CO₂Me

3 (major)

The Reaction of Methyl (E)-4,5-Epoxypent-2-enoate with Arylcopper: the Unique Role of Boron Trifluoride in determining Regioselectivity

Shinji Nagumo, Shigeyuki Irie and Hiroyuki Akita*

School of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274, Japan

Excess BF₃ causes regioselectivity reversion in the reaction of methyl 4,5-epoxypent-2-enoate 1 with Ph₂CuLi; this is rationalised by a two step conversion via methyl 4-bromo-5-hydroxypent-2-enoate 5.

The widely studied nucleophilic opening of epoxides or vinyloxiranes by organocopper reagents is an important methods for the formation of the carbon-carbon bond.¹ Recently the effect of Lewis acids in the epoxy ring opening reaction has attracted much attention.² As epoxides are less reactive towards conventional organocopper reagents, the reaction requires a reagent excess per epoxide to proceed at low temperatures. This problem has been solved by using copper reagents with the Lewis acid.³ Vinyloxiranes usually react with organocopper reagents without the presence of a Lewis acid, but the effect of the Lewis acid on the regioselectivity is interesting. Nucleophilic opening of vinyloxiranes by copper reagents gives the products of either direct (S_N2) or allylic attack (S_N2'), depending on the substrate substituents and the type of organocopper reagent. Simple acyclic vinyloxiranes preferentially undergo an S_N2' addition to form an allylic alcohol.⁴ This also occurs using BF₃.³ Ibuka et al. also reported that the regiochemistry of the reaction of methyl 4,5-epoxyhex-2-enoate, vinyloxirane linked to an ester group, with methylcopper reagents was directed by the reagents type.⁵ The softer copper reagents, e.g. MeCuCNLi and Me₂CuCNLi₂, react with the vinyloxirane via an $S_N 2'$ mechanism and the harder copper reagents, e.g. MeCu and Me₂CuLi, react via an S_N2 mechanism. The regioselectivities do not alter with the addition of BF3 in each case.⁵ Here we report that BF3 plays an important role in the regioselectivity of the reaction between methyl 4,5-epoxypent-2-enoate 1 and arylcopper reagents.

In the course of our synthetic studies on bisabolane sesquiterpenes,⁶ nucleophilic opening of compound 1 by arylcopper reagents aroused our interest. We thus investigated the reaction of 1^+ with four different phenylcopper reagents (2 equiv.) at -78 °C, Table 1, entries 1–4. In all the cases, γ substituted 2 and α -substituted 3 products were formed as a mixture in low yields. All the reactions preferentially proceeded via an S_N2 mechanism to afford compound 2 as the main product. High regioselectivity was especially observed using PhCu (entry 1) and Ph₂CuLi (entry 2) reagents.

Yields were next enhanced by the addition of BF₃ (Table 1, entries 5-8). The reactivity and regioselectivity when PhCuCNLi (entry 7) and Ph2CuCNLi2 (entry 8) were used were

not influenced by the addition of BF₃. The BF₃ caused increased yields and reverse regioselectivity when PhCu (entry 5) and Ph₂CuLi (entry 6) were used. Bromohydrin 4 was also obtained in these cases. It was considered that 4 was formed by BF₃ promoted nucleophilic opening of 1 by LiBr, derived from PhLi and CuBr in situ. This was proved by the following (Scheme 1). Treatment of compound 1 with LiBr in the presence of BF_3 ·Et₂O yielded 4 (29%) and another bromohydrin 5 (46%), whilst the epoxy ring was not opened without BF3. The fact that 5 was not obtained in entries 5-6 aroused our interest. It can be envisioned that nucleophilic substitution of 5 by the phenylcopper reagent proceeds at low temperatures whilst the reaction of 4 does not. To clarify this point the reactions of 4 or 5 with Ph₂CuLi in the presence of BF₃ were tested according to a general method. As was expected, 5 was converted to a 1:9 mixture of compounds 2 and 3 in 81% yield, while no reaction was observed in the case of 4.

This finding suggests a mechanism as shown in Scheme 2 for the reversion of regioselectivity in entries 5-6. Basically, 1 tends to react with all phenylcopper reagents via an S_N2

Scheme 2

CO₂Me

5

HO

Table 1 Reactions of 1 with various ph $\bigcirc CO_2Me \frac{Ph}{\sqrt{-1}}$	envlcopper reagents -cuprate -78 °C HO	`CO₂Me + HO	Ph CO ₂ Me	OH + Br CO2Me
1	2		3	4
Entry	Cuprate ^a	Yield of 2 + 3 (%)	$2:3^{d}$	Yield of 4 (%)
1	PhCu ^b	27	89:11	0
2	Ph ₂ CuLi ^b	40	93:7	0
3	PhCuCNLic	35	68:32	0
4	Ph ₂ CuCNLi ₂ ^c	48	68:32	0
5	PhCu-BF ₃	54	18:82	22
6	Ph ₂ CuLi-BF ₃	56	24:76	24
7	PhCuCNLi-BF3	40	71:29	0
8	Ph2CuCNLi2-BF3	41	59:41	0

^a All copper reagents were utilised without isolation. All reactions were carried out in Et₂O at -78 °C under argon and quenched after 30 min. ^b PhCu and Ph₂CuLi were prepared from CuBr Me₂S and PhLi. PhCuCNLi and Ph₂CuCNLi₂ were prepared from CuCN and PhLi. The ratio 2:3 was estimated by comparing the corresponding proton peaks in the ¹H NMR spectrum.

Table 2 Reactions of 1 with various arylcopper reagents

1 Ar ₂	-78 °C	Ar HO Ta-d Ar HO HO HO	Ar 8a-d	CO ₂ Me + Ar	H CO ₂ Me 9a–d	+ 4 e	
Entry	Ar		Yield of 7a–d + 8 a	a-d (%) 7a-d:8a-d	Yield of 9a-d (%)	Yield of 4 (%)	
1	/=<	$\mathbf{6a} \ \mathbf{R}^1 = \mathbf{Me}$	47	21:79	0	26	
2		6b $R^{\dagger} = OMe$	52	17:83	0	38	
3		6c \mathbf{R}^2 = Me, \mathbf{R}^3 = OMe	98	100:0	0	0	
 4	 R ³	$\mathbf{6d} \ \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{OMe}$	74	95:5	18	0	

mechanism, but BF₃ promoted addition of LiBr to 1 initially forms two bromides 4 and 5 (entries 5–6). *In situ*, the generated 5 reacts with phenylcopper reagents mostly at the α -position. Consequently, the reaction of 1 with PhCu or Ph₂CuLi seemingly proceeds *via* an S_N2' mechanism in the presence of BF₃. In other cases, addition of LiBr did not occur due to the absence of BF₃ (entries 1–4) or LiBr (entries 7–8). Therefore, compound 1 reacts with copper reagents directly.

The reaction of compound 1 with four different aryl Gilman reagents **6a–d** in the presence of BF₃ was carried out (Table 2).‡ The reaction with **6a–b** showed a similar result to that obtained using Ph₂CuLi in the presence of BF₃. The α -substituted products **8a–b** were mainly obtained as well as compound 4. The reaction using the arylcopper reagents with two substituents at the *o*-position **6c–d** gave γ -substituted products **7c–d** preferentially and did not yield 4. Furthermore, the δ -substituted **9d** was also obtained as a minor product (entry 4). The formation of **9d** is attributable to the direct attack of **1** at the δ -position. This was suggested by the fact that the substitution of **4** with **6d** did not proceed.

Two hypothetical paths may be envisioned concerning the S_N2 selectivities for entries 3–4. (*a*) The copper reagents are much more reactive than LiBr and react directly with 1 *via* an S_N2 mechanism to yield γ -substituted products. (*b*) Nucleophilic opening by LiBr with the assistance of BF₃ forms 5 as an intermediate. Then further substitution of 5 with the copper reagents proceeds *via* an S_N2 mechanism to yield γ -substituted products. In each case, compound 5 was not formed as an intermediate because the concomitant 4 was not obtained. Consequently, their regioselectivities can be explained by path

(*a*). We cannot, however, explain the reason why the arylcopper reagents possessing two substituents at the *o*-position are much more reactive than other arylcopper reagents.

This work was supported by a Grant-in-Aid for Scientific Research (No. 07772114) from the Ministry of Education, Science and Culture of Japan to S. N.

Received, 12th May 1995; Com. 5/03024B

Footnotes

- † Compound 1 was synthesised by a known method, see reference 6.
- ‡ Satisfactory analytical data were obtained for all new compounds.

References

- B. H. Lipshutz and S. Sengupta, *Organic reactions*, vol. 41, p. 135, Wiley, New York, 1992.
- 2 Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1986, 25, 947.
- 3 A. Alexakis, D. Jachiet and J. F. Normant, *Tetrahedron*, 1986, 42, 5607.
- 4 R. J. Anderson, J. Am. Chem. Soc., 1970, 92, 4978.
- 5 T. Ibuka, M. Tanaka, H. Nemoto and Y. Yamamoto, *Tetrahedron*, 1989, **45**, 435.
- M. Ono, Y. Yamamoto, R. Todoriki and H. Akita, *Heterocycles*, 1994, 37, 181; M. Ono, R. Todoriki, Y. Yamamoto and H. Akita, *Chem. Pharm.* Bull., 1994, 42, 1590.