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Abstract: A new stereoselective approach to substituted pyrro-
lidines and piperidines is described that involves Du Bois’ C–H
amination reaction, Boc-activation of a cyclic sulfamate group, and
base-promoted intramolecular cyclization. This methodology can
be utilized for the synthesis of tetrahydrofuran and tetrahydrothio-
phene derivatives.
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Developing new methodologies for the synthesis of het-
erocyclic compounds is of great importance in drug dis-
covery, material science, and natural product synthesis.1,2

Recently, we reported the total synthesis of kaitocepha-
lin,3 in which we devised a new methodology to construct
the highly substituted pyrrolidine core through a rhodium-
catalyzed C–H amination4,5 followed by an intramolecular
nucleophilic attack of a nitrogen atom on a sulfamate
group (Scheme 1). Since, to our knowledge, such an
approach to heterocyclic compounds has not been report-
ed,6,7 we became interested in probing the scope and lim-
itations of this particular pyrrolidine synthesis.

Scheme 1  The key pyrrolidine synthesis

To assess the feasibility of our pyrrolidine synthesis, we
first conducted experiments using cyclic N-Boc-sulfamate
7a as a substrate, which was prepared from 4 via 5 and 6a
according to Du Bois’ protocol (Scheme 2).4b Initially, the
cyclization was examined by using NaH (2 equiv) in

tetrahydrofuran (THF) according to the conditions em-
ployed for the synthesis of 3 (Table 1). In this case, the cy-
clized compound 8a was not observed on TLC even after
ten hours. 

Scheme 2  Preparation of cyclic N-Boc-sulfamate 7a

However, when water was added to the mixture, the cycli-
zation occurred instantaneously to give 8a in 59% yield
(Table 1, entry 1). Interestingly, after treatment of 7a with
NaH at 0 °C for 5 min, addition of water (10 equiv) was
found to effectively promote the cyclization to afford 8a
in good yield (entry 2). When the reaction was carried out
in DMF, 8a was obtained in high yield8 and the use of a
large excess of water gave comparable results (entries 3
and 4). It turned out that performing the reaction with 3 M
NaOH (2 equiv) in place of NaH and H2O also brought
about the cyclization effectively, although the reaction be-
came sluggish (entry 5). However, when a large excess of
aqueous NaOH was used, the yield of 8a decreased mark-
edly (entry 6). MeOH could also be employed in place of
water (entry 7), although the use of NaOMe diminished
the yield of 8a (entries 7 and 8). It was also found that no
reaction occurred by using K2CO3 in MeOH at room tem-
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perature (entry 9). Although the role of the water is not
clear, hydrogen bonding interactions are possibly one of
the main factors that influence the reactivity of the pro-
cess.9 The NOESY spectrum of 9 prepared from 8a con-
firmed the stereostructure of 8a (Scheme 3), thus proving
that the cyclization took place in an SN2 fashion with com-
plete inversion of the stereochemistry. 

We next explored the effect of various protecting groups
of the primary amine using the optimized NaH and H2O
conditions (Table 2). As a result, in addition to Cbz, Moc,
and Alloc groups, even the sterically demanding Boc
group was found to be suitable for this cyclization (entries

1–4). Similarly, benzamide 7e and acetamide 7f afforded
the corresponding cyclized products 8e and 8f, respective-
ly, in comparable yields (entries 5 and 6).

Based on the optimized reaction conditions, we then eval-
uated the substrate scope (Table 3). First, five substituted
Boc-protected sulfamates 7g–k were prepared from 6g–k
and subjected to cyclization (Method A). It should be
stressed that pyrroidines 8g–j as well as piperidine 8k
could be synthesized in moderate overall yields regardless
of the substitution pattern, even in the case where a qua-
ternary center is present near the reaction site (entries 2–
5). Next, step-economical one-pot preparation10 of 8a and
8f–k from 6a and 6f–k was also investigated
(Method B).11 Thus, after confirming the formation of 7a
and 7g–k on TLC, their cyclizations were conducted by
adding NaH (3 equiv) followed by water (10 equiv). We
were pleased to find that this one-pot procedure worked
effectively and, except for 8i, afforded the corresponding

Table 1  Base-Promoted Cyclization of 7a

Entry Conditions Yield of 8a (%)a

1 NaH (2 equiv), THF, r.t., 10 h 59b

2 NaH (2 equiv), THF, 0 °C, 5 min, add H2O (10 equiv), then r.t., 30 min 78

3 NaH (2 equiv), DMF, 0 °C, 5 min, add H2O (10 equiv), then r.t., 5 min 99

4 NaH (2 equiv), DMF, 0 °C, 5 min, add H2O (excess),c then r.t., 5 min 92

5 3 M NaOH (2 equiv), DMF, r.t., 2 h 94

6 3 M NaOH (20 equiv), DMF, r.t., 2 h 74

7 NaH (2 equiv), DMF, 0 °C, 5 min, add MeOH (10 equiv), then r.t., 5 min 84

8 NaOMe (2 equiv), MeOH (20 equiv), DMF, r.t., 10 h 55

9 K2CO3 (2 equiv), MeOH, r.t., 5 h no reaction

a Isolated yield. 
b Before aqueous workup, cyclized compound 8a was not observed on TLC. 
c H2O (1 mL) was used for 7a (0.21 mmol).

Ph

O

NHCbz

S
BocN

O O

7a

conditions

N
Cbz

BocHN

Ph

8a

Table 2  Base-Promoted Cyclization of 7a–f

Entry Sulfamate X Pyrrolidine Yield of 8 (%)a

1 7a Cbz 8a 99

2 7b Moc 8b 89

3 7c Alloc 8c 77

4 7d Boc 8d 75

5 7e Bz 8e 71

6 7f Ac 8f 80

a Isolated yield.
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cyclized products in good yields. In the case of 6i, butoxy-
carbonylation did not proceed selectively on the sulfamate
nitrogen and the reaction produced several Boc-protected
products.

We also examined the synthesis of tetrahydrofuran 12 and
tetrahydrothiophene 13 from 10 and 11, based on the

methodology detailed above (Scheme 4). As a result, a
one-pot procedure involving butoxycarbonylation of a
sulfamate and methanolytic removal of the acetyl group
turned out to be operative in these cases, and the cyclized
compounds 12 and 13, respectively, were obtained in
good yields. The stereochemistries of 12 and 13 were un-

Table 3 Synthesis of 8a,g–k

Entry Sulfamate Yield of 7 (%)a Product Yield of 8 (%)a

1

7a

80

8a

99b (81)c

2

7g

70

8g

84b (80)c

3

7h

80

8h

79b (77)c

4

7i

39

8i

74b (complex mixture)c

5

7j

65

8j

88b (77)c

6

7k

72

8k

85b (80)c

a Isolated yield.
b Method A: (1) Boc2O, Et3N-DMAP, CH2Cl2; (2) NaH (2 equiv), DMF, 0 °C, 5 min, then H2O (10 equiv), r.t., 5 min.
c Method B (one-pot): Boc2O, Et3N-DMAP, DMF, then NaH (3 equiv), 0 °C, 5 min, then H2O (10 equiv), r.t., 5 min.
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ambiguously determined by X-ray crystallographic analy-
sis of their derivatives 1412 and 15.13

In conclusion, the present work provides a new methodol-
ogy for the stereoselective construction of substituted
heterocycles such as pyrrolidines, piperidines, tetrahydro-
furans, and tetrahydrothiophenes utilizing rhodium-cata-
lyzed C–H amination.
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