Received: December 12, 1988; accepted: July 2, 1989

NEW POLYFLUOROALKOXYSULFONYL FLUORIDES (I)

L.F. CHEN, J. MOHTASHAM AND G.L. GARD

Department of Chemistry, Portland State University, Portland, Oregon 97207-0751 (U.S.A.)

SUMMARY

The reaction of $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$ with haloalkanes (RX, X = Cl, Br, I) in the presence of metal fluorides, MF (M = K⁺, Cs⁺, Ag⁺) was studied as a means for preparing novel reactive polyfluoroalkoxysulfonyl fluorides. The following compounds have been prepared and characterized: ROCF₂CF₂SO₂F where R = CF₂=CFCH₂CH₂, SF₅CH₂CH₂, -CH₂-, -CH₂CH₂-, CH₃CH₂CH₂, BrCH₂CH₂, CH₂=CHCH₂, CH₂=CHC(O). Infrared, mass and nmr spectra are presented in order to support the assigned structures.

INTRODUCTION

Fluorocarbon sulfonyl fluorides (R_fSO_2F) are undergoing considerable study. It is known that incorporating a sulfonyl fluoride group (SO_2F) into molecular systems can lead to compounds useful as ion-exchange resins, surface-active agents and strong sulfonic acids [1-3]. In this paper, we wish to report a convenient method for preparing polyfluoroalkoxysulfonyl fluorides that not

only contain the SO_2F group but other functional groups such as $CF_2=CF$ -, $SF_5CH_2CH_2$, $BrCH_2CH_2$, $CH_3CH_2CH_2$, $CH_2=CHCH_2$; we also prepared bis alkoxysulfonyl fluoride compounds.

RESULTS AND DISCUSSION

We have found that the fluorosultone $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$, in the presence of metal fluorides, reacts with mono and dihaloalkanes according to the following equations:

$$RX + \overline{\text{CF}_2\text{CF}_2\text{OSO}_2} + MF \xrightarrow{\text{Diglyme}} ROCF_2\text{CF}_2\text{SO}_2F + MX$$

$$R = \text{CH}_2 = \text{CHCH}_2, \text{ CF}_2 = \text{CFCH}_2\text{CH}_2, \text{ SF}_5\text{CH}_2\text{CH}_2, \text{ BrCH}_2\text{CH}_2,$$

$$CH_3\text{CH}_2\text{CH}_2, \text{ CH}_2 = \text{CHC}(0)$$

$$(1)$$

$$M = K^{+}, Cs^{+}, Ag^{+}; X = Br, Cl$$

$$R'X_{2} + 2\overline{CF_{2}CF_{2}OSo_{2}} + 2MF \xrightarrow{Diglyme} R'(OCF_{2}CF_{2}So_{2}F)_{2} + 2MX$$

$$R' = -CH_{2}-, -CH_{2}CH_{2}-$$

$$M = Ag^{+}$$

$$X = I, Br$$
(2)

These reactions are carried out in two steps; the first step involves rearrangement of the sultone followed by formation of the metal alkoxide. In the second step, a nucleophilic substitution of RX by OCF2CF2SO2F occurs. This mechanism is summarized as follows:

$$CF_2CF_2OSO_2 \xrightarrow{MF} FC-CF_2-SO_2F$$
 (3)

$$FSO_2CF_2CF + M^+F^- \rightarrow FSO_2CF_2CF_2O^-M^+$$
(4)

$$Fso_2CF_2CF_2O^- + RX \longrightarrow Fso_2CF_2CF_2OR + X^-$$
 (5)

Previously, the rearranged acylsulfonyl fluoride, FSO₂CF₂C(O)F [4,5] and the potassium alkoxide intermediate have been isolated [5] Also, for Eq (5), a similar reaction involving methyliodide and allyl bromide/iodide have been reported [6]

It was found that the nature of metal fluoride had an important effect on the preparation of polyfluoroalkoxylsulfonyl fluorides Using allyl bromide, $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$ and KF in diglyme, the desired product of $\text{CH}_2=\text{CHCH}_2\text{O}(\text{CF}_2)_2\text{SO}_2\text{F}$ was formed in 53 5% yield, in this reaction the reactants were heated at 75 °C for 24 h and 90-95 °C for 48 h. If cesium fluoride is used in place of KF an almost identical yield of product was formed in only 24 h at 90 °C. With AgF, the yield of the reaction increased to 70% even though the reaction temperature was lowered to 30-40 °C (12 h). These results, particularly with alkali metal fluorides, are in close agreement with the general activity order for metal fluorides.

It should be noted [4] that where a mixture of $FSO_2CF_2C(0)F$ and KF, in a molar ratio 0 60 to 0 20 in diglyme, is heated slowly to 40 gas evolution (COF_2) was present and continued for 8 h @ 40-45° and 4 h @ 50 °C However, in our studies we were able to obtain desired reaction products in good yields even at high temperatures ($\approx 90-95$ °C) and long reaction time

In the presence of cesium fluoride, the alkoxy derivative of n-bromopropane was produced, the cesium fluoride system failed to give the desired products with 4-bromo-1,1,2-trifluorobutene-1 and $\rm SF_5CH_2CH_2Br$ It was possible, however, with the latter two bromides to form the alkoxy derivatives with AgF in place of CsF

When dilodomethane was used with AgF, the corresponding bis alkoxysulfonyl fluoride was formed in good yield (57 6%), with 1,2-dibromoethane, a mixture of the mono and bis alkoxysulfonyl fluorides were formed. The reaction of acrylyl chloride with KOCF2CF2SO2F produced the corresponding ester

$$CH_2=CHC(0)C1 + KOCF_2CF_2SO_2F \xrightarrow{Diglyme} CH_2=CHC(0)OCF_2CF_2SO_2F + KCl(6)$$

The acrylyl ester is stable for short periods at room temperature but after 7 days was 100% decomposed. The decomposition pattern of the ester was obtained from the characteristic ¹⁹F nmr spectra, the results are presented in Table I. The following rearrangement is offered as a pathway for decomposition

$$CH_2 = CHC(0) OCF_2 CF_2 SO_2 F \rightarrow CH_2 = CH-C \rightarrow CH_2 = CHC(0) F + FC(0) CF_2 SO_2 F$$

$$O \rightarrow CFCF_2 SO_2 F$$

TABLE I

Decomposition Rate of CH₂=CHC(0)OCF₂CF₂SO₂F

Temperature(°C)	Time (h)	(%) CH ₂ =CHC(0)OCF ₂ CF ₂ SO ₂ F	0 (%) F-CCF ₂ SO ₂ F	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
r t	0 0	100	0	0
55≈70	0 5	33 0	33 5	33 5
60	1 0	27 0	36 5	36 5
90	0 5	0	50 0	50 0

The infrared spectra of all new sulfonyl fluoride compounds have several common features. The characteristic SO_2 asym, SO_2 sym and S-F stretching frequencies are found in 1460-1455, 1243-1239, 805-781 cm⁻¹ regions, respectively. These assignments agree with the results obtained with other fluorosulfonyl derivatives. The strong carbon fluorine absorption bands found at 1045-1244 cm⁻¹ can be correlated with the CF₂ group. The C-H absorption bands are located in the 2931-3044 cm⁻¹ region. The olefinic vibrational bands for $CF_2=CF(CH_2)_2O(CF_2)_2SO_2F$ and $CH_2=CHC(O)OCF_2CF_2SO_2F$ are found at 1806 and 1631 cm⁻¹, respectively, the carbonyl absorption band in the ester is located at 1799 cm⁻¹

In the (CI)⁺ mass spectra, no molecular ions were observed except for CF_2 =CFCH₂CH₂OCF₂CF₂SO₂F For all compounds a cracking pattern was found that was supportive of the assigned structure

The structures of all new products were determined from their respective ¹H and ¹⁹F nmr spectra, with most compounds, first order couplings were found. The ¹⁹F nmr chemical shifts and coupling constants are reported in Table II. It is found that consistent chemical shift values for similar groupings are maintained for all compounds. For OCF₂, CF₂, SO₂F the chemical shift values are in -83 1 to -87 0, -111 5 to -114 0, 43 7 to 45 2 ppm range, respectively. The ¹H nmr chemical shifts and coupling constants are found in Table III.

TABLE II

 $^{19}{
m F}$ NMR Data of ROCF $_2{
m CF}_2{
m SO}_2{
m F}$ Chemical Shift (ppm) and Coupling Constant (Hz)

æ	OCF ₂	CF2	SO2F
CH ₂ =CHCH ₂	-86 2 (d-t)	-114 0 (d-t)	+42 8 (t-t)
	$J_{OCF_2-SO_2F} = 5.74$	$J_{OCF_2-CF_2} = 4$ 14	$^{J}_{CF_2} - so_2_{F} = 4.68$
$\mathrm{CF_2} = \mathrm{CFCH_2C}$	CF ₂ =CFCH ₂ CH ₂ -86 1 (d-t)	-113 2 (d-t)	+44 0 (t-t) (1) F F (3)
	F(1) = -104 0 (d-d) $JocF_2 - so_2F = 5 \text{ 15}$	$F_{(2)} = -124$ 0 (d-d) $F_{(3)} = -180$ 0 (d-c $^{J}_{OCF_2} - ^{CF_2} = \text{overlap}$ $^{J}_{CF_2} - ^{SO_2}F = 4$ 74	$F(3) = -180 \ 0 \ (d-d-t)$ C=C $J_{CF_2} - S_{O_2F} = 4 \ 74 \ (2) F \ CH_2 \ (4)$
	J(1)(2) = 86 0 J(1)	J(1)(3)=34 2 $J(2)(3)$	J(2)(3) = 118 8 $J(3)(4) = 21 1$
$\mathrm{SF}_5\mathrm{CH}_2\mathrm{CH}_2$	-86 0 (d-t)	-112 1 (d-t)	+44 8 (t-t)
	SF = +82 1 (m)	SF_4 = +67 0 (complex doublet)	: doublet)
	$J_{OCF_2} - SO_2F = 5.58$	$J_{OCF_2CF_2} = overlap J_{CF_2-SO_2F} = 5.04$	$^{J}_{CF_2-50_2F} = 5.04$
CH ₂	-84 5 (d-t)	-112 0 (d-t)	+45 2 (t-t)
ı	J_{OCF_2} - S_{O_2F} = overlap J_{OCF_2} - C_{F_2} =overlap	JocF ₂ -cF ₂ =overlap	^J cF ₂ -so ₂ F=overlap

TABLE III

¹H NMR of ROCF₂CF₂SO₂F

R	Chemical Shift (ppm)	Coupling Constant (Hz)
.0-0	$H_1 = 5 32 (d)$ $H_2 = 5 42 (d)$ $H_3 = 5 95 (t-d-d)$ $CH_2 = 4 61 (d)$	$J_{1-2} = 1 \ 10$ $J_{1-3} = 10 \ 44$ $J_{2-3} = 17 \ 10$ $J_{3-4} = 5 \ 58$
CF ₂ =CFCH ₂ CH ₂	$CFCH_2 = 3 \ 27 \ (d-m)$	J _{CFCH2} = 21 2
	$CH_2O = 4.78 (t)$	J _{CH₂-CH₂O= 6 5}
sF ₅ CH ₂ CH ₂	$CH_2 = 4 22 (m)$ $CH_2O = 4 75 (br)$	
CH ₂	$CH_2 = 5.84 (s)$	
-CH ₂ CH ₂ -	$CH_2 = 452 (s)$	
BrCH ₂ CH ₂	$BrCH_2 = 3 85 (t)$ $CH_2O = 4 72 (t)$	^J CH ₂ CH ₂ = 5 76
сн ₃ сн ₂ сн ₂	$CH_3 = 155 (t)$ $CH_2 = 213 (t-q)$	$J_{CH_2CH_3} = 7 38$ $J_{-CH_2} = \text{overlap}$
	$CH_2O = 4.61 (t)$	$^{J}_{CH_{2}CH_{2}O} = 594$
CH ₂ =CHC(∪)	$CH_2 = 5 72, 5 85 (m)$ $-CH = 6 33 (m)$	

The sultone $\widehat{\text{CF}_2\text{CF}_2\text{OSO}_2}$ was prepared according to the literature method [9] Potassium fluoride, cesium fluoride, silver fluoride were dried under vacuum before use All other chemicals were obtained from commercial sources and used as received

General Procedure Gases were manipulated in a conventional Pyrex vacuum apparatus equipped with a Heise-Bourdon tube gauge and televac thermocouple gauge. Infrared spectra were obtained by using a Pyrex-glass cell with KBr windows or as solids between KBr disks on a Nicolet 20DX spectrometer. The nmr spectra were recorded with a Varian model EM-390 spectrometer operating at 90 0 MHz for proton and 84 67 MHz for the fluorine resonance. TMS and F-11 were used as external standards. In some cases, compounds were purified via gas chromatography using an Aerograph Autoprep (model A-700) gas chromatograph. The mass spectra were taken on a VG-7070 HS mass spectrometer with an ionization potential of 70 eV.

Elemental analyses were determined by Beller Microanalytical Laboratory in Göttingen, Federal Republic of Germany

Preparation of CH2=CHCH2OCF2CF2SO2F

(a) KF Method

Into a 125 mL Pyrex-glass reaction vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 6 5 g (112 0 mmol) of dried potassium fluoride and 10 0 mL of diglyme. The reaction vessel was cooled to -196°C and 15 0 g (83 3 mmol) of

 $CF_2CF_2OSO_2$ was added A clear solution was produced after 1 h at room temperature. The reactor was again cooled to -196 °C and 10 0 g (83 3 mmol) allyl bromide was added. The reaction was heated at 75 °C for 24 h and 90-95 °C for 48 h. The mixture was decanted into 30 mL of water and the oily layer which formed was washed three times with water and dried over P_4O_{10} . Distillation gave 10 7 g (44 6 mmol) $CH_2=CHCH_2OCF_2CF_2SO_2F$, 53 5% yield, b p 120-121 °C

(b) CsF Method

In a similar procedure described above, 9 0 g (59 2 mmol) of dried cesium fluoride, 10 0 mL of diglyme, 9 5 g (52 8 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$ and 6 4 g (52 8 mmol) allyl bromide were added. The reaction was heated at 90 °C for 24 h. The products were poured into 30 mL of water, washed, dried and distilled to give 6 38 g of product, 50 4% yield

(c) AgF Method

Using a similar procedure described above, 5 0 g (39 3 mmol) of dried silver fluoride, 7 0 mL of diglyme, 7 0 g (38 8 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$ and 4 7 g (39 9 mmol) of allyl bromide were added. The vessel was covered by aluminum foil and was heated at 30 \approx 40 °C for 12 h. The solution was filtered in order to remove AgBr. The filtrate was poured into 15 mL water and the oily layer which formed was washed twice with water and dried over P_4O_{10} . The crude product (8 0 g) was analyzed via gas chromatography, 81 8% product (70 4% yield) and 11 5% starting material $CH_2=CHCH_2Br$

Preparation of CF2=CFCH2CH2OCF2CF2SO2F

Into the same reaction vessel previously described, 7 0 g (55 5 mmol) of silver fluoride was added and dried in vacuo. Also added were 10 0 ml of diglyme and 10 6 g (58 9 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$. After 3 h at room temperature, the reaction mixture was cooled to -196 °C and 10 9 g (57 8 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{CH}_2\text{CH}_2\text{Br}}$ was added. The reaction mixture was stirred at r t for 24 h, after which the AgBr was removed. The liquid product was poured into 25 mL of water and the oily layer which formed was washed twice with water and dried over P4O10. Distillation gave 7 0 g of product (41 2% yield), b p 112-114 °C

The infrared spectrum had the following bands (cm^{-1}) 2988 (w), 2931 (w), 1806 (s), 1456 (s), 1340 (m), 1309 (m), 1243 (s), 1203 (s), 1142 (s), 1121 (s), 1045 (m), 1005 (m), 949 (w), 807 (s), 781 (m), 655 (m), 609 (s), 548 (w)

In the (CI)⁺ mass spectrum, the molecular ion was observed at 308 (M⁺, 2 58) Other main fragment ions were formed at 177 $[(C_3HF_4O_2S)^+, 4 67], 157 [(C_4H_4F_3OS)^+, 6 31], 127 [(C_6H_1F_2O)^+, 3 08], \\ 119 [(C_3FO_2S)^+, 2 77], 111 [(C_3H_2F_3O)^+, 6 34], 109 [(C_4H_4F_3)^+, \\ 100 00], 108 [(C_4H_3F_3)^+, 32 6], 100 [(C_2F_4)^+, 4 76], 97 [(C_2F_3O)^+, \\ 9 73], 95 [(CFSO_2)^+, 26 92], 89 [(C_4H_3F_2)^+, 31 51], 81 [(C_2F_3)^+, \\ 0 66], 79 [(C_2HF_2O)^+, 8 91], 75 [(C_3H_4FO)^+, 1 64], 67 [(SOF)^+, 19 95], \\ 65 [(C_4HO)^+, 2 88], 59 [(C_3H_4F)^+, 16 42], 55 [C_3H_3O)^+, 4 47], 51 \\ [(SF)^+, 4 74]$

Anal Calcd for $C_6H_4F_8O_3S$ C, 23,38, H, 1 30, F, 49 35, S, 10 39 Found C, 23 36, H, 1 35, F, 49 0, S, 10 54%

Preparation of SF5CH2CH2OCF2CF2SO2F

In a similar procedure previously described, 3 4 g (27 0 mmol) of dried silver fluoride, 5 0 mL of diglyme, 5 5 g (30 5 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$ and 6 3 g (26 8 mmol) of $\overline{\text{SF}_5\text{CH}_2\text{CH}_2\text{Br}}$ were respectively added. The reaction mixture was heated at 35 \approx 38 °C for 72 h. The AgBr precipitate was removed and the liquid was poured into 20 mL of water. The oil layer was washed twice with water, dried over P4O10, and distilled to give 2 9 g of product (30 6% yield), b p 98-99 °C/80 mm

The infrared spectrum had the following bands (cm^{-1}) 3044 (vw), 2988(vw), 1460 (s), 1340 (s), 1245 (s), 1209 (s), 1133 (s), 1022 (s), 993 (m), 968 (m), 848 (vs), 782 (s), 654 (s), 608 (s), 555 (m)

In the (CI)⁺ mass spectrum, no molecular ion was observed The other main fragments were found at 335 [(M-F)⁺, 5 53], 227 [(CH₂CH₂OCF₂CF₂SO₂F)⁺, 49 23], 226 [(CH₂=CHOCF₂CF₂SO₂F)⁺, 2 82], 207 [(C₄H₃F₄O₃S)⁺, 13 92], 163 [(C₃H₃F₄OS)⁺, 100], 155 [(SF₅CH₂CH₂)⁺, 10 17], 143 [(C₄H₃F₄O)⁺, 11 41], 141 [(SF₅CH₂)⁺, 8 68], 135 [(SF₄CH=CH₂)⁺, 11 44], 127 [(SF₅)⁺, 7 17], 119 [(C₃FO₂S)⁺, 28 06], 114 [(SF₃C₂H)⁺, 3 85], 111 [(CF₂=CFOCH₂)⁺, 7 41], 100 [(C₂F₄)⁺, 10 78], 99 [(C₄H₃OS)⁺, 5 34], 97 [(C₂F₃O)⁺, 9 14], 95 [(CFSO₂)⁺, 8 21], 89 [(SF₃)⁺, 50 96], 79 [(CFSO)⁺, 11 86], 67 [(SOF)⁺, 52 53], 65 [(C₄HO)⁺, 11 94]

Anal Calcd for $C_4H_4F_{10}O_3S_2$ C, 13 56, H, 1 13, F, 53 67, S, 18 08 Found C, 13 73, H, 1 20, F, 53 2, S, 18 22%

Preparation of CH2(OCF2CF2SO2F)2

Using the same procedure previously described, 2 5 g (19 8 mmol) of dried silver fluoride, 5 0 mL of diglyme, 4 3 g (23 8 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$, and 2 6 g (9 7 mmol) of dilodomethane were added. The reaction mixture was heated at $37 \approx 38$ °C for 24 h. The AgI precipitate was removed and the solution was poured into 20 mL of water. The oil layer isolated was diluted with 20 mL of diethyl ether, then washed twice with water and dried over MgSO₄, removal of the diethyl ether gave 2 9 g of crude product. Distillation gave 2 3 g of product (57 6% yield), b p 92-95 °C/20-25 mm

The infrared spectrum had the following bands (cm^{-1}) 3022 (vw), 1461 (s), 1329 (s), 1244 (s), 1201 (s), 1138 (s), 1056 (m), 1008 (s), 953 (m), 812 (s), 761 (m), 654 (m), 607 (s)

In the (CI)⁺ mass spectrum, no molecular ion was found Other fragment ions were observed at 213 [(C₃H₂O₃F₅S)⁺, 100 0], 149 [(C₅F₃O₂)⁺, 91 95], 133 [(CF₂SO₂F)⁺, 4 67], 131 [(C₅HO₂F₂)⁺, 17 63], 127 [(C₃H₂F₃O₂)⁺, 64 31], 119 [(C₃FO₂S)⁺, 46 29], 100 [(C₂F₄)⁺, 32 61], 99 [(C₄FO₂)⁺, 83 86], 97 [(C₂F₃O)⁺, 67 86], 83 [(SO₂F)⁺, 2 57], 79 [(C₂HF₂O)⁺, 26 37], 69 [(C₃HO₂)⁺, 14 62], 67 [(SOF)⁺, 91 46], 57 [(C₂HO₂)⁺, 8 64], 51 [(SF)⁺, 15 60]

Anal Calcd for C₅H₂F₁₀O₆S₂ C, 14 56, H, 0 49, F, 46 1, S, 15 53 Found C, 14 78, H, 0 54, F, 46 4, S, 15 56%

Preparation of (CH2OCF2CF2SO2F)2 and BrCH2CH2OCF2CF2SO2F

Into the same reaction vessel previously described, 3 3 g (26 2 mmol) of dried silver fluoride, 10 0 mL of diglyme, 5 2 g (28 8 mmol)

of $CF_2CF_2OSO_2$, 3 2 g (17 0 mmol) of 1,2-dibromoethane were added. The reaction mixture was heated at 35 \approx 37 C for 26 h. AgBr was removed and the filtrate was decanted into 20 mL water. The oily layer which formed was isolated, washed three times with water and dried over P_4O_{10} . Distillation gave 3 0 g (9 8 mmol) of $BrCH_2CH_2OCF_2CF_2SO_2F$, (57 5% yield), b p $74\approx$ 77 C/25 mm and 1 4 g (3 3 mmol) of $(CH_2OCF_2CF_2SO_2F)_2$ (19 4% yield), b p 106-107 °C/25 mm

The infrared spectrum of $BrCH_2CH_2OCF_2CF_2SO_2F$ had the following bands (cm^{-1}) 2973 (w), 2910 (vw), 1456 (s), 1403 (m), 1338 (s), 1298 (m), 1239 (s), 1206 (s), 1147 (s), 1121 (s), 1068 (m), 1028 (m), 1002 (s), 936 (m), 805 (vs), 654 (s), 608 (s), 581 (m), 542 (m)

In the mass spectrum of BrCH₂CH₂OCF₂CF₂SO₂F, no molecular ion was observed Other main fragments were found at 227

[(CH₂CH₂OCF₂CF₂SO₂F)⁺, 0 55], 226 [(CH₂=CHOCF₂CF₂SO₂F)⁺, 0 60], 225

[(⁸¹BrCH₂CH₂OCF₂CF₂)⁺, 3 57], 223 [(⁷⁹BrCH₂CH₂OCF₂CF₂)⁺, 4 94], 163

[(C₅HF₂O₂S)⁺, 1 69], 143 [(C₄H₃F₄O)⁺, 0 81], 133 [(CF₂SO₂F)⁺, 0 59],

121 [(C₃H₂FO₂S)⁺, 0 62], 119 [(C₃FO₂S)⁺, 2 07], 111 [(C₃H₂F₃O)⁺,

1 14], 109 [(⁸¹BrCH₂CH₂)⁺, 98 69], 108 [(⁸¹BrCH=CH₂)⁺, 16 32], 107

[(⁷⁹BrCH₂CH₂)⁺, 100 0], 105 [(⁷⁹BrCH=CH)⁺, 15 79], 100 [(C₂F₄)⁺,

3 46], 99 [(C₄FO₂ or C₄H₃OS)⁺, 3 51], 97 [(C₂F₃O)⁺, 5,28], 95

[(CFSO₂)⁺, 1 88], 93 [(C₃H₃F₂O)⁺, 2 75], 83 [(SO₂F)⁺, 1 98], 79

[(C₂HF₂O)⁺, 4 97], 67 [(SOF)⁺, 18 66], 65 [(C₄HO)⁺, 11 80], 55

[(C₃H₃O)⁺, 14 41], 51 [(SF)⁺, 5 75]

Anal Calcd for C₄H₄BrF₅O₃S C, 15 64, H, 1 30, F, 30 90, S, 10 42, Br, 26 06 Found C, 15 73, H, 1 35, F, 31 1, S, 10 61, Br, 25 88%

The infrared spectrum of $(CH_2OCF_2CF_2SO_2F)_2$ had the following bands (cm^{-1}) 2979 (w), 1458 (s), 1395 (m), 1337 (s), 1243 (s), 1208 (s), 1114 (s), 1123 (s), 1060 (m), 1029 (m), 987 (s), 815 (s), 794 (s), 658 (s), 611 (s)

In the (CI)⁺ mass spectrum, no molecular ion was found Other main fragment ions were observed at 407 [(M-F)⁺, 0 38], 227
[(CH₂CH₂OCF₂CF₂SO₂F)⁺, 100 00], 226 [(CH₂=CHOCF₂CF₂SO₂F)⁺, 4 46], 213
[(CH₂OCF₂CF₂SO₂F)⁺, 5 80], 207 [(C₄H₃F₄O₃S)⁺, 10 73], 183
[(CF₂CF₂SO₂F)⁺, 8 83], 164 [(C₅H₂F₂O₂S)⁺, 4 40], 163 [(C₅HF₂O₂S)⁺, 9 77], 149 [(C₅F₃O₂)⁺, 8 70], 143 [(C₄H₃F₄O)⁺, 9 94], 141
[(C₄H₄F₃O₂), 32 30], 133 [(CF₂SO₂F)⁺, 3 87], 127 [(C₅H₃O₂S)⁺, 6 02], 121 [(C₃H₂FO₂S)⁺, 0 90], 119 [(C₃FO₂S)⁺, 41 22], 111 [(CF₂=CFOCH₂)⁺, 8 09], 100 [(C₂F₄)⁺, 22 62], 99 [(C₄FO₂)⁺, 14 55], 97 [(C₂F₃O)⁺, 26 58], 95 [(CFSO₂)⁺, 12 14], 93 [(C₃H₃F₂O)⁺, 11 04], 79 [(C₂HF₂O)⁺, 21 55], 69 [(C₃O₂H)⁺, 12 37], 67 [(SOF)⁺, 76 75], 65 [(C₄OH)⁺, 39 17], 57 [(C₂HO₂)⁺, 3 88], 56 [(C₃H₄O)⁺, 3 72], 55 [(C₃H₃O)⁺, 9 64], 51 [(SF))⁺, 20 83]

Anal Calcd for $C_6H_4F_{10}O_6S_2$ C, 16 90, H, 0 94, F, 44 60, S, 15 02 Found C, 16 97, H, 0 99, F, 44 4, S, 15 12%

Preparation of CH3CH2CH2OCF2CF2SO2F

To the reaction vessel previously described, 2,6 g (19 5 mmol) of dried cesium fluoride, 5 0 mL of diglyme, 4 0 g (22 2 mmol) of $\overline{\text{CF}_2\text{CF}_2\text{OS}o_2}$, and 2 7 g (22 0 mmol) of $\overline{\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}}$ were added respectively. The reaction mixture was heated at 100 °C for 26 h. The contents were poured into 20 mL water, the oily layer was

isolated, washed twice with water and dried over P₄O₁₀. Distillation gave 1.3 g CH₃CH₂CH₂Br and 1.2 g (5.0 mmol) CH₃CH₂CH₂OCF₂CF₂OSO₂F (25.4% yield); b.p. 112-114 °C.

The infrared spectrum had the following bands (cm^{-1}) : 2973 (m), 2945 (w), 1455 (s), 1335 (s), 1244 (s), 1202 (s), 1138 (s), 1110 (s), 991 (s), 822 (m), 787 (s), 653 (m), 611 (s).

In the (CI)⁺ mass spectrum, no molecular ion was found. Other main fragment ions were observed at: 227 [(M-CH₃)⁺, 6.29], 163 [(C₅HF₂O₂S)⁺, 5.93], 158 [(C₅H₆F₄O)⁺, 29.93], 149 [(C₄H₂FO₃S)⁺, 2.90], 133 [(CF₂SO₂F)⁺, 0.98], 121 [(C₃H₂FO₂S), 0.92], 119 [(C₃FO₂S)⁺, 12.42], 100 [(C₂F₄)⁺, 100.00], 99 [(C₄H₃OS)⁺, 26.17], 97 [(C₂F₃O)⁺, 37.22], 95 [(CFSO₂)⁺, 2.75], 93 [(C₃H₃F₂O)⁺, 9.73], 91 [(C₃HF₂O)⁺, 3.62], 79 [(C₂HF₂O)⁺, 52.15], 69 [(C₄H₅O)⁺, 19.25], 67 [(SOF)⁺, 85.74], 65 [(C₄HO)⁺, 53.23], 61 [(C₂H₂FO)⁺, 77.71], 59 [(C₂FO)⁺, 28.11], 58 [(C₃H₆O)⁺, 72.67], 57 [(C₃H₅O)⁺, 35.50], 56 [(C₃H₄O)⁺, 9.92], 55 [(C₃H₃O)⁺, 21.04], 51 [(SF)⁺, 20.81].

Anal. Calcd. for C₅H₇F₅O₃S: C, 24.79; H, 2.89; F, 39.26; S, 13.22. Found: C, 24.94; H, 3.03; F, 39.10; S, 13.34%.

Preparation of CH2=CHC(0)OCF2CF2SO2F

Into a similar vessel previously described were added 3.43 g (59 mmol) of dried KF, 15.0 mL of diglyme, 0.0540 g of hydroquinone and 0.049 g of copper powder. The sultone, $\overline{\text{CF}_2\text{CF}_2\text{OSO}_2}$ (13.07 g), was vacuum transferred into the reactor at -196 °C; at room temperature a clear solution of $\text{KOCF}_2\text{CF}_2\text{SO}_2\text{F}$ was formed. The reaction was cooled to -196 °C and 6.7 g (74.3 mmol) of acrylyl chloride was added. A white

precipitate was formed while the reaction mixture was stirred at 40-50 °C for 4 5 h. The mixture was poured into ice water, shaken and the oily layer which formed was isolated, dried over Na_2SO_4 and distilled to give 1 98 g of $CH_2=CHC(0)OCF_2CF_2SO_2F$ in 13 2% yield, b p 65 °C/103 mm

The infrared spectrum had the following bands (cm^{-1}) 1799 (vs), 1631 (w), 1454 (vs), 1413 (m), 1321 (m), 1243 (s), 1208 (s), 1145 (s), 1089 (s), 1061 (s), 1011 (m), 991 (s), 801 (vs), 632 (w), 611 (s)

Decomposition of CH2=CHC(0)OCF2CF2SO2F

Samples (0 5 g) of $CH_2=CHC(0)OCF_2CF_2SO_2F$ were added into three nmr tubes. The first sample was heated at 55 \approx 70 °C for 0 5 h, the second sample at 60 °C for 1 h, and the third sample at 90 °C for 1 h. The ^{19}F nmr spectra of these samples showed that for sample one, 67% of $CH_2=CHC(0)OCF_2CF_2SO_2F$ was transformed to $CH_2=CHCOF$ and $F(0)CCF_2SO_2F$, for sample 2, 73% and for sample 3, 100%

ACKNOWLEDGEMENTS

We wish to express our appreciation to the Gas Research Institute (5084-260-1085) and the U S Department of Energy, Grant No DE-FG21-88MC25142, for support of this work Dr G D Knerr at the University of Idaho obtained the mass spectra

REFERENCES

- 1 G A Olah, P S Iyer and P Surya, Synthesis, (1982) 513
- 2 C Bunyagld], H Plotrowksa and M H Aldridge, J Chem Eng
 Data, 26 (1981) 344
- J M Canich, M M Ludvig, G L Gard and J M Shreeve, Inorg Chem , 23 (1984) 4403

- 4 C G Krespan, J Fluorine Chem , 16 (1980) 966
- 5 G A Bargigia, G Caporiccio and M Pianca, J Fluorine Chem , 19 (1982) 403
- 6 Perfluoro Sulfonic Acid Group, Acta Chimica Sinica <u>37</u> (1979) 315
- 7 Isao Tarı and Darryl D MesMarteau, J Org Chem , 45 (1980) 1214
- R A DeMarco, D A Couch and J M Shreeve, J Org Chem, 37 (1972) 3332
- D C England, M A Dretrich and R V Linsey, J Am Chem Soc 82 (1960) 6181