LITERATURE CITED

- 1. F. Voegtle and E. Weber (eds.), Host Guest Complex Chemistry: Synthesis, Structures, Applications, Springer-Verlag, Berlin (1985).
- V. A. Popova, I. V. Podgornaya, and O. V. Fedorova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 618 (1987).
- 3. V. A. Popova, I. V. Podgornaya, T. V. Velikanova, et al., Zh. Anal. Khim., No. 9, 1580 (1986).
- 4. I. V. Podgornaya, A. Yu. Tsividze, V. A. Popova, et al., Inventor's Certificate No. 1546459, Byull. Izobret., No. 8 (1990).

REACTION OF 2-(4-ALKYLPIPERAZINO)-3-CHLORO-1,4-NAPHTHOQUINONES WITH SODIUM AZIDE

V. N. Berezhnaya and R. P. Shishkina

UDC 542.91:547.861.3+547.656.6'131: 546.33'171.8

It was shown that 2-(4-alkylpiperazino)-3-chloro-1,4-naphthoquinones react on heating with NaN₃ in DMF to form new heterocyclic quinones - 1,2,3,4-tetrahydro-13-alkyl-3,1-(iminoethano)benzo[g]quinoxaline-5,10-diones as well as the corresponding 2-(4-alkylpiperazino)-3-aminonaphthoquinones and naphthimidazopyrazinediones.

It is known that 2-morpholino- and 2-piperidino-3-chloro-1,4-naphthoquinones react on heating with NaN₃ in DMF with the formation of the corresponding 3-amino derivatives and naphth[2',3':4,5]imidazo-6,11-diones [1]. The precursors of the latter, as has been shown with the example of 2-(4-acylpiperazino)-3-azido-1,4-naphthoquinones, are dehydrogenation products of the piperazine ring - enaminonaphthoquinones [2]. In continuation of these investigations, the reaction of NaN₃ with 2-(4-alkylpiperazino)-3-chloro-1,4-naphthoquinones (Ia-c) was carried out in DMF at 80°C, and it was found that unlike 2-(4-acylpiperazino)-naphthoquinones [2], the reaction produced, besides the 3-amino derivatives (IIIa-c) and 2-alkyl-1,2,3,4-tetrahydronaphth[2',3':4,5]imidazo[1,2,a]pyrazine-6,11-diones (IVa-c), new heterocyclic compounds - 1,2,3,4-tetrahydro-13-alkyl-3,1(iminoethano)benzo[g]quinoxaline-5,5-diones (Va-c) (see Scheme 1). The yield of the reaction products is given in Table 1.

The thermolysis of azide (IIa), which separated out on reacting compound (Ia) with NaN_3 at 20°C leads to the same set of products (IIIa)-(Va).


It can be assumed that, like naphthimidazopyrazinediones (IV), the (3,1-iminoethano)benzoquinoxaline derivatives (Va-c) are products of the intramolecular cyclization of the intermediately formed unstable enaminonaphthoquinones (A). Attempts to isolate them, unlike 4-acylpiperazino-substituted naphthoquinones [2], were unsuccessful as could be expected [3]. The direction of the cyclization of 1-(3-amino-1,4-naphtho-2-quinolyl)-4R-tetrahydropyrazines of type (A) is clearly influenced by the character of the substituent in the partially hydrogenated pyrazine ring: in the presence of an acyl group, the attack of the amine proceeds at the nearest α -carbon atom at the double bond with the formation of an imidazole ring [2], while in the presence of an alkyl group (R), the reaction occurs at the α - and β -carbon atoms with the formation of both five-membered (IV) and six-membered (V) rings.

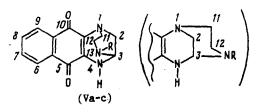

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2103-2107, September, 1990. Original article submitted September 25, 1989.

TABLE 1.	Yield	of Naphthoquino	ne
Derivativ	es (DMF	7, 80°C)	

Starting	Yield of reaction products, %			
compound	(111)	(IV)	(V)	
(Ia) (Ib) (Ic)	32 54 55	$\frac{11}{11}$	15 3 22	

$R = CH_2CH_2CN$ (a), CH_2Ph (b), CH_3 (c).

The structure of the compounds obtained was proved by physicochemical methods. The spectral characteristics of compounds (II)-(IV) are similar to those of the previously obtained 2-(4-acylpiperazino)-1,4-naphthoquinones [2] (Tables 2, 3). The 1,2,3,4-tetrahydro-13-alkyl-3,1-(iminoethano)benzo[g]quinoxaline-5,10-diones (Va-c) have a molecular weight 2 units higher than naphtimidazopyrazinediones (IV), but 2 units lower than amino derivatives (III). In the IR spectra of compounds (Va-c) there are absorption bands which correspond to the stretching vibrations of carbonyl groups and the NH group. The character of the PMR spectra confirms their structure. For example, in the PMR spectrum of compound (Va), in addition to the three multiplets of aliphatic protons, the assignment of which was carried out by the double resonance method on a spectrometer with a frequency of 400 MHz. The signal at 4.51 ppm was assigned to the H³ proton; during its irradiation with a frequency correponding to the NH group proton, merging of the multiplet into a doublet of doublets took place. The H^{2e} (3.52 ppm) and H^{2a} (2.54 ppm) protons were assigned in the following way: during the irradiation of the H³ proton, the doublet of multiplets of the H^{2e} proton con-

	80	Mol. m	nass, m/z	Empirical	IR spectrum 1 v, cm ⁻¹	Electronic absorption spectrum, λ_{\max} , nm $(\log \varepsilon)$
Com- pound	mp, °C (solvent)	found	calcu- lated	formula		
(IIa)	88-90 (dec.)	308 *	336	$C_{17}H_{16}N_6O_2$	2220 (C=N), 2125 (N ₃), 1670 (C=O)	234(4.21), 276(4.20), 295 sh(4.15), 546(2.75),
(II c)	97-99 (dec.)	297, 1226	297, 1226	C15H15N5O2	2125 (N ₃), 1670, 1645 (C=O)	$\begin{array}{c} 546(3,47)\\ 233(4,25),\\ 274(4,06),\\ 301 {\rm sh}(3,86),\\ \end{array}$
(IIIa)	174–176 (EtOH)	310, 1430	310, 1430	$C_{17}H_{18}N_4O_2$	$\begin{array}{c} 3506, 3385 \\ (\mathrm{NH}_2), 2266 \\ (\mathrm{C=N}), 1680, \\ 1640 \ (\mathrm{C=O}) \end{array}$	523 (3,11) 247 (4,13), 271 (4,15), 280 sh (4,13), 332a (3,38), 465 (3,18)
(IIIb)	145147 (EtOH)	347, 1633	347, 1634	C21H21N3O2	3470, 3350 (NH ₂), 1670, 1630 (C=O)	242(4,11), 270(4,19), 277 $sh(4,18),$ 468(3,19)
(IIIc)	154–155 (EtOH)	271, 1317	271, 1321	C13H17N 3O 2	3400, 3230 (NH ₂), 1680 (C=O)	241 (4,07), 271 (4,23), 291 sh(4,08), 328 sh(3,41), 465 (3,29)
(IVa)	220–222 (C6H4Cl2-0)	306, 1115	306, 1117	C ₁₇ H ₁₄ N ₄ O ₂	2255 (C=N), 1690, 1670 (C=O)	225 sh (4,08), 250(4,65), 276(4,22), 282(4,23), 336(3,56)
(IVc)	221–224 (C6H4Cl2-0)	267, 1007	267, 1 008	C15H13N3O2	1670 (C=O)	225 sh (3,92), 250 (4,51), 276 sh(4,05), 283 (4,14), 371 (3,04)
(Va)	200–203 (C ₆ H ₆ – EtOH)	308, 1273	308 , 1273	C17H16N4O2	3355 (NH), 2260 (C=N), 1680, 1640 (C=O)	241 (4,18), 281 (4,38), 332 sh (3,48), 498 (3,28)
(Vb)	85-90 **	345, 1503	345, 1477	C21H19N3O2	(C=0) 3400 (NH), 1670, 1630 (C=0)	244 (4,25), 278 (4,33), 328 sh(3,48), 498 (3,22)
(Vc)	137-140 **	269, 1164	269, 1164	C15H15N3O2	3410 (NH), 1680, 1640 (C =0)	247 (4,26), 281 (4,20), 326 sh (3,51) 498 (2,94)

TABLE 2. Characteristics of the Obtained Compounds

*(M-28)

**Precipitated by hexane from C₆H₆.

verted into a doublet of doublets (the splitting of the doublets is caused by interaction of the H^{2e} proton with an NH group proton - a 1,5-interaction), and during irradiation at a frequency corresponding to the H^{2e} proton, the doublet of multiplets of the H^{2a} proton in the complex multiplet at 2.54 ppm merges into a broadened singlet. The H^{11a} , H^{11e} protons (3.40 ppm) and the H^{12e} proton can be differentiated by suppressing the H^{12a} proton (2.22 ppm).

EXPERIMENTAL

The electronic absorption spectra were recorded on a "Specord UV-VIS" spectrophotometer in EtOH, IR spectra — on a UR-20 spectrophotometer in $CHCl_3$ and in KBr tablets. The PMR spectra were recorded in $CDCl_3$ on a "Bruker WP-200SY" and "Bruker AM-400" spectrometers. The molecular weights and the empirical formulas of the compounds were determined according to an accurate value of the mass number of the molecular ions on a "Finnigan MAT 8200" massspectrometer. The elemental analysis corresponded to the calculated values. The preparative chromatography was carried out on SiO_2 (L 100/160 µm) and Silufol plates in systems: 1) C_6H_6 - $CHCl_3$ (4:1), 2) $CHCl_3$, 3) $C_6H_6-CH_3)_2CO$ (4:1), 4) $CHCl_3-CH_3)_2CO$ (4:1). The TLC was carried out on Silufol plates in system 3. The synthesis of compounds (Ia-c) was described in [3]. All the reactions were carried out in the absence of direct sunlight.

<u>Reaction of Compounds (Ia-c) with NaN₃ on Heating</u>. A solution of 2 mmoles of NaN₃ in 0.5 ml of H_2O was added to a solution of 1 mmole of (Ia-c) in 4 ml of DMF and the mixture

TABLE 3. PMR Spectra of Naphthoquinone Derivatives

Com- pound	δ, ppm, J, Hz
(IIIa)	2,56 m (6H, $H^{3', 5'}$, CH_2CH_2CN), 2,75 m (2H, CH_2 — CN), 3,19 m (4H, $H^{2', 6'}$), 5,43 br.s (2H, NH_2), 7,60 m (2H, $H^{6, 7}$), 7,95 m (2H, $H^{5, 8}$)
(IIIЪ)	2,52 m (411, H ^{3',5'}), 3,19 m (4H, H ^{2',6'}), 3,56 s (2H, CH ₂ -Ph), 5,42 br.s (2H, NH ₂), 7,31 m (5H, Ph), 7,60 m (2H, H ⁶ , ⁷), 7,99 m (2H, H ⁵ , ⁸)
(11 kc)	2.32 s (3H. CH ₃), 2.49 m (2H. $H^{3', 5'}$), 3.20 m (4H, $H^{2', 6}$), 5.40 br.s (2H. NH ₂), 7.60 m (2H, $H^{6, 7}$), 7.98 m (2H, $H^{5, 8}$)
(IVa)	2,63 t (2H. CH ₂ CH ₂ CN), 2,96 t (2H, CH ₂ CH ₂ CN), 3,08t (2H, H ³), 3,96 s (2H, H ¹). 4,50 t (2H, H ⁴), 7,70 m (2H, H ⁸ , ⁹), 8,08 m (1H, H ⁷⁽¹⁰⁾), 8,20 m (1H, H ⁷⁽¹⁰⁾)
(IVc)	2,51 s (311, CH ₃), 2,90 t (2H, H ³), 3,80 s (2H, H ¹), 4,46 t (211, H ⁴), 7,68m (2H, H ^{8, 9}), 8,08 m (1H, H ⁷⁽¹⁰⁾), 8,20 m (1H, H ⁷⁽¹⁰⁾)
(Va)	2,20d.t (1H, H ^{12a} , $J_{H^{12a}H^{12e}} = 13$, $J_{H^{12a}H^{11a}} = 12$, $J_{H^{12a}H^{1}1e} = 6$),2,54 m (5H: 1H, H ^{2a} ; 3H, CH ₂ CH ₂ CN; 1H, H ^{12e}), 2,92 m (1H, CH ₂ CH ₂ CN), 3,40m (2H, H ^{11a, 11e}), 3,52 d.m (1H, H ^{2e} , $J_{H^{2e}H^{2a}} = 13$), 4,51 m (1H, H ³), 6,24 m (1H, NH), 7,64 m (2H, H ⁷ , ⁸), 7,99 m (1H, H ⁶⁽⁹⁾), 8,09 m (1H, H ⁶⁽⁹⁾)
(Vb)	2,14 d.t (1H, H ^{12a} , $J_{H^{12a}H^{12e}} = 12$, $J_{H^{12a}H^{11e}} = 5$), 2,34 m (1H, H ^{12e}), 2,50 d.t (1H, H ^{2a} , $J_{H^{2a}H^{2e}} = 13$), 3,30 m (2H, H ^{11a, 11e}), 3,48 m (3H: 2H, CH ₂ -Ph; 1H, H ^{2c}), 4,37 m (1H, H ³), 6,15 m (1H, NH), 7,34 m (5H, Ph), 7,64 m (2H, H ⁷ , ⁸), 8,02 m (1H, H ⁶⁽⁹⁾), 8,10 m (1H, H ⁶⁽⁹⁾)
(Vc)	2,12 d.t (111, H ^{12a} , $J_{H^{12a}H^{12c}} = 12$, $J_{H^{12a}H^{11a}} = 12$, $J_{H^{12a}H^{11c}} = 6$), 2,30 s (3H, CH ₃), 2,38 m (1H, H ^{12c}), 2,57 d.m (1H, H ^{2a} , $J_{H^{2a}H^{2c}} = 13$), 3,35 m (2H, H ^{11a, 11c}), 3,43 d.m (1H, H ^{2e}), 4,35 m (1H, H ³), 6,23 br.s (1H, NH), 7,62 m (2H, H ^{7, 8}), 8,04 m (2H, H ^{6, 9})

was held at 80°C up to the disappearance of the starting compound (3.5, 1.5 and 1.5 h, respectively). The reaction mixture was poured into water, extracted with $CHCl_3$, evaporated under vacuum and chromatographed on SiO_2 plates in systems 1-4, successively separating compounds (III), (V) and (IV).

<u>3-Azido-2-(4- β -cyanoethylpyrazino)- and 3-Azido-2-(4-methylpiperazino)-1,4-naphthoquinones (IIa) and (IIc)</u>. A solution of 2 mmoles of NaaN₃ in 0.5 ml of H₂O was added to a solution of 1 mmole of (Ia, c) in 4 ml of DMF, and the mixture was held for 40 h at 20°C. The reaction mixture was poured into water, the precipitate that separated out was filtered off, washed with water, and dried at 20°C. The yield of (IIa) and (IIc) was 76 and 59%, respectively.

<u>Thermolysis of 3-Azido-2-(4- β -cyanoethylpiperazino)-1,4-naphthoquinone (IIa)</u>. a) A solution of 0.170 g of (IIa) in 2 ml of DMF was held for 1 h at 80°C (to the disappearance of the azide). The reaction mixture was poured into water and extracted with CHCl₃. The extract was evaporated under vacuum and the residue was chromatographed on SiO₂ in systems 1-4, successively separating 0.026 g (16%) of amine (IIIa), 0.057 g (38%) of compound (Va) and 0.004 g (3%) of (IVa).

b) A solution of 0.200 g of (IIa) in 30 ml of C_6H_6 was boiled for 1 h. The mixture was evaporated and chromatographed on SiO₂. Yield, 0.017 g (9%) of amine (IIIa), 0.053 g (30%) of (Va) and traces of imidazole (IVa).

LITERATURE CITED

- 1. J. A. Van Allan, G. A. Reynolds, and R. E. Adel, J. Org. Chem., <u>28</u>, No. 2, 524 (1963).
- V. N. Berezhnaya, R. P. Shishkina, and E. P. Fokin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 12, 2822 (1988).
- 3. R. P. Shishkina, V. N. Berezhnaya, and E. P. Fokin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2332 (1985).