-
tion is not so marked in (2-MeC¢H,),B,S; and (2-
MeC¢H,),B,S, owing to the larger exo-CBS angles.
Calculated AH; values show that the 4-MeC.H, iso-
mers are all thermodynamically more stable than the
corresponding 2-MeC¢H , isomers, indicating that such
steric interactions still persist in a weak form even for
(2-MeC¢H,),B,S,. Calculated AH; values for com-
pounds of stoichiometry ‘ArBS’ clearly show the ther-
modynamic stability of the trimer (borthiin) over the
dimer (dithiadiboretane).

3. Experimental
3.1. General

Reactions were carried out under standard Schlenk
conditions under dry N, and all solvents were dried
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before use. The reagents ‘Bu,S,, (Me,Si),S and BBr,
were obtained commercially, and ArBBr, species were
prepared by standard methods [16,22,23]. The IR spec-
tra were recorded on a Perkin-Elmer FT-IR 1600 spec-
trometer as Nujol mulls in standard cells with NaCl
windows. Mass spectra were recorded on a Finnigan
1020GC/mass spectrometer. The NMR spectra were
recorded on a Bruker AC 250 CP/MAS NMR spec-
trometer operating at 250 MHz for 'H, 62.9 MHz for
BC{'H} and 80.25 MHz for ''B-{'H} with samples
dissolved in C¢Dg. Chemical shifts (8) are given in
ppm, with positive values towards high frequency
(downfield) from SiMe, for 'H and C-{'H} and from
BF,.OEt, for "'B-{'H}. Molecular modelling calcula-
tions involved use of programs from the HyperChem
[24] package.

3.2. Reaction of PhBBr, with Sg

The bromide PhBBr, (1.80g, 4.0 mmol) was added
to powdered Sg (0.77g, 24.1 mmol) and the mixture was
heated (16 h at 140-160°C) with stirring in a Schlenk
tube. Cooling to room temperature gave a black solid,
B {(1H} NMR [& (relative intensity, identity)] + 65.6
(5%, Ph,B,S;), +57.1 (§5%, PhBBr,), +52.2 (40%,
‘product’). Fractional distillation (0.1 mmHg) of this
solid resulted in removal of PhBBr, and S, and left a
black residue, m/e: 344 (2%, PhBSy), 312 (5, PhBS,),
280 (20, PhBSy), 256 (7, Sg), 248 (17, PhBS;), 236 (11),
224 (3, S,), 216 (10, PhBS,), 206 (20), 192 (7, S,), 184
(15, PhBS;), 172 (45), 160 (12, Ss), 152 (1, PhBS,), 142
(60), 128 (20, S,), 96 (40, S,) 80 (82), 69 (70), 64 (100,
S,).

3.3. Synthesis of (3-MeC,H,),B,S;

A mixture of ‘Bu,S, (3.22g, 18.1 mmol) and 3-
MeC(H,BBr, (4.71 g, 19.0 mmol) in dry toluene (20
c¢m?) was heated under reflux (120 h), to give a dark
solution along with small amounts of a black solid
adhering to the walls of the vessel. The solution was
transferred to a distillation flask and the product,
(3-MeC¢H,),B,S,, was obtained from it as a dark
solid (1.34 g, 47%) after removing all volatile materials
by vacuum distillation (0.1 mmHg / up to 180°C). Yields
of the other ArlZBZS? compounds were similar. Spec-
troscopic data ('"H, ''B, >C NMR; IR, MS) are given
in Table 1.

3.4. Synthesis of (3-MeCsH,);B;S;

A mixture of (Me;Si),S (1.28g, 7.2 mmol) and 3-
MeCH,BBr, (1.78 g, 6.7 mmol) in dry toluene (20
cm?®) was stirred at room temperature, and samples
were periodically removed for "B NMR spectroscopy.
After 2 h the mixure was cooled to —20°C and then
left overnight at this temperature, to give a white

precipitate of (3-MeC,H,);B,S;. This was isolated by
removing the solvent with a syringe and pumping the
residue to dryness (0.60 g, 66%). A similar reaction in
toluene solution under reflux was complete within min-
utes. Monitoring (*!B NMR) of the reactions for Ar =
Ph, 2-MeC H, showed clean conversion to Ar;B,S;.

3.5. Molecular Modelling

(Me,N),B,S,, Me,B,S;, Ar,B,S; (Ar=Ph, 4-
MeC¢H,, 2-MeC,H ), Ar,B,S, (Ar=4-MeC,H,, 2-
MeC¢H,), and Ar;B,S; (Ar = 4-MeC(H,, 2-MeC,H ,)
were initially geometry-optimized by a molecular me-
chanics program (MM™) to obtain global minima.
Structures were then further refined by semi-empirical
methods (AM1) using the Polak-Ribiere algorithm with
termination conditions of RMS < 0.1 kcal A~!mol ™.
Calculated data include optimized molecular geometry,
total energy (E), and heats of formation (A H}). Calcu-
lated geometry parameters for Me,B,S; and Ph,B,S;
follow. Me, B,S;: distances (A): B-S(B) 1.746, B-S(S)
1.733, S-S 2.154, B-C 1.532; angles (°): SBS 121.9,
BSS 98.4, BSB 99.3. Ph,B,S;: distances (A): B-S(B)
1.744, B-S(S) 1.736, S-S 2.153, B-C 1.53; angles (°):
SBS 122.5, BSS 98.2, BSB 98.7. Calculated geometry
parameters for (4-MeC,H,),B,S,, (4-MeC,H,),B,S;,
(4-MeC¢H,),B,S; are given in Fig. 1. Calculated E
(kcal mol™") and AH (kcalmol™'): Me,B,S;:
—24543, —65.71; Ph,B,S;: —55299, +8.16; (2-MeC,
H,),B,S,: —57982, +11.01; (4-MeC.H,),B,S,:
—57985, +7.73; (2-MeC.H,),B,S;: —62487, —6.91;
(4-MeC.H,),B,S;: —62488, —7.46;, (2-MeC.H,);
B,S;: —86998, —8.57; (4-MeC(H,);B;S;: —87003,
—14.25; (Me,N),B,S,: —37442, —87.72. Single point
AMI1 calculations on these optimized geometries with
constrained rotations about the B-X bonds gave ener-
gies from which barriers to rotation (kcal /mol) were
calculated: Ph,B,S;: 0.3; (2-MeC¢H,),B,S,: 1.5; (4-
MeC¢H,),B,S,: 1.7; (2-MeC¢H,),B,S;: 1.8; (4-
MeC(H,),B,S;: 0.4; (2-MeC H,);B,S;: 3.9; (4-
MeC H,),B,S;: 0.4; (Me,N),B,S,: 16.3.
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