HIGHLY STEREOCONTROLLED REDUCTION OF α'-ALKOXYENONES TO GIVE EITHER THE THREO OR ERYTHRO ALLYLIC 1,2-DIOL. ASSIGNMENT OF THE THREO CONFIGURATION TO THE C-15,C-16 DIOL OF PUMILIOTOXIN B.¹ Larry E. Overman* and Russell J. McCready Department of Chemistry, University of California Irvine, California 92717

<u>Summary</u>: Model studies indicate that the allylic diol of pumiliotoxin B has the three configuration, and that this functionality can be prepared with excellent stereocontrol by reduction of an α' -t-butyldiphenylsilyloxyenone.

The gross structure of pumiliotoxin B (<u>1</u>) was reported by Daly and coworkers in 1980,² and last year our laboratory described³ the first total synthesis of a member of this alkaloid class, toxin 251D (2). As a prelude to a total synthe-

2, $R = CH_2CH_2CH_3$

sis of pumiliotoxin B, we have been investigating stereocontrolled methods for assembling the allylic diol functionality of this toxin. In this Letter, we report that the allylic diol of pumiliotoxin B has the threo configuration, and moreover relate that the reduction of α '-alkoxyenones can be accomplished to give either threo or erythro allylic 1,2-diols with excellent (>95%) stereocontrol.

Since 1,2-addition to an enone is expected to occur <u>via</u> a skewed⁴ backside⁵ trajectory which should accentuate interactions of an entering hydride with a chiral α '-carbon, we chose to explore the preparation of the pumiliotoxin B diol functionality by relative 1,2-asymmetric induction⁶ as illustrated in eq 1. The model (2S,4E)-enones <u>3</u> and <u>4</u>⁷ were prepared from ethyl (S)-(+)-lactate in 30-40%

overall yield as summarized in the Scheme. Reduction of $\frac{3}{2}$ with 2 equiv of diisobutylaluminum hydride (toluene, rt) gave a 3:2 mixture of diastereomeric alcohols in 80% yield. Separation by HPLC⁸ gave pure samples of $\frac{5}{2}^7$ (major isomer) and $\frac{6}{2}$, which were reductively debenzylated (Na/NH₃, -78°) in essentially quantitative yields to give the threo diol $\frac{7}{2}^7$ ([a] $_D^{25}$ 10.0°, C 0.5 CHCl₃; ¹H NMR & 3.78, m, C₂-H; ⁹ & 3.72, broadened d, J = 7.0 Hz, C₃-H; ¹³C NMR & 81.0, C₃; 68.8, C₂) and the erythro diol $\frac{8}{2}^7$ ([a] $_D^{25}$ -9.8°, C 1.5 CHCl₃; ¹H NMR & 3.91, broadened d, J = 5.2 Hz, C₃-H; & 3.85, m, C₂-H; ⁹ ¹³C NMR & 83.1, C₃; 69.2 C₂) respectively. The stereochemical assignments for 7 and 8 were made on the basis of intramolecular nuclear Overhauser experiments. ¹⁰ Thus, the three d₆-acetonide <u>9</u> (¹H NMR & 3.8-3.9, m, C₂-H and C₃-H) showed a strong signal (& 3.87, d, J = 3.7 Hz) for the C₃-hydrogen in the difference NOE spectrum ^{10bc} when the methyl doublet at 6 1.21 was irradiated, while the erythro d₆-acetonide <u>10</u> (¹H NMR & 4.48, d, J = 5.2 Hz, C₃-H; & 4.38, m, C₂-H⁹) showed no detectable signal for the C₃-hydrogen under identical conditions. The 250 MHz ¹H NMR spectrum of pumiliotoxin B² (broadened d for the C₁₅-H at & 3.66, J ~ 8 Hz; m for the C₁₆-H at & 3.75) most clearly resembles the model threo diol <u>7</u>.¹¹

The reduction of α' -alkoxyenones of this type can be controlled to give either the threo or erythro allylic diol by the proper choice of reducing agent and alcohol protecting group; a few of the combinations examined are summarized in the Table. The high erythro selectivity (98%) obtained from the reaction of

Scheme

(a) $PhCH_2OCH_2C1$ or $Ph_2Bu^{t}SiC1$; (b) 5% KOH, MeOH, rt; 2-pyridinethiol, DCC, rt; (c) $CH_3CH=PPh_3$, THF, rt; (d) CH_3CH_2CHO , 50° ; (e) $CD_3^{COCD}_3$, TSOH, rt.

Enone R	Reductant	Temp, ^o C	Threo:Erythro	
R=CH ₂ OCH ₂ Ph (<u>3</u>)	Bu ₂ ⁱ Al, pentane	25 ⁰	70:30	
	Bu ₃ ⁱ Al, pentane	-22 ⁰	55:45	
	LIAIH, THF	-10 ⁰	30:70	
	LiAlH, Et_20	-10 [°]	2:98	
R=H	LIAIH, THF	-10 ⁰	40:60	
R=Ac	Bu, ⁱ Al, pentane	25 ⁰	45:55	
R=SiMe ₃	Bu ₃ ⁱ Al, pentane	25 ⁰	43:57	
$R = SiPh_2Bu^t$ (<u>4</u>)	Bu Al, pentane	25 ⁰	94:6	
	LIAlH ₄ , THF	-20°	95:5	

Table Stereoisomer Ratios^a from Reduction of 2-Alkoxy-4-methyl-4E-hepten-3-ones

^a From 250 MHz ¹H NMR analysis of crude products.

enone <u>3</u> with LiAlH_4 in ether is consistent with reduction of a chelated⁶ intermediate. With many reducing agent-protecting group combinations, bad mixtures of three and erythre diels were obtained, presumably resulting from competitive reduction of both chelated and non-chelated intermediates. When the extremely bulky t-butyldiphenylsilyl ether¹² was employed, chelation was apparently prevented, and excellent (>94%) three selectivity was observed with both LiAlH₄ and triisobutylaluminum. On a preparative scale, reduction of the t-butyldiphenyl-silyloxyenene <u>4</u> with $\text{Bu}_3^{i}\text{Al}^{13}$ followed by chromatographic purification of <u>11</u> and desilylation (Bu_4NF)¹² gave the pure chiral¹⁴ three diel <u>7</u> in 75% overall yield.

The excellent erythro and threo selectivities obtained from LiAlH_4 reduction of α' -alkoxyenones 3 and 4 are higher than selectivities recorded in the literature^{6,15} for hydride reductions of α -alkoxy (and α -hydroxy)ketones, and may reflect the skewed trajectory illustrated in eq 1.¹⁶ Since enones 3 and 4 should be effectively locked in s-trans conformations,¹⁷ we note that the unusually high "Cram" selectivity observed with 4 may reflect also destabilization of the minor "Felkin-Ahn"¹⁸ transition state as a result of steric interactions between the α' -methyl group and the β -hydrogen of the enone system.¹⁶

Acknowledgment. We particularly wish to thank Dr. John Daly and Dr. Takashi Tokuyama for generously providing a sample of pumiliotoxin B and information concerning their parallel studies. Financial support from the National Institutes of Health (HL-25854), the Camille and Henry Dreyfus Foundation (teacherscholar award to L.E.O.), and the NSF (instrument program) is gratefully acknowledged.

References and Notes

- For an independent determination of the threo configuration for the diol 1. function, and assignment of the E configuration for the 13,14-double bond of the pumiliotoxin B side chain see: Tokuyama, T.; Shimada, K.; Uemura, M.; Daly, J.W. Tetrahedron Lett., in press.
- Daly, J.W.; Tokuyama, T.; Fujiwara, T.; Highet, R.L.; Karle, I.L. J. Am. 2. Chem. Soc. 1980, 102, 830. Overman, L.E.; Bell, K.L. J. Am. Chem. Soc. 1981, 103, 1851. For an approach vector analysis and its application to 1,2-additions of
- 3.
- 4. cyclic enones see: Baldwin, J.E. J. C. S. Chem. Commun. 1976, 738. Cf. Rosenfield, R.E. Jr.; Dunitz, J.D. <u>Helv. Chim. Acta</u> 1978, 61, 2176; and
- 5. earlier papers cited therein.
- 6. For a recent review see: Bartlett, P. Tetrahedron 1980, 36, 1. For a comprehensive review of early work see: Morrison, J.D.; Mosher, H.S. "Asymmetric Organic Reactions," Prentice-Hall: New Jersey, 1971, Chapter 3. For a recent example of very high selectivity in the addition of Grignard reagents to a-alkoxyketones see: Still, W.C.; McDonald III, J.H. Tetrahedron Lett. 1980, 1031.
- All new compounds showed IR, 250 MHz ¹H NMR (CDCl₃), 63 MHz ¹³C NMR 7. (CDCl₂), and mass spectra which were fully in accord³ with their assigned structures.
- 8. A Dupont Zorbax PSM-60 column, 6:1 hexane:ethyl acetate eluent, and 2.0 mL/min flow rate were used for this analysis.
- This signal was simplified to a doublet with the same coupling constant as 9.
- the C₃-H when the methyl group (C₁-H) was decoupled. (a) Nakanishi, K.; Schooley, D.A.; Koreeda, M.; Miura, I. <u>J. Am. Chem. Soc.</u> <u>1972</u>, <u>94</u>, 2865. (b) Hall, L.D.; Sanders, J.K.M. <u>ibid</u> <u>1980</u>, <u>102</u>, 5703. (c) 10. Bruker Aspect-2000 NMR Software Manual, 1-A, 1981, Part 4.7.
- 11. A nicer comparison of a related series of phenylboronides is described in ref 1.
- 12.
- Hanessian, S.; Lavallee, P. Can. J. Chem. <u>1977</u>, <u>55</u>, 562. Giacomelli, G.; Caporusso, A.M.; Lardicci, L. <u>Tetrahedron Lett.</u> <u>1981</u>, <u>22</u>, 13. 3663.
- 250 MHZ ¹H NMR analysis of the (R)-MTPA ester of <u>11</u> indicated an enantio-meric excess of 90% for <u>11</u>. 14.
- 15. Cf. Bowlus, S.B.; Katzenellenbogen, J.A. J. Org. Chem. 1974, 39, 3309.
- Experiments to specifically test this suggestion are underway in our labor-16. atory.
- Cf. Liljefors, T.; Allinger, N.L. J. Am. Chem. Soc. 1976, 98, 2745. 17
- Cf. Anh, N.T. Topics Current Chem. 1980, 88, 145. 18.

(Received in USA 12 March 1982)