Biosynthesis of porphyrins and related macrocycles. Part 44.^{1,2} Synthetic and stereochemical studies on the proposed spiro intermediate for biosynthesis of the natural porphyrins

Mark A. Cassidy, Nigel Crockett, Finian J. Leeper and Alan R. Battersby* University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

A route is devised for synthesis of both enantiomers of the spiro lactam 4. The enzyme uroporphyrinogen III synthase (cosynthetase), which converts hydroxymethylbilane 1 into uroporphyrinogen III 3, is competitively inhibited more than twenty times more strongly by one enantiomer of 4 than by the other. This finding adds further strong support to the view that cosynthetase acts by generating the spiro pyrrolenine 2 as an intermediate.

Haem, chlorophyll and vitamin B_{12} are all biosynthesised from the same parent macrocycle, uroporphyrinogen III 3, shortened to uro'gen III. The formation of this macrocycle from the openchain hydroxymethylbilane 1 is catalysed by the enzyme cosynthetase (systematically uroporphyrinogen III synthase, E.C. 4.2.1.75). Comparison of structures 1 and 3 shows why this process has attracted such strong mechanistic interest; intriguingly, ring D of uro'gen III 3 has been inverted relative to its position in the bilane 1. Both the building of the hydroxymethylbilane 1 and the ring-closure catalysed by cosynthetase have been extensively studied and this work has been reviewed.³ The key finding relevant to the present paper was that the inversion of ring D occurs by an intramolecular mechanism⁴ which only affects ring D.⁵

These results, based on a series of ¹³C-labelling experiments as indicated by the black spots and triangles in Scheme 1,^{4,5}

 $A = CH_2CO_2H$, $P = CH_2CH_2CO_2H$

Scheme 1 Proposed mechanism for the formation of uro'gen III by cosynthetase

eliminated most of the 20 or so speculative mechanisms proposed for the ring D inversion and left just two. In one, ring D of the hydroxymethylbilane 1 is detached by cleavage of the bond between C-15 and C-16 but is held in the active site of the enzyme. Ring D is then inverted before rejoining to C-15 and the hydroxymethyl carbon to give 3; there is no experimental support for this mechanism. The other, illustrated in Scheme 1, is fundamentally different in that the bond between the hydroxymethyl carbon and C-16 is suggested to be made first, to form the spiro pyrrolenine† 2. This pyrrolenine could then undergo fragmentation-recombination as in Scheme 1 to form uro'gen III 3 and the chemistry involved has been shown to be both feasible and facile.³ This second mechanism is based on a suggestion by Mathewson and Corwin⁶ but it is drawn in a simplified form for reasons that have been outlined earlier.⁷

Strong support for the second mechanism has been provided by the synthesis⁷ of the spiro lactam 4 which strongly inhibited

cosynthetase from carrying out its normal conversion of hydroxymethylbilane 1 into uro'gen III 3; the inhibition was competitive.⁷ In addition, other synthetic macrocycles, lacking one or other parts of the five-membered lactam system, were not inhibitory.⁷ This finding was very significant in that the inhibitory spiro lactam 4 is different in structure from both the substrate 1 for cosynthetase and the product 3 from the enzyme; the inhibitor only resembles the putative spiro pyrrolenine 2. It should also be emphasised that the two molecules, 2 and 4, only differ around the nitrogen atom of the five-membered spiro ring, otherwise they are identical.

The spiro lactam 4 used for the foregoing studies was racemic, but only one enantiomer can accurately match the putative spiro pyrrolenine 2 held in the active site of cosynthetase. Our aim, therefore, was to synthesise both enantiomers of the spiro lactam 4 for testing as inhibitors of cosynthetase. Of the four substituents carried by the chiral centre of the lactam 4, two are extremely similar so a difficult resolution was expected, best carried out early rather than late in the synthesis.

[†] IUPAC name: 2H-pyrrole.

Results and discussion

Trial experiments on the model system 7

Our initial studies were made on the acid 5, which had been synthesised earlier for elaboration to the spiro lactam 4.⁷ Salts were prepared from 5 using brucine, cinchonine, cinchonidine, quinine and quinidine. Systematic attempts at crystallisation using seven different solvents gave few crystals and no resolution. A totally different approach was needed and we envisaged synthesising the acid 6 so that a variety of chiral auxiliaries could be covalently attached to the carboxy group close to the chiral centre. However, as acid 6 contains a vinylogous malonic acid residue there was concern about its stability. This was checked by synthesising the simpler lactam 7.

 $A^{Me} = CH_2CO_2Me, P^{Me} = CH_2CH_2CO_2Me$

The differentially protected pyrrole 9 was needed as starting material and this was initially prepared by having 2trimethylsilylethanol present during the thallium-catalysed rearrangement⁸ of the ketone 8 (Scheme 2). The aldehyde 10 was a by-product (a reaction previously observed in a related case⁹) and the yield of 9 was too poor for this route to be used for the synthesis of 6; however, it yielded enough material for the preparation of the model 7. Scheme 2 also shows the synthetic route from 9 to 7 via 11, 12 and 14, which was mainly based on similar earlier work,7 though the iodination step required new conditions (see Experimental section). Removal of the trimethylsilylethyl group from 14 gave the acid 7 which could be handled without decomposition. The synthesis of the dipyrrolic lactam 6 could, therefore, be confidently undertaken but first the attachment of chiral auxiliaries was tested on the model 7. The esters 15 and 16 were prepared from (R)-1phenylethanol and (1S)-(-)-endo-borneol, respectively, using N,N'-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). The former ester 15 was shown by NMR to contain two diastereoisomers in the ratio 1:1.25 and the ratio for the latter one 16 was 1:1.1. In neither case could the diastereoisomers be separated by TLC or HPLC. Attention therefore turned to the real system 6.

Synthesis of the enantiomeric lactams 40a and 40b

The first requirement was to develop a practical alternative synthesis of the starting pyrrole 9. This was achieved in good yield (16% over seven steps) on a large scale by the sequence shown in Scheme 3, based mainly on chemistry developed earlier^{4,10} for similar pyrroles. The key step is reductive alkylation^{11,12} of the 4-iodopyrrole 22 using glyoxylic acid as the source of the acetate side-chain. Trial experiments involving some of the later chemistry required for construction of the required lactam 33 then showed that the benzyl ester of 9 caused problems. It was therefore conveniently changed at the stage of

Scheme 2 Reagents: i, $Tl(NO_3)_3$ ·3H₂O, HNO₃, Me₃SiCH₂CH₂OH; ii, H₂/Pd; iii, KI₃, NaHCO₃; iv, SnCl₄ then AgOAc, TsOH, H₂O; v, TBAF; vi, DCC, DMAP, ROH

the next intermediate 24 to the *tert*-butyl ester 26 by the steps shown in Scheme 4. This product was then coupled with the α -free pyrrole 29, prepared from the available *tert*-butyl ester 27, to yield the dipyrromethane 30. The lactam 33 was synthesised

Scheme 3 Reagents: i, PhCH₂OH, heat; ii, NaNO₂, AcOH; iii, MeCOCH₂CO₂Bu⁴, Zn, AcOH; iv, CF₃CO₂H; v, KI₃, NaHCO₃; vi, OHCCO₂H, HI, H₃PO₂, Ac₂O; vii, (COCl)₂ then Me₃SiCH₂CH₂OH; viii, SO₂Cl₂ then NaOAc, AcOH

Scheme 4 Reagents: i, H2/Pd; ii, Bu'OH, DCC; iii, SnCl4; iv, (COCl)2 then Br₃CCH₂OH; v, TsOH, H₂O; vi, KI₃, NaHCO₃; vii, SnCl₄ then AgOAc, TsOH, H₂O; viii, TBAF; ix, Me₂C=C(Cl)NMe₂ then the relevant alcohol; x, NaOMe, MeOH

by the steps $30 \longrightarrow 31 \longrightarrow 32 \longrightarrow 33$ essentially as earlier for similar systems,7 Scheme 4. Removal of the trimethylsilylethyl group by fluoride then afforded the acid 6 ready for esterification with a range of chiral alcohols.

The esters were prepared by reacting the acid 6 with 1-chloro-1-dimethylamino-2-methylpropene¹³ to give the corresponding acid chloride, which smoothly acylated the various chiral alcohols. Other standard methods for these esterifications failed or gave unacceptable yields. The chosen alcohols were (R)-1phenylethanol, (1S)-(-)-endo-borneol (as 41), (R)-(-)-pantolactone[‡] (as 42), 2,3-O-isopropylidine-D-(+)-ribonic acid γ lactone¹⁴ (as 43) and the commercially available 3,4-Obenzylidene-D-(+)-ribonic acid δ -lactone (as 44). In no case could the diastereoisomeric esters 34 to 38 so formed be separated by TLC, but HPLC gave encouraging results for the esters 36 and 38, derived from pantolactone and the ribonic acid δ -lactone, respectively. However, there were impurities in the former ester which were difficult to separate from the required materials, so the latter ester was selected for further study. HPLC

Fig. 1 HPLC trace for the separation of the diastereoisomers 38a (peak X) and 38b (peak Y) together with 39a (peak P) and 39b (peak Q)

analysis of this ribonolactone ester 38 initially showed three pairs of peaks, the four peaks that appear in Fig. 1 together with another pair, smaller than P and Q, having a longer retention time than X and Y. Mass spectrometry and NMR spectroscopy indicated that this slower running pair represented the separated diastereoisomers of material in which the CH₂CBr₃ group had been reduced to CH₂CHBr₂. Consideration of the earlier chemistry suggested that this reduction was probably due to attack by iodide ion on a bromine atom of the CBr3 group during the preparation of the dipyrromethane 32; a CBr₃ group can act as a source of 'Br+'. Accordingly, the conditions for the iodination step $31 \longrightarrow 32$ were made as mild as possible and when this product was carried forward to the ester 38, the HPLC trace appeared as in Fig. 1, without the slowest running pair of peaks.

Similar analysis of the four remaining peaks in Fig. 1 indicated that peaks X and Y were the desired diastereoisomers 38a and 38b,§ respectively, whereas peaks P and Q were the corresponding diastereoisomers 39a and 39b, respectively, which had lost HBr from the tribromoethyl group at some stage during the synthetic transformations. Again efforts were made to avoid the production of the compounds in peaks P and O; presumably they are formed by some base-catalysed elimination of hydrogen bromide. Suffice it to say that the various modifications tried either had little effect or they somewhat reduced the yield of the desired compounds in peaks X and Y. Since these by-products were readily separated, the large scale separation was carried out on the mixture as seen in Fig. 1. This effective separation of the diastereoisomers was only possible with very low loading of the column, so automatic HPLC equipment for injection and collection was needed to provide sufficient material for the rest of the synthesis. Analytical HPLC and 400 MHz ¹H NMR proved that complete separation of the diastereoisomers had been achieved.

The first task was to confirm that the peaks X and Y in Fig. 1 in fact contained the desired diastereoisomers 38a and 38b. Certainly their ¹H NMR, ¹³C NMR and mass spectra

[‡] IUPAC name: (R)-3-hydroxy-4,4-dimethyltetrahydrofuran-2-one.

[§] The two configurations at the starred chiral centre of 40, Scheme 4, are not illustrated but are distinguished by a and b attached to the number. The same system with a and b is used for Scheme 5, where one configuration is illustrated but always the other separate enantiomer is being handled as well.

Fig. 2 Circular dichroism spectra of the enantiomers 40a derived from peak X (Fig. 1) and 40b derived from peak Y

supported that view. Rigorous proof was obtained by treating each diastereoisomer with sodium methoxide in methanol to effect transesterification with loss of the ribonic lactone residue. As had been planned, the benzyl and tribromoethyl esters did not undergo transesterification under the mild conditions used, because they are vinylogous urethanes and thus much less reactive. That the two products, **40a** and **40b**, were enantiomers was shown by their identical HPLC retention times and ¹H NMR and mass spectra; importantly, their circular dichroism (CD) spectra were mirror images with a common crossover point on the zero line (Fig. 2).

Synthesis of the enantiomeric spiro lactams 54a and 54b

The racemic form 40 of the foregoing final products 40a and 40b was the key intermediate for the earlier synthesis⁷ of the racemic spiro lactam 54a,b. Now that the pure enantiomers of this intermediate were in hand, each could be carried through the same remaining steps of the synthesis, $40 \longrightarrow 45 \longrightarrow 46 \longrightarrow 47 \longrightarrow 48 \longrightarrow 49 \longrightarrow 50 \longrightarrow 51 \longrightarrow 54$, shown in Scheme 5. These conversions were carried out as for the racemic series ⁷ and were successfully completed for both enantiomers, but there was one surprise, probably due to small differences in reaction conditions used by different workers. This appeared when the first enantiomer of the acid to be used 48b was decarboxylated by iodination and removal of the 50b). The major product was the $bis(\alpha$ -free pyrrole) 53b, not 50b. Evidently both decarboxylation and deformylation had occurred in the iodination step to yield the di-iodo derivative 52b, which on hydrogenation afforded the observed product 53b. Modification of the conditions for the iodination overcame this problem to allow the original steps via 50b (Scheme 5) to be used to build the spiro lactam 54b. In addition the $bis(\alpha$ -free) system 53b was successfully converted in modest yield into the final spiro lactam 54b by acid-catalysed condensation with formaldehyde. The sum of all this synthetic effort, starting from the two enantiomers of the dipyrrolic lactam 40a and 40b, afforded ample quantities of the enantiomeric spiro lactams 54a and 54b for the necessary enzymic experiments. The last ringclosure step, 51a or $b \longrightarrow 54a$ or b (Scheme 5) again yielded small amounts of the macrocyclic dimer 55, readily separable from the monomer, which had been fully characterised in the racemic series;⁷ these enantiomeric dimers are not further examined here.

Scheme 5 Reagents: i, Zn, AcOH; ii, CF_3CO_2H ; iii, $SnCl_4$; iv, H_2/Pd ; v, KI₃, NaHCO₃; vi, H_2/Pt ; vii, NaBH₄; viii, TsOH; ix, CH₂O, CF₃CO₂H; x, KOH, H₂O, MeOH

Fig. 3 Dixon plot for the inhibition of cosynthetase by the enantiomeric spiro lactams 4a and 4b. The horizontal line at 1/V = 1218 is at $1/V_{max}$ and the straight lines through the experimental points intersect it at $[I] = -K_i$.

Fig. 4 The two enantiomers of the spiro lactam 4

Table 1 Inhibition of cosynthetase by enantiomers of the spiro lactam

Compound	Inhibition constant K _i (or K _M)/ µmol dm ⁻³
Enantiomer 4a synthesised from peak X, Fig. 1	<i>K</i> _i 1.8
Racemic 4	K _i 2.5
Enantiomer 4b synthesised from peak Y, Fig. 1	K _i 38
Hydroxymethylbilane 1	К _м 37

Enzymic studies: inhibition of cosynthetase

The two enantiomers of the spiro lactam 54a and 54b were each treated with aqueous methanolic potassium hydroxide under conditions known to hydrolyse only the ester groups ⁷ to afford the enantiomeric octa-acids 4a and 4b. Cosynthetase isolated from *Euglena gracilis*,¹⁵ was used in standard assays of the enzyme's activity ¹⁵ for catalysing the conversion of hydroxymethylbilane 1 into uro'gen III 3. These assays were carried out as for the earlier ones in the racemic series ⁷ and were run in the presence of varying amounts of each enantiomer of the spiro lactam octa-acids 4a and 4b; kinetic runs using the racemic octa-acid⁷ 4 were also included to act as a standard. The K_M value for hydroxymethylbilane 1 was determined at the same time by standard assays ¹⁵ at a range of substrate concentrations in the absence of any inhibitor, the K_M value being determined from a Hanes plot.¹⁶

Dixon plots of the kinetic data from the experiments with the enantiomeric spiro lactams 4a and 4b are shown in Fig. 3, from which the inhibition constants K_i shown in Table 1 were derived. They show a striking difference in the effectiveness of the two enantiomers as inhibitors of cosynthetase, with the spiro lactam 4a derived from peak X in Fig. 1 being *ca.* 20 times more inhibitory than its enantiomer 4b derived from peak Y. Also, the K_i for the strongly inhibiting enantiomer is more than an order of magnitude lower than the K_M for the substrate (hydroxymethylbilane 1) of cosynthetase.

The fact that one of the two enantiomers of the spiro lactam 4 is a weak inhibitor, rather than having no effect at all, can be understood by setting the lactam ring of these enantiomers in the same orientation, see Fig. 4. This is reasonable since it is the chemistry around ring D of hydroxymethylbilane 1, corresponding to the pyrrolenine ring of the putative spiro intermediate 2, that lies at the core of the action of cosynthetase. The three pyrrole rings of the macrocycle will have the same conformation in the two systems and inspection of Fig. 4 shows the only difference between the two systems is that the acetate (A) and propionate (P) side-chains on each pyrrole ring are interchanged. It follows that, whereas the side-chains on the pyrrolic rings of the strongly inhibitory enantiomer presumably fit well into the enzymic active site, the same side-chains of the other enantiomer, though all acidic, are of slightly the wrong size (A for P and P for A). The observed weak inhibition by this enantiomer, rather than a complete lack of inhibition, fits the foregoing analysis.

These experiments with the two enantiomers of the spiro lactam, 4a and 4b, add further powerful support to the view that the conversion of hydroxymethylbilane 1 into uro'gen III 3, catalysed by cosynthetase, goes via the spiro pyrrolenine 2. In addition, determination of the absolute configuration of the strongly inhibiting enantiomer will allow the absolute configuration of the spiro pyrrolenine 2 to be deduced. The following paper¹⁷ describes the way in which that stereochemical problem has been solved.

Experimental

General directions

Most general directions are given in Part 34 of this series.¹⁸ In addition, CD spectra were recorded on Jasco J-40CS or J-600 spectrometers, with a 1 cm pathlength in strain-free cuvettes. HPLC was carried out on Spherisorb S5W silica columns or Spherisorb S5CN nitrile columns with a Waters 6000A pump connected to a Cecil CE272 detector. Solvents for HPLC were filtered through a 0.5 μ m sieve. Evaporation was carried out at *ca*. 15 mmHg on a Büchi rotatory evaporator and residual solvent was removed at high vacuum using an oil pump.

Methyl 2-benzyloxycarbonyl-5-methyl-4-(2-trimethylsilylethoxycarbonylmethyl)pyrrole-3-propionate 9 and methyl 2-benzyloxycarbonyl-5-formyl-4-(2-trimethylsilylethoxycarbonylmethyl)pyrrole-3-propionate 10

A solution of acetylpyrrole 8¹⁹ (1 g, 2.92 mmol) in dimethoxyethane (6 cm³) and 2-trimethylsilylethanol (1.38 g, 11.67 mmol) was treated with a suspension of thallium(III) nitrate trihydrate (2.59 g, 5.83 mmol) in dimethoxyethane (11 cm³) and concentrated nitric acid (0.2 cm³). The resulting mixture was stirred at room temperature for 28 h and then filtered through Celite. The filtrate was neutralised with 10% aqueous sodium carbonate, mixed with water (10 cm³) and extracted with dichloromethane $(3 \times 30 \text{ cm}^3)$. The combined extracts were dried and evaporated under reduced pressure. The residual oil was purified by flash silica chromatography, eluting with dichloromethane-ethyl acetate (24:1), followed by preparative TLC, eluting with dichloromethane-ethyl acetate (4:1), to give the pyrrole ester 9 (88.6 mg, 7%), mp 56-57 °C (from hexane) (see later for spectroscopic data) and the formyl pyrrole 10 (117.5 mg, 11.7%), mp 63-64 °C (from dichloromethane-diethyl ether-hexane) (Found: M⁺, 473.1867. $C_{24}H_{31}NO_7Si requires M, 473.1870$; $\lambda_{max}(CH_2Cl_2)/nm 302$ and 232; v_{max} (CH₂Cl₂)/cm⁻¹ 3395, 2935, 1720, 1650, 1190, 1165 and $835; \delta_{\rm H}({\rm CDCl}_3, 400 \,{\rm MHz}) - 0.01 \,(9 \,{\rm H}, {\rm s}, {\rm SiMe}_3), 0.96 \,(2 \,{\rm H}, {\rm t}, J9,$ CH₂Si), 2.54 and 3.01 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.60 (3 H, s, OMe), 3.78 (2 H, s, CH_2CO_2), 4.15 (2 H, t, $J\bar{9}$, $O\bar{C}H_2CH_2Si$), 5.31 (2 H, s, CH₂Ph), 7.30-7.40 (5 H, m, Ph), 9.73 (1 H, s, CHO) and 10.01 (1 H, br s, NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 1.61, 17.25, 19.66, 29.51, 34.29, 51.53, 63.75, 67.02, 123.89, 125.54, 128.65, 130.60, 135.01, 159.92, 170.61, 173.21 and 179.60; m/z (FD) 473.

3-(2-Methoxycarbonylethyl)-5-methyl-4-(2-trimethylsilyl-

ethoxycarbonylmethyl)pyrrole-2-carboxylic acid 11 To a solution of the pyrrole ester 9 (100 mg, 0.22 mmol) in tetrahydrofuran (2 cm³) was added 10% palladium-oncharcoal (10 mg). The mixture was hydrogenated at room temperature for 2.5 h, filtered through Celite and evaporated. The residue was recrystallised from diethyl ether-hexane to give the *pyrrole acid* 11 (79 mg, 98%), mp 105.5–106.5 °C (Found: M⁺, 369.1602. C₁₇H₂₇NO₆Si requires *M*, 369.1608); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.01 (9 H, s, Me₃Si), 0.92 (2 H, t, *J* 9, CH₂Si), 2.23 (3 H, s, CMe), 2.62 and 3.03 (each 2 H, t, *J* 8, CH₂CH₂CO₂), 3.41 (2 H, s, CH₂CO₂), 3.65 (3 H, s, OMe), 4.15 (2 H, t, *J* 9, CH₂CH₂Si) and 9.22 (1 H, br s, NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) -1.55 (Me₃Si), 11.72 (CMe), 17.33 (CH₂Si), 20.56, 30.13 and 34.66 (3 × CH₂), 51.49 (OMe), 63.12 (OCH₂), 115.12, 116.08, 132.61 and 132.95 (4 × pyrrole-C), 165.65 (CO₂H) and 171.89 and 173.91 (2 × CO₂Me); *m/z* (FD) 369 (M⁺, 100%).

9-Benzyloxycarbonyl-2,7-bis(2-methoxycarbonylethyl)-8methoxycarbonylmethyl-4-methyl-3-(2-trimethylsilylethoxycarbonylmethyl)-4,5-dihydrodipyrrin-1(10*H*)-one 14

A solution of pyrrole acid 11 (2.0 g, 5.42 mmol) in dichloromethane (30 cm³) was stirred vigorously with a solution of sodium hydrogen carbonate (1.35 g, 16.07 mmol) in water (25 cm³) under argon. An aqueous solution (60 cm³) of iodine (0.1 mol dm⁻³) and potassium iodide (0.2 mol dm⁻³) was added over 5 min and the resulting mixture was stirred for a further 2 min before addition of solid sodium metabisulfite to destroy the excess iodine. The organic layer was separated and the aqueous layer extracted with dichloromethane (3 × 30 cm³). The combined organic layers were dried and evaporated. Flash chromatography on silica, eluting with diethyl etherhexane (1:1), gave the α -iodopyrrole 12 as an oil which was used directly in the next step.

A stirred solution of the iodopyrrole 12 and acetoxymethylpyrrole 13⁸ (2.28 g, 5.41 mmol) in anhydrous dichloromethane (50 cm³) was cooled to 0 °C under argon. Stannic chloride (698 mm³, 5.96 mmol) was added dropwise. After 30 min saturated aqueous sodium hydrogen carbonate (25 cm³) was added and the mixture was stirred for a further 10 min. The organic layer was separated and the aqueous layer extracted with dichloromethane (5 \times 25 cm³). The combined organic layers were dried and evaporated. The residual oil was dissolved in tetrahydrofuran (100 cm³) and water (10 cm³) and treated with toluene-p-sulfonic acid (1.5 g, 8.7 mmol) and silver acetate (250 mg, 1.5 mmol). The mixture was stirred under argon for 13 h, then mixed with water (400 cm³) and extracted with dichloromethane (4 \times 150 cm³). The combined extracts were dried and evaporated and the residue was purified by flash chromatography on silica, eluting with diethyl ether followed by diethyl ether-ethyl acetate (1:1), to give the lactam 14 as an oil (1.43 g, 37%) (Found: M⁺, 712.3028. C₃₆H₄₈N₂O₁₁Si requires *M*, 712.3027); $\lambda_{max}(CH_2Cl_2)/nm$ 280; $\nu_{max}(CH_2Cl_2)/cm^{-1}$ 3685, 2940, 1720, 1690, 1600 and 1165; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.02 (9 H, s, Me₃Si), 0.99 (2 H, t, J9, CH₂Si), 1.32 (3 H, s, CMe), 2.40–2.70 $(8 \text{ H}, \text{m}, 2 \times \text{CH}_2\text{CH}_2)$, 2.74 and 3.04 (2 H, ABq, J 15, 5-H₂), 3.32 and 3.49 (2 H, ABq, J 17, CH₂CO₂), 3.51, 3.58 and 3.63 (each 3 H, s, OMe), 3.62 and 3.84 (2 H, ABq, J 17, CH₂CO₂), 4.18 (2 H, t, J 9, CH2CH2Si), 5.13 and 5.23 (2 H, ABq, J 12, CH₂Ph), 7.19 (1 H, s, lactam-NH), 7.23-7.34 (5 H, m, Ph), 10.18 (1 H, s, pyrrole-NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) -1.54 (Me₃Si), 17.36 (CH₂Si), 19.26 and 19.67 (2 × CH₂CH₂CO₂), 23.77 (CMe), 30.86, 31.15, 31.39, 33.36, 34.76 ($2 \times CH_2CH_2CO_2$, $2 \times CH_2CO_2$, C-5), 51.48 (OMe), 51.77 (2 × OMe), 63.39 (CH₂CH₂Si), 64.31, 65.67 (C-4 and CH₂Ph), 119.16, 121.91, 122.22, 127.95, 128.19, 128.35, 128.70, 135.30, 136.29 and 151.53 (C=C), 160.67 (a-CO₂) and 170.22, 171.84, 171.04, 173.47 and 173.96 (4 × CO₂ and CONH); m/z (FD) 712 (M⁺, 100%).

9-Benzyloxycarbonyl-3-carboxymethyl-2,7-bis(2-methoxycarbonylethyl)-8-methoxycarbonylmethyl-4-methyl-4,5-dihydrodipyrrin-1-(10*H*)-one 7

Tetrabutylammonium fluoride trihydrate (118 mg, 0.37 mmol)

was added to a solution of the lactam 14 (88.7 mg, 0.12 mmol) in tetrahydrofuran (1 cm³) and the solution was stirred under argon at room temperature for 40 min. Water (6 cm³) was added and the pH of the solution adjusted to 3.0-3.5 with dilute sulfuric acid. The solution was extracted with dichloromethane $(2 \times 5 \text{ cm}^3)$ and the combined organic extracts were dried and evaporated. The residue was recrystallised from dichloromethane to give the acid 7 (46.8 mg, 61%), mp 159-161 °C (Found: MH^+ , 613.2361. $C_{31}H_{36}N_2O_{11}$ requires *MH*, 613.2397); $\delta_{\rm H}({\rm CDCl}_3, 400 \text{ MHz})$ 1.34 (3 H, s, CMe), 2.34–2.64 (8 H, m, 2 × CH₂CH₂), 2.83 and 3.13 (2 H, ABq, J 15, 5-H₂), 3.32 and 3.53 (2 H, ABq, J 17, CH₂CO₂), 3.49, 3.56, 3.57 (each 3 H, s, OMe), 3.60 and 3.80 (2 H, ABq, J 17, CH₂CO₂), 5.19 (2 H, s, CH₂Ph), 7.25-7.39 (5 H, m, Ph), 7.51 (1 H, br s, lactam-NH) and 10.20 (1 H, br s, pyrrole-NH); δ_{C} (CDCl₃, 100 MHz) 19.16 and 19.74 $(2 \times CH_2CH_2CO_2)$, 23.66 (CMe), 30.91, 30.97, 31.11, 32.75 and 34.86 ($2 \times CH_2CH_2CO_2$, $2 \times CH_2CO_2$, C-5), 51.53, 51.69 and 51.82 (3 × OMe), 64.44 and 65.84 (C-4 and CH₂Ph), 118.95, 121.95, 122.36, 127.94, 128.05, 128.49, 128.89, 134.93, 136.16 and 152.48 (C=C), 161.07 (a-CO₂) and 172.36, 172.68, 173.43 and 173.74 (4 \times CO₂ and CONH); m/z (FD) 612 (M⁺, 100%).

9-Benzyloxycarbonyl-2,7-bis(2-methoxycarbonylethyl)-8methoxycarbonylmethyl-4-methyl-3-(1- phenylethoxycarbonylmethyl)-4,5-dihydrodipyrrin-1(10*H*)-one 15

N,N'-Dicyclohexylcarbodiimide (7.6 mg, 37 µmol) and 4dimethylaminopyridine (0.7 mg, 6 µmol) were added to a solution of the acid 7 (15 mg, 25 µmol) in dichloromethane (1.5 cm³) and (S)-(-)-1-phenylethanol (30 mg, 245 µmol) and the mixture was stirred under argon at room temperature for 20 min. The solvent was evaporated and the residue was purified by preparative TLC, eluting with diethyl ether-methanol (19:1), to give the ester 15 as a foam (10.3 mg, 57%) (Found: M⁺, 716.2944. $C_{39}H_{44}N_2O_{11}$ requires *M*, 716.2945); $\lambda_{max}(CH_2 Cl_2$ /nm 280; δ_H (CDCl₃, 400 MHz, two diastereoisomers in a ratio of ca. 1:1.25) 1.28 and 1.31 (2 × 3 H, s, 5-Me), 1.54 and 1.55 (2 × 3 H, d, J 7, MeCH), 2.38-2.71 (18 H, m, $4 \times CH_2CH_2$, 2 × 5-H_A), 2.97 and 3.06 (each 1 H, d, J 15, 5-H_B), 3.34 and 3.89 (2 H, ABq, J 17, CH₂CO₂), 3.37 and 3.89 (2 H, ABq, J17, CH₂CO₂), 3.56 (6 H, s, 2 × OMe), 3.57, 3.59, 3.61 and 3.62 (each 3 H, s, OMe), 3.52-3.66 (4 H, m, 2 × CH₂CO₂), 5.14 and 5.26 (2 H, ABq, J12, CH₂Ph), 5.15 and 5.26 (2 H, ABq, J 12, CH₂Ph), 5.85 (1 H, q, J 6, CHMePh), 5.88 (1 H, q, J 7, CHMePh), 6.64 and 6.69 (2 × 1 H, br s, lactam-NH), 7.26-7.37 $(20 \text{ H}, \text{m}, 4 \times \text{Ph})$ and 9.88 and 9.89 $(2 \times 2 \text{ H}, \text{s}, \text{pyrrole-NH})$; $\delta_{\rm C}({\rm CDCl}_3, 100 \text{ MHz})$: 19.27, 19.71, 19.86, 21.84, 21.98, 24.01, 24.13, 30.89, 31.28, 33.04, 33.26, 34.65, 51.62, 51.97, 52.02, 63.62, 65.71, 74.38, 74.48, 119.24, 121.95, 122.03, 122.55, 126.34, 126.46, 128.08, 123.33, 128.42, 128.48, 127.70, 128.74, 135.44, 136.37, 140.47, 140.63, 151.98, 160.54, 169.71, 169.93, 171.67, 172.15, 173.43, 173.55, 174.30 and 174.39; m/z (FD) 716.

9-Benzyloxycarbonyl-2,7-bis(2-methoxycarbonylethyl)-8methoxycarbonylmethyl-4-methyl-3-{(1*S*,2*R*,4*S*)-1,7,7trimethylbicyclo[2.2.1]heptan-2-yloxycarbonylmethyl}-4,5dihydrodipyrrin-1(10*H*)-one 16

A mixture of N,N'-dicyclohexylcarbodiimide (7.6 mg, 37 µmol), 4-dimethylaminopyridine (0.7 mg, 6 µmol) and a solution of the acid 7 (15 mg, 25 µmol) and (1S)-endo-borneol (75.6 mg, 0.49 mmol) in dichloromethane (1.5 cm³) was stirred under argon at room temperature for 35 min. The solvent was evaporated and the residue was purified by preparative TLC, eluting with diethyl ether-methanol (95:5), to give the ester 16 (13.5 mg, 73%) as an oil (Found: M⁺, 748.3572. C₄₁H₅₂N₂O₁₁ requires M, 748.3571); λ_{max} (CH₂Cl₂)/nm 280; δ_{H} (CDCl₃, 400 MHz, 2 diastereoisomers, ratio 1:1.1) 0.80 and 0.83 (each 3 H, s, bornyl Me), 0.86 (12 H, s, 4 × bornyl Me), 0.90–0.98, 1.18– 1.21, 1.66–1.90, 2.30–2.33 (14 H, m, 6 × bornyl CH₂ and 2 × CH), 1.35 (6 H, s, 2 × 4-Me), 2.46–2.75 (18 H, m, 4 × CH₂CH₂CO₂ and 2 × 5- H_AH_B), 3.06 (2 H, d, J 15, 2 × 5- H_AH_B), 3.38–3.66 (4 H, m, 2 × CH₂CO₂), 3.54, 3.62 and 3.65 (each 6 H, s, 2 × OMe), 3.86 and 3.87 (4 H, 2 × ABq, J 17, CH₂CO₂), 4.84–4.96 (2 H, m, 2 × bornyl OCH) 5.14 and 5.26 (2 H, ABq, J 12, CH₂Ph), 5.15 and 5.27 (2 H, ABq, J 12, CH₂Ph), 5.15 and 5.27 (2 H, ABq, J 12, CH₂Ph), 6.84 and 6.87 (each 1 H, br s, lactam-NH), 7.26–7.36 (10 H, m, 2 × Ph) and 10.01 (2 H, br s, 2 × pyrrole-NH); δ_c (CDCl₃, 100 MHz) 13.54, 13.59, 15.26, 18.81, 19.20, 19.65, 23.95, 27.06, 27.98, 30.80, 31.19, 31.28, 33.32, 34.62, 36.63, 36.70, 44.74, 47.88, 48.80, 48.86, 51.51, 51.81, 63.26, 65.59, 65.84, 81.85, 81.97, 119.14, 121.86, 122.34, 127.95, 128.16, 128.35, 135.22, 135.28, 136.28, 151.63, 151.68, 160.53, 170.51, 170.63, 171.66, 172.04, 173.45, 174.06 and 174.10; *m/z* (FD) 748.

Methyl 2-(benzyloxycarbonyl)-4-(tert-butoxycarbonyl)-5methylpyrrole-3-propionate 20

A solution of sodium nitrite (17.46 g, 253 mmol) in water (31 cm³) was added dropwise to a stirred mixture of 1-benzyl 6-methyl 3-oxohexanedioate 18 (64.25 g, 243 mmol) (made from 17 by the method in ref. 19) in acetic acid (100 cm^3) at such a rate that the temperature did not exceed 25 °C. After being stirred overnight at room temperature, the mixture, containing the oxime 19, was added dropwise to a stirred mixture of tert-butyl acetoacetate (45.37 g, 287 mmol) in acetic acid (100 cm³). At the same time a mixture of zinc dust (50 g) and ammonium acetate (50 g) was added at such a rate that it was always in excess and the temperature remained between 50 and 70 °C. The resulting mixture was stirred for 30 min, then diluted with ice-water (750 cm³), stirred for a further 30 min and filtered. The residue was washed with water (200 cm³) and dissolved in dichloromethane (250 cm³). The organic solution was washed with water (250 cm^3) and then with 5% aqueous sodium carbonate, dried and evaporated. The residue was recrystallised from diethyl ether to give the pyrrole ester 20 (35.3 g, 36%), mp 95-98 °C (Found: M⁺, 401.1829. C₂₂H₂₇NO₆ requires *M*, 401.1838); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.54 (9 H, s, Bu'), 2.46 (3 H, s, 5-Me), 2.53 and 3.35 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.61 (3 H, s, OMe), 5.29 (2 H, s, CH₂Ph), 7.30-7.40 (5 H, m, Ph) and 9.15 (1 H, br s, NH); m/z (FD) 401 (M⁺, 100%).

Methyl 2-benzyloxycarbonyl-4-iodo-5-methylpyrrole-3propionate 22

A solution of pyrrole ester 20 (19.8 g, 49.3 mmol) in 1,2dichloroethane (65 cm³) was treated with trifluoroacetic acid (4.94 cm³), heated under reflux with stirring for 75 min and then cooled to room temperature. Water (42 cm³) was added and after 10 min the acid 21 was collected by filtration, washed with dichloromethane then water and dried *in vacuo* for use directly in the next step.

The acid 21 was added to a stirred solution of sodium hydrogen carbonate (12.4 g, 148 mmol) in water (82 cm³). When foaming began, 1,2-dichloroethane (82 cm³) was added and the mixture was heated gently at reflux to dissolve the pyrrole. A solution of iodine (13.8 g, 109 mmol) and potassium iodide (16.4 g, 99 mmol) in water (82 cm³) was added over 5 min and the resulting mixture was heated under reflux with stirring for 30 min. Solid sodium metabisulfite was added to destroy excess iodine and the organic layer was separated. The aqueous layer was extracted with dichloromethane (60 cm³) and the combined organic layers were dried and evaporated to give the pale yellow iodopyrrole 22 (16.65 g, 79%), mp 130-131 °C (from diethyl ether) (Found: M⁺ 427.0241. $C_{17}H_{18}NO_4I$ requires *M*, 427.0239); $\delta_H(CDCl_3, 400)$ MHz) 2.26 (3 H, s, 5-Me), 2.47 and 3.02 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.63 (3 H, s, OMe), 5.28 (2 H, s, CH₂Ph), 7.30-7.39 (5 H, m, Ph) and 9.35 (1 H, br s, NH); m/z (FD) 427 (M⁺, 100%).

5-Benzyloxycarbonyl-4-(2-methoxycarbonylethyl)-2-methylpyrrole-3-acetic acid 23

To a stirred solution of 57% aqueous hydriodic acid (125 cm³) at 0 °C was slowly added acetic anhydride (125 cm³) followed by 50% aqueous hypophosphorous acid (24.5 cm³). To this cooled solution was added finely powdered iodopyrrole 22 (21.4 g, 50 mmol). The resulting mixture was stirred for 5 min and then glyoxylic acid monohydrate (13.81 g, 150 mmol) was added in 3 portions over 15 min. After a further 20 min at 0 °C, dichloromethane (425 cm³) was added and the solution was washed with water (500 cm³). The organic layer was separated and the aqueous layer was extracted with dichloromethane $(3 \times 330 \text{ cm}^3)$. The combined organic layers were washed with 5% aqueous sodium hydrogen sulfite (250 cm³) and then water (250 cm³), dried and evaporated. Crystallisation from dichloromethane-hexane gave the acid 23 (17.53 g, 97%), mp 145–146 °C (Found: MH⁺, 360.1454. $C_{19}H_{21}NO_6$ requires M + H, 360.1447); $\lambda_{max}(CH_2Cl_2)/nm 278$; $\nu_{max}(Nujol)/cm^{-1}$ 3700–3000, 3300, 2993, 1735, 1705, 1665 and 1465; $\delta_{\rm H}({\rm CDCl}_3,$ 400 MHz) 2.20 (3 H, s, CMe), 2.52 and 2.99 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.45 (2 H, s, CH₂CO₂), 3.58 (3 H, s, OMe), 5.27 (2 H, s, CH₂Ph), 7.33 (5 H, m, Ph) and 9.26 (1 H, br s, NH); $\delta_{\rm C}({\rm CDCl}_3, 100 \text{ MHz}) 11.60 (CMe), 20.64, 29.66, 34.82$ $(3 \times CH_2)$, 51.48 (OMe), 60.06 (CH₂Ph), 113.94, 116.72, 128.25, 128.37 (2 C), 128.59 (2 C), 130.94, 132.06 and 135.05 (C=C) and 161.04, 173.74 and 177.01 (3 × C=O); m/z (FD) 359 (M⁺, 100%).

Methyl 2-benzyloxycarbonyl-5-methyl-4-(2-trimethylsilylethoxycarbonylmethyl)pyrrole-3-propionate 9

To a solution of the acid 23 (3.25 g, 9.05 mmol) in anhydrous dichloromethane (30 cm³) was added oxalyl chloride (3.16 cm³, 4.60 g, 36.24 mmol) dropwise, followed by 3 drops of anhydrous N,N-dimethylformamide. Vigorous effervescence ensued and the red solution was stirred at room temperature under argon for 30 min and then evaporated. A solution of the residue in anhydrous dichloromethane (10 cm³) was stirred with 2-(trimethylsilyl)ethanol (2.68 g, 22.66 mmol) and 4dimethylaminopyridine (1.33 g, 10.89 mmol) under argon for 20 min at room temperature and then evaporated. The residue was purified by flash chromatography on silica, eluting with hexane-diethyl ether (9:1) followed by dichloromethane-ethyl acetate (95:5), and crystallisation from hexane to give pyrrole ester 9 (3.85 g, 93%), mp 56-57 °C (Found: M⁺, 459.2076. $C_{24}H_{33}NO_6Si$ requires *M*, 459.2077); $\lambda_{max}(CH_2Cl_2)/nm$ 278; $v_{max}(CH_2Cl_2)/cm^{-1}$ 3425, 2925, 1760–1640s, 1165, 1065 and 835; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.01 (9 H, s, Me₃Si), 0.96 (2 H, t, J 9, CH₂Si), 2.20 (3 H, s, CMe), 2.53 and 3.00 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.39 (2 H, s, CH₂CO₂), 3.60 (3 H, s, OMe), 4.13 (2 H, t, J9, CH₂CH₂Si), 5.27 (2 H, s, CH₂Ph), 7.36 (5 H, m, Ph) and 8.99 (1 H, br s, NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) - 1.54 (Me₃Si), 11.66 (CMe), 17.34 (CH₂Si), 20.68 (CH₂CH₂CO₂), 30.12 (CH₂CO₂), 34.86 (CH₂CH₂CO₂), 51.39 (OMe), 63.05 and 65.83 (CH₂CH₂Si and CH₂Ph), 114.59, 116.68, 128.18, 128.30 (2 C), 128.57 (2 C), 130.84, 131.54, 136.23 (C=C), 160.76 (2- CO_2) and 171.87 and 173.62 (2 × CO_2Me); m/z (FD) 459 (M⁺, 100%).

Methyl 5-acetoxymethyl-2-benzyloxycarbonyl-4-(2-trimethylsilylethoxycarbonylmethyl)pyrrole-3-propionate 24

A solution of sulfuryl chloride (559 mg, 335 mm³, 4.14 mmol) in anhydrous dichloromethane (4 cm³) was added dropwise over 1 min to a stirred solution of the methyl pyrrole 9 (2 g, 4.36 mmol) in anhydrous dichloromethane (16 cm³) under argon at 0 °C. After 1 h at 0 °C, the solution was evaporated and a solution of the residue in acetic acid (20 cm³) was stirred with sodium acetate (1.18 g, 14.38 mmol) under argon at 60 °C for 90 min, then diluted with water (80 cm³) and extracted with dichloromethane (3 × 20 cm³). The combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate $(2 \times 50 \text{ cm}^3)$ and then with water (30 cm^3) , dried and evaporated to give the acetoxymethylpyrrole 24 as fine needles (2.12 g, 94%), mp 64.5-65.5 °C (from diethyl etherhexane) (Found: M⁺, 517.2121. C₂₆H₃₅NO₈Si requires M, 517.2132); $\lambda_{max}(CH_2Cl_2)/nm$ 269; $\nu_{max}(CH_2Cl_2)/cm^{-1}$ 3420, 2940, 1760–1650s, 1200, 1170, 1070 and 835; $\delta_{\rm H}({\rm CDCl}_3, 400$ MHz) 0.00 (9 H, s, Me₃Si), 0.95 (2 H, t, J9, CH₂Si), 2.04 (3 H, s, Ac), 2.52 and 2.99 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.49 (2 H, s, CH₂CO₂), 3.60 (3 H, s, OMe), 4.12 (2 H, t, J 9, CH₂CH₂Si), 5.03 (2 H, s, CH₂OAc), 5.28 (2 H, s, CH₂Ph), 7.35 (5 H, m, Ph) and 9.18 (1 H, br s, NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) - 1.56 (Me₃Si), 17.33 (CH₂Si), 20.40 (CH₂CH₂CO₂), 20.85 (COMe), 29.81 (CH_2CO_2) , 34.70 $(CH_2CH_2CO_2)$, 51.44 (OMe), 56.91 (CH₂OAc), 63.28 and 66.14 (CH₂CH₂Si and CH₂Ph), 117.17, 119.08, 128.30, 128.39 (2 C), 128.61 (2 C), 128.79, 129.97 and 135.93 (C=C) and 160.43, 171.45, 171.51 and 173.49 (4 × C=O); *m*/*z* (FD) 517 (M⁺, 100%).

5-Acetoxymethyl-3-(2-methoxycarbonylethyl)-4-(2-trimethylsilylethoxycarbonylmethyl)pyrrole-2-carboxylic acid 25

A solution of the pyrrole ester 24 (1 g, 1.93 mmol) in tetrahydrofuran (7 cm³) was stirred with 10% palladium-oncharcoal (0.1 g) under an atmosphere of hydrogen at room temperature for 90 min and then filtered through Celite. The residue was washed with tetrahydrofuran (3 cm³) and the combined filtrate and washings were evaporated and the residue was recrystallised from methyl acetate-hexane to give the acid 25 (0.81 g, 98%), mp 108-110 °C (decomp.) (Found: M^+ , 427.1660. $C_{19}H_{29}NO_8Si$ requires M, 427.1662); $\lambda_{max}(CH_2-$ Cl₂)/nm 276; v_{max}(CH₂Cl₂)/cm⁻¹ 3420, 3300–2500, 2940, 1725 br, 1660, 1170 and 835; $\delta_{\rm H}({\rm CDCl}_3, 400 \ {\rm MHz})$ 0.02 (9 H, s, Me₃Si), 0.98 (2 H, t, J 8, CH₂Si), 2.07 (3 H, s, Ac), 2.61 and 3.03 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.52 (2 H, s, CH₂CO₂), 3.65 (3 H, s, OMe), 4.15 (2 H, t, J 8, CH₂CH₂Si), 5.07 (2 H, s, CH₂OAc) and 9.30 (1 H, br s, NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) -1.56 (Me₃Si), 17.33 (CH₂Si), 20.27 (CH₂CH₂CO₂), 20.85 (COMe), 29.81 (CH₂CO₂), 34.54 (CH₂CH₂CO₂), 51.53 (OMe), 56.97 (CH2OAc), 63.36 (CH2CH2Si), 117.41, 118.42, 129.98 and 131.59 (C=C) and 165.43, 171.55 (2 C) and 173.71 $(4 \times C=O); m/z (FD) 427 (M^+, 100\%).$

Methyl 5-acetoxymethyl-2-*tert*-butoxycarbonyl-4-(2-trimethyl-silylethoxycarbonylmethyl)pyrrole-3-propionate 26

A solution of the acid 25 (1 g, 2.34 mmol) in tert-butyl alcohol (8 cm³) and dichloromethane (8 cm³) was stirred with a solution of N,N'-dicyclohexylcarbodiimide (0.58 g, 2.81 mmol) in tertbutyl alcohol (2 cm³) under argon for 90 min and then evaporated. The residue was purified by flash chromatography on silica, eluting with diethyl ether-hexane (1:1), and crystallisation from diethyl ether-hexane to give the pyrrole ester 26 (1.09 g, 96%) as needles, mp 69-71 °C (Found: M⁺, 483.2297. C₂₃H₃₇NO₈Si requires M, 483.2288); λ_{max} (CH₂-Cl₂)/nm 269; v_{max} (CH₂Cl₂)/cm⁻¹ 3430, 1723s br, 1690, 1170 and 835; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.01 (9 H, s, Me₃Si), 0.97 (2 H, t, J 9, CH₂Si), 1.54 (9 H, s, Bu^t), 2.05 (3 H, s, Ac), 2.55 and 2.97 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.49 (2 H, s, CH₂CO₂), 3.64 (3 H, s, OMe), 4.13 (2 H, t, J 9, CH₂CH₂Si), 5.04 (2 H, s, CH₂OAc) and 9.13 (1 H, br s, NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) -1.55 (Me₃Si), 17.34 (CH₂Si), 20.50 (CH₂CH₂CO₂), 20.87 (COMe), 28.38 (CMe₃), 29.85 (CH₂CO₂), 34.95 (CH₂-CH₂CO₂), 51.44 (OMe), 56.95 (CH₂OAc), 63.24 (CH₂CH₂-Si), 81.28 (CMe₃), 116.84, 120.81, 127.81 and 128.30 (C=C) and 160.36, 171.46, 171.63, 173.60 (4 × C=O); m/z (FD) 483 (M⁺, 100%).

3-(2-Methoxycarbonylethyl)-4-(methoxycarbonylmethyl)pyrrole-2-carboxylic acid 28

A solution of the pyrrole ester 27^{20} (360 mg, 1.11 mmol) in dry dichloromethane (20 cm³) was cooled to 0 °C and treated with

stannic chloride (140 mm³, 1.20 mmol) dropwise. The mixture was stirred for 2 h, then treated with 10% aqueous sodium acetate (20 cm³) and stirred for a further 10 min. The layers were separated and the aqueous layer extracted with dichloromethane $(2 \times 50 \text{ cm}^3)$. The combined organic layers were extracted with 10% aqueous sodium carbonate (3 \times 50 cm³) and these aqueous extracts were acidified with concentrate hydrochloric acid to pH 1. The precipitated solid was collected by filtration and dissolved in dichloromethane $(4 \times 50 \text{ cm}^3)$. The solution was dried and evaporated and the residue was crystallised from dichloromethane-diethyl etherhexane to give the acid 28 (233 mg, 78%), mp 140-142 °C (Found: MH⁺, 270.0963. $C_{12}H_{15}NO_6$ requires M + H, 270.0978); $\lambda_{max}(CH_2Cl_2)/nm$ 268; $\nu_{max}(CH_2Cl_2)/cm^{-1}$ 3685, 1735, 1660, 1605, 1200 and 1175; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.62 and 3.04 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.52 (2 H, s, CH₂CO₂), 3.65 and 3.69 (each 3 H, s, OMe), 6.91 (1 H, d, J 3, 5-H) and 9.27 (1 H, br s, NH); $\delta_{C}(CDCl_{3}, 100 \text{ MHz}) 20.21 (CH_{2}CH_{2}CO_{2})$, 30.48 (CH₂CO₂), 34.56 (CH₂CH₂CO₂), 51.56 and 52.06 (OMe), 117.69, 118.54 and 131.31 (C=C), 122.95 (C-5) and 165.72, 172.38 and 173.84 (3 \times C=O).

Methyl 4-methoxycarbonylmethyl-2-(2,2,2-tribromoethoxycarbonyl)pyrrole-3-propionate 29

A solution of acid 28 (150 mg, 0.558 mmol) in dry dichloromethane (4 cm³) was cooled to 0 °C, treated with oxalyl chloride (146 mm³, 1.67 mmol) and N,N-dimethylformamide (3 drops) (vigorous effervescence), stirred under argon at 0 °C for 30 min and evaporated. The residue was dissolved in dichloromethane (2 cm³), stirred with 2,2,2-tribromoethanol (1.18 g, 4.18 mmol) and 4-dimethylaminopyridine (81.7 mg, 0.669 mmol) under argon for 30 min and then evaporated under reduced pressure. The residue was purified by flash chromatography on silica, eluting with diethyl ether-hexane (1:1), to give the tribromoethyl ester 29 as an oil (198 mg, 67%) (Found: MH⁺, 531.8643. $C_{14}H_{16}^{79}Br_3NO_6$ requires M + H, 531.8608); $\lambda_{max}(CH_2Cl_2)/nm$ 274; $\nu_{max}(CH_2Cl_2)/cm^{-1}$ 3450, 1740, 1570, 1510, 1410, 1120 and 940; $\delta_{\rm H}({\rm CDCl}_3, 400 \text{ MHz})$ 2.64 and 3.09 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.53 (2 H, s, CH₂CO₂), 3.63 and 3.69 (each 3 H, s, OMe), 5.10 (2 H, s, CH₂CBr₃), 6.96 (1 H, d, J 3, 5-H) and 9.03 (1 H, br s, NH); δ_C(CDCl₃, 100 MHz) 20.24 (CH₂CH₂CO₂), 30.44 (CH₂CO₂), 34.98 (CH₂CH₂CO₂), 35.83 (CH₂CBr₃), 51.52 and 52.07 (OMe), 76.87 (CH₂CBr₃), 117.78, 117.85 and 130.97 (C=C), 123.29 (C-5) and 159.00, 172.28 and 173.55 (3 × C=O).

Dimethyl 1-(*tert*-butoxycarbonyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)3-(2-trimethylsilylethoxycarbonylmethyl)-5,10-dihydrodipyrrin-2,8-dipropionate 30

A solution of the α -free pyrrole 29 (599 mg, 1.12 mmol) and the acetoxymethylpyrrole 26 (542 mg, 112 mmol) in dichloromethane (7 cm^3) was stirred with toluene-*p*-sulfonic acid (21 mg, 0.11 mmol) under argon at room temperature for 2 h, then washed with 5% aqueous sodium carbonate $(2 \times 15 \text{ cm}^3)$ followed by water $(1 \times 15 \text{ cm}^3)$, dried and evaporated. The residue was purified by flash chromatography on silica, eluting with diethyl ether-hexane (1:1), to give the dihydrodipyrrin 30 as a foam (893 mg, 84%) (Found: M⁺, 954.0590. C₃₅H₄₉Br₃- $N_2O_{12}Si$ requires *M*, 954.0605); $\delta_{H}(CDCl_3, 400 \text{ MHz}) 0.05$ (9 H, s, Me₃Si), 1.02 (2 H, t, J 8, CH₂Si), 1.51 (9 H, s, Bu'), 2.52, 2.58, 2.98 and 3.10 (each 2 H, t, J 8, 2 × $CH_2CH_2CO_2$), 3.52 and 3.59 (each 2 H, s, CH₂CO₂), 3.62, 3.63 and 3.77 (each 3 H, s, OMe), 3.82 (2 H, s, 5-H₂), 4.26 (2 H, t, J 8, CH₂CH₂Si), 5.06 (2 H, s, CH₂CBr₃) and 10.11 and 10.47 (each 1 H, br s, NH); $\delta_{\rm C}({\rm CDCl}_3, 100 \text{ MHz}) - 1.44 \text{ (Me}_3 \text{Si}), 17.27 \text{ (CH}_2 \text{Si}), 20.40 \text{ and}$ 22.58 $(2 \times CH_2CH_2CO_2)$, 28.39 (CMe_3) , 29.24 and 29.76 $(2 \times CH_2CO_2)$, 35.00 (2 C) and 35.19 (2 × $CH_2CH_2CO_2$ and CH_2CBr_3 , 51.41 (2 C) and 52.65 (3 × OMe), 64.02 (CH₂CH₂Si), 77.00 (CH₂CBr₃), 80.49 (CMe₃), 113.67, 114.22, 117.04, 119.90, 128.43, 130.63, 130.78 and 134.09 (C=C) and 158.84, 160.20, 173.56, 173.66 (2 C) and 173.74 (6 × C=O); m/z (FD) 954, 956, 958 and 960 (1:3:3:1, M⁺, 100%).

2,8-Bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)-3-(2-trimethylsilylethoxycarbonylmethyl)-5,10-dihydrodipyrrin-1-carboxylic acid 31

A solution of the dipyrromethane 30 (4.71 g, 4.92 mmol) in dry dichloromethane (33 cm³) was stirred under argon at between -10 and -15 °C and stannic chloride (432 mm³, 3.69 mmol) was added dropwise over 1 min. The solution was allowed to warm to 5 °C over 40 min and then treated with 5% aqueous sodium acetate (47 cm³). After a further 5 min, the organic layer was separated and the aqueous layer was extracted with dichloromethane (5 \times 50 cm³). The combined organic layers were washed with brine $(2 \times 50 \text{ cm}^3)$, dried and evaporated. The residue was purified by flash chromatography on silica, eluting with dichloromethane-methanol (19:1), to give the acid 31 (2.78 g, 63%), mp 154-155 °C (from methyl acetatehexane); $\lambda_{max}(CH_2Cl_2)/nm$ 287; $\nu_{max}(CH_2Cl_2)/cm^{-1}$ 3400– 2800, 3310, 2950, 1750–1630s, 1230, 1165 and 890; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 0.05 (9 H, s, Me₃Si), 1.01 (2 H, t, J 8, CH₂Si), 2.56, 2.60, 3.02 and 3.10 (each 2 H, t, J 8, CH₂CH₂CO₂), 3.54 and 3.61 (each 2 H, s, CH₂CO₂), 3.62, 3.63 and 3.77 (each 3 H, s, OMe), 3.88 (2 H, s, 5-H₂), 4.24 (2 H, t, J 8, CH2CH2Si), 5.05 (2 H, s, CH2CBr3) and 10.34 and 10.66 (each 1 H, br s, NH); m/z (FD) 898, 900, 902 and 904 $(1:3:3:1, M^+, 100\%)$.

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4methoxycarbonylmethylpyrrol-2-ylmethyl]-2,8-bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)-3-(2-trimethylsilylethoxycarbonylmethyl)-4,5-dihydrodipyrrin-1(10*H*)-one 33

A solution of the acid **31** (250 mg, 0.278 mmol) in dichloromethane (1.7 cm^3) was stirred vigorously with a solution of sodium hydrogen carbonate (69.9 mg, 0.832 mmol) in water (1.3 cm^3) and an aqueous solution (2.78 cm^3) of iodine $(0.1 \text{ mol } \text{dm}^{-3})$ and potassium iodide $(0.2 \text{ mol } \text{dm}^{-3})$ was added over 5 min. After a further 35 min, solid sodium metabisulfite was added to destroy the excess iodine, the organic layer was separated and the aqueous layer was extracted with dichloromethane $(3 \times 1 \text{ cm}^3)$. The combined organic layers were dried and evaporated under reduced pressure. The residual oil was purified by flash silica chromatography on silica, eluting with diethyl ether–hexane (3:2), to give the iododihydrodipyrrin **32** as a foam (241 mg) which was used directly in the next step.

A stirred solution of the iododihydrodipyrrin 32 (239 mg, 0.243 mmol) and the acetoxymethylpyrrole⁸ 13 (105 mg, 0.243 mmol) in dry dichloromethane (2.5 cm³) under argon at 0 °C and was treated with a solution of stannic chloride (28.4 mm³, 0.243 mmol) in dichloromethane (1 cm^{-3}) and then, after 30 min, with saturated aqueous sodium hydrogen carbonate (2.6 cm³). After a further 10 min, the organic layer was separated and the aqueous layer extracted with dichloromethane (3×5) cm³). The combined organic layers were dried and evaporated under reduced pressure. The residual oil was dissolved in tetrahydrofuran (3.4 cm³) and water (0.34 cm³) and toluenep-sulfonic acid monohydrate (66.2 mg, 0.35 mmol) and silver acetate (21.9 mg, 0.13 mmol) were added. The mixture was stirred under argon for 17 h, then diluted with water (18 cm³) and extracted with dichloromethane $(4 \times 18 \text{ cm}^3)$. The combined organic extracts were dried and evaporated and the residual oil was purified by flash chromatography on silica, eluting with diethyl ether-hexane (97:3) followed by diethyl ether, to give the *dipyrrolic lactam* 33 as a foam (104 mg, 30%); $\lambda_{max}(CH_2Cl_2)/nm$ 284; $\nu_{max}(CH_2Cl_2)/cm^{-1}$ 3410, 3290, 2940, 1710s, br, 1190, 1170 and 1075; $\delta_H(CDCl_3, 400 \text{ MHz})$ 0.05 (9 H, s, Me₃Si), 1.05 (2 H, t, J 8, CH₂Si), 2.43-2.55 and 2.69-2.71 (each 6 H, m, $3 \times CH_2CH_2CO_2$), 2.74 and 3.04 (2 H, ABq, J 15) and 2.85 and 3.13 (2 H, ABq, J 15, CH₂CCH₂), 3.14 and 3.49 (2 H, ABq, J 16), 3.38 and 3.66 (2 H, ABq, J 18) and 3.73 and 3.83 (2 H, ABq, J 17, 3 × CH₂CO₂), 3.54, 3.59, 3.59, 3.60 and 3.63 (each 3 H, s, OMe), 4.29 (2 H, t, J 8, CH₂CH₂Si), 5.01 and 5.11 (2 H, ABq, J 12) and 5.18 and 5.27 (2 H, ABq, J 12, CH₂CBr₃ and CH₂Ph), 7.29-7.39 (5 H, m, Ph), 7.54 (1 H, br s, lactam-NH) and 9.22 and 10.36 (each 1 H, br s, pyrrole-NH); $\delta_{\rm C}({\rm CDCl}_3, 100 \text{ MHz}) - 1.47 \text{ (Me}_3{\rm Si}), 17.34 \text{ (CH}_2{\rm Si}), 19.28,$ 19.92 and 20.39 (3 \times CH₂CH₂CO₂), 29.02, 30.46 (2 C), 30.58, 30.93, 32.95, 34.73, 34.98 and 36.07 (3 \times CH₂CO₂, 3 \times CH₂-CH2CO2, CH2CCH2 and CH2CBr3), 51.47, 51.58, 51.80, 51.88 and 52.34 (5 × OMe), 65.17 and 65.73 (2 C) (CH₂CH₂Si, CH₂Ph and C-4), 76.88 (CH₂CBr₃), 115.99, 116.83, 119.44, 122.18, 122.51, 127.60, 128.18, 128.42, 128.49, 130.09, 136.00, 138.51 and 149.10 (C=C), 158.54 and 160.11 (pyrrole-CO₂) and 171.60, 171.75, 172.02, 173.35, 173.42 and 173.59 (6 \times CO $_2$ and CONH); m/z (FD) 1241, 1243, 1245 and 1247 (1:3:3:1, M⁺, 100%).

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4methoxycarbonylmethylpyrrol-2-ylmethyl]-7-carboxymethyl-2,8-bis(2-methoxycarbonylethyl)-9-(2,2,2-tribromoethoxycarbonyl)-3-(2-trimethylsilylethoxycarbonylmethyl)-4,5dihydrodipyrrin-1(10*H*)-one 6

A solution of ester 33 (419 mg, 0.33 mmol) in tetrahydrofuran (12 cm³) was stirred with tetrabutylammonium fluoride trihydrate (316 mg, 1.00 mmol) under argon at room temperature for 1 h, then mixed with dichloromethane (15 cm^3) and washed with dilute sulfuric acid (pH 3.0-3.5; 2×10 cm³) followed by water (10 cm³), dried and evaporated. The residue was purified by flash chromatography on silica, eluting with dichloromethane-methanol (9:1), to give the acid 6 as a glass (271 mg, 71%) which was used without further purification to make the following series of esters; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.21–3.93 (37 H, series of br m, $3 \times CH_2CO_2$, $3 \times CH_2CH_2CO_2$, CH_2CCH_2 and $5 \times OMe$), 4.95-5.33 (4 H, br m, CH₂Ph and CH₂CBr₃), 7.20-7.46 (5 H, m, Ph), 8.00 (1 H, br s, lactam-NH) and 9.45 (2 H, br s, $2 \times \text{pyrrole-NH}$; m/z (FD) 1141, 1143, 1145 and 1147 (1:3:3:1, M⁺, 50%) and 1097, 1099, 1101 and 1103 $(1:3:3:1, M - CO_2 100\%).$

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4methoxycarbonylmethylpyrrol-2-ylmethyl]-2,8-bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-3-[(1*S*)-1-phenylethoxycarbonylmethyl]-9-(2,2,2-tribromoethoxycarbonyl)-4,5-dihydrodipyrrin-1(10*H*)-one 34

A solution of acid 6 (14.6 mg, 13 µmol) in dry dichloromethane (0.5 cm³) was stirred with 1-chloro-1-dimethylamino-2methylprop-1-ene¹³ (3.42 mg, 20 µmol) under argon at room temperature for 20 min and then treated with (S)-(-)-1phenylethanol (18.0 mg, 147 µmol). After a further 2.5 h, the solvent was evaporated under reduced pressure and the residue was purified by preparative TLC, eluting with dichloromethane-methanol (19:1), to give recovered acid 6 (3.2 mg, 22%) and ester 34 (6.0 mg, 36%) as an oil, shown by 1 H NMR to be a mixture of two diastereoisomers (1:1), contaminated with byproducts giving NMR signals indicating that they had a 2,2-dibromoethenyl group and a 2,2dibromoethyl group, respectively, replacing the 2,2,2-tribromoethyl residue of the main products. This interpretation is supported by the isolation and characterisation of analogous byproducts in a later experiment; $\lambda_{max}(CH_2Cl_2)/nm$ 279 and 219; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.59–1.63 (6 H, m, 2 × PhCHMe), 2.33-3.14 and 3.32-3.85 (44 H, series of m, $6 \times CH_2CH_2CO_2$, $2 \times CH_2CCH_2$ and $6 \times CH_2CO_2$), 3.47-3.64 (30 H, m, $10 \times OMe$, 5.00–5.12 (4 H, m, 2 × CH₂CBr₃) and 5.17 and 5.27 (each 2 H, ABq, J 13, $2 \times CH_2Ph$), 5.98–6.05 (2 H, m, $2 \times PhCHMe$), 7.29–7.37 (20 H, m, $4 \times Ph$), 7.48 and 7.53

(each 1 H, br s, lactam-NH), 9.17 and 9.27 (each 1 H, br s, pyrrole-NH) and 10.16 (2 H, br s, 2 × pyrrole-NH) [byproducts: 4.63–4.74 (m, $2 \times CH_2CHBr_2$) and 5.83 (m, $2 \times CHBr_2$) (ca. 22%); 8.01 and 8.06 (each s, $2 \times CH=CBr_2$) (ca. 22%)]; m/z (FD) 1245, 1247, 1249 and 1251 (1:3:3:1, M⁺, 100%).

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4methoxycarbonylmethylpyrrol-2-ylmethyl]-2,8-bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)-3-{(1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2,2,1]heptan-2-yloxycarbonylmethyl}-4,5-dihydrodipyrrin-1(10*H*)one 35

A solution of acid 6 (11 mg, 10 µmol) in dry dichloromethane (0.5 cm³) was stirred with 1-chloro-1-dimethylamino-2methylprop-1-ene¹³ (2.6 mg, 19 µmol) under argon at room temperature for 30 min and then treated with (1S)-endo-borneol (27 mg, 220 µmol). After a further 2 h, the solvent was evaporated under reduced pressure and the residue was purified by preparative TLC, eluting with dichloromethane-methanol (24:1), to give recovered acid 6 (3.2 mg, 29%) and ester 35 (4.1 mg, 32%) as an oil, shown by ¹H NMR to be a mixture of two diastereoisomers (1:1) contaminated with byproducts analogous to those reported in the foregoing experiment; λ_{max} (CH₂Cl₂)/nm 285 and 218; δ_{H} (CDCl₃, 400 MHz) 0.84 and 0.86 (each 3 H, s, 2 \times bornyl-Me), 0.87 (12 H, s, 4 \times bornyl-Me), 0.98-1.07, 1.24-1.43, 1.58-1.83, 1.93-2.03 and 2.31-2.42 (14 H, m, 6 × bornyl-CH₂ and 2 × bornyl-CH), 2.42–2.57, 2.70-2.74 and 2.82-3.05 (28 H, m, $6 \times CH_2CH_2CO_2$ and 2 × 5-CH₂), 2.85 and 3.17 (each 1 H, ABq, J 15, 5-CH₂), 2.85 and 3.17 (each 1 H, ABq, J 15, 5-CH₂), 3.16 and 3.43 (each 1 H, ABq, J 15, CH₂CO₂), 3.16 and 3.44 (each 1 H, ABq, J 15, CH_2CO_2), 3.48–3.75 (6 H, m, 3 × CH_2CO_2), 3.54–3.64 (30 H, m, 10 \times OMe), 3.65 and 3.66 (each 1 H, ABq, J 15, CH₂CO₂), 4.97–5.16 (6 H, m, $2 \times CH_2CBr_3$ and $2 \times bornyl-CHO$), 5.18-5.27 (4 H, 2 × ABq, J 12, 2 × CH₂Ph), 7.26-7.39 (10 H, m, $2 \times Ph$), 7.54 (2 H, s, $2 \times lactam-NH$), 9.28 and 10.28 (each 2 H, br s, 4 \times pyrrole-NH) [impurities: 4.60–4.76 (ABq of d, J 11 and 7, 2 × CH₂CHBr₂) and 5.79 and 5.80 (each t, J 7, $2 \times \text{CHBr}_2$ (ca. 21%); 8.01 (s, $2 \times \text{CH=CBr}_2$) (ca. 22%)]; m/z (FD) 1277, 1279, 1281 and 1283 (1:3:3:1, M⁺, 100%).

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4methoxycarbonylmethylpyrrol-2-ylmethyl]-3-[(3*R*)-4,4dimethyl-2-oxotetrahydrofuran-3-yloxycarbonylmethyl]-2,8bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)-4,5-dihydrodipyrrin-1(10*H*)one 36

A solution of acid 6 (21.1 mg, 22 µmol) in dry dichloromethane cm³) was stirred with 1-chloro-1-dimethylamino-2-(1)methylprop-1-ene¹³ (12.1 mg, 90 µmol) under argon at room temperature for 20 min, then treated with (R)-(-)-pantolactone[‡] (80 mg, 0.61 mmol). After a further 30 min, the solvent was evaporated and the residue was purified by preparative TLC, eluting with dichloromethane-methanol (9:1), to give recovered acid 6 (7 mg, 33%) and the ester 36 (6 mg, 25%) as an oil, shown by ¹H NMR to be a mixture of two diastereoisomers (1:1) contaminated with small amounts of dibromo byproducts analogous to those seen earlier; $\lambda_{max}(CH_2Cl_2)/nm$ 284 and 218. This mixture was purified by HPLC on a Spherisorb S5CN semi-preparative column, eluting with diethyl ether-ethyl acetate (3:1), to give the pure separate diastereoisomers of ester 36 as oils.

First eluted diastereoisomer: δ_{H} (CDCl₃, 400 MHz) 1.19 and 1.22 (each 3 H, s, CMe₂), 2.49–2.57 and 2.68–3.23 (17 H, series of m, 3 × CH₂CH₂CO₂, CH₂CCH₂ and CH_AH_BCO₂), 3.50 (1 H, d, J 17, CH_AH_BCO₂), 3.57, 3.58, 3.59, 3.61 and 3.64 (each 3 H, s, OMe), 3.64–3.88 (4 H, m, 2 × CH₂CO₂), 4.04–4.09 (2 H, ABq, J 9, lactone-CH₂), 5.06 (2 H, s, CH₂CBr₃) and 5.18–5.28 (2 H, ABq, J 12, CH₂Ph), 5.46 (1 H, s, lactone-CH), 7.28–7.39

(5 H, m, Ph), 7.43 (1 H, br s, lactam-NH) and 9.35 and 9.92 (each 1 H, br s, pyrrole-NH); m/z (FD) 1253, 1255, 1257 and 1259 (1:3:3:1, M⁺, 100%).

Second eluted diastereoisomer: $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.22 and 1.27 (each 3 H, s, CMe₂), 2.45–2.56, 2.71–2.78 and 2.95– 3.21 (17 H, series of m, 3 × CH₂CH₂CO₂, CH₂CCH₂ and CH_AH_BCO₂), 3.50 (1 H, d, J 16, CH_AH_BCO₂), 3.56, 3.58, 3.60, 3.61 and 3.63 (each 3 H, s, OMe), 3.69–3.96 (4 H, m, 2 × CH₂CO₂), 4.05–4.10 (2 H, ABq, J 9, lactone-CH₂), 5.05 (2 H, s, CH₂CBr₃) and 5.19–5.28 (2 H, ABq, J 12, CH₂Ph), 5.50 (1 H, s, lactone-CH), 7.30–7.42 (5 H, m, Ph), 7.67 (1 H, br s, lactam-NH) and 9.09 and 10.14 (each 1 H, br s, pyrrole-NH); *m/z* (FD) 1253, 1255, 1257 and 1259 (1:3:3:1, M⁺, 100%).

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4methoxycarbonylmethylpyrrol-2-ylmethyl]-3-[(2*R*,3*R*,4*R*)-3,4isopropylidenedioxy-5-oxotetrahydrofuran-2-ylmethoxycarbonylmethyl]-2,8-bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)-4,5-dihydrodipyrrin-1(10*H*)-one 37

A solution of acid 6 (8.39 mg, 8 µmol) in dry dichloromethane (0.5 cm³) was stirred with 1-chloro-1-dimethylamino-2methylprop-1-ene¹³ (2.95 mg, 22 µmol) under argon at room temperature for 10 min, then treated with 2,3-Oisopropylidene-D-(+)-ribono-1,4-lactone²¹ (24.4 mg, 0.10 mmol). After a further 1 h, the solvent was evaporated and the residue purified by preparative TLC, eluting with dichloromethane-methanol (19:1), to give the ester 37 (4.3 mg, 43%) as an oil, shown by ¹H NMR to be a mixture of two diastereoisomers (1:1) contaminated with small amounts of dibromo byproducts analogous to those seen earlier; λ_{max} (CH₂Cl₂)/nm 284 and 218 nm; δ_{H} (CDCl₃, 400 MHz) 1.40 and 1.49 (12 H, 2 × s, 2 × CMe₂), 2.33-2.56, 2.68-2.72, 2.83-2.86, 2.98-3.06, 3.14-3.19 and 3.41-3.79 (78 H, series of m, $6 \times CH_2CH_2CO_2$, $2 \times CH_2CCH_2$, $6 \times CH_2CO_2$ and $10 \times OMe$), 4.22–4.40 (4 H, m, 2 × lactone-CH₂), 4.76–4.83 (4 H, m, 2 \times lactone-3- and -4-H), 4.99 and 5.01 (2 H, ABq, J9, CH_2CBr_3 , 5.04–5.06 (4 H, m, $CH_2CBr_3 + 2 \times \text{lactone-2-H}$), 5.17 and 5.26 (2 H, ABq, J 12, CH₂Ph), 5.18 and 5.26 (2 H, ABq, J 12, CH₂Ph), 7.27–7.38 (10 H, m, 2 × Ph), 7.51 and 7.67 (each 1 H, br s, lactam-NH) and 9.18, 9.41, 9.96 and 10.17 (each 1 H, br s, pyrrole-NH) [impurities: 4.65–4.71 (m, CH₂CHBr₂) and 5.04-5.06 (m, CHBr₂) (ca. 15%); 8.01 and 8.02 (each s, CH=CBr₂) (ca. 25%)]; m/z (FD) 1311, 1313, 1315 and 1317 (1:3:3:1, M⁺, 100%).

3-{(3*R*,4*R*,5*R*)-4,5-[(*R*)-Benzylidenedioxy]-2-oxotetrahydropyran-3-yloxycarbonylmethyl}-4-[5-benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4-methoxycarbonylmethylpyrrol-2ylmethyl]-2,8-bis(2-methoxycarbonylethyl)-7-methoxycarbonylmethyl-9-(2,2,2-tribromoethoxycarbonyl)-4,5-dihydrodipyrrin-1(10*H*)-one 38

A solution of acid 6 (500 mg, 0.438 mmol) in dry dichloromethane (20 cm³) was stirred with 1-chloro-1dimethylamino-2-methylprop-1-ene¹³ (221 mg, 1.581 mmol) under argon at room temperature for 9 min, then treated with 3,4-O-benzylidene-D-ribonic δ -lactone (550 mg, 2.328 mmol). After a further 3 h, the solvent was evaporated and the residue purified by flash chromatography on silica, eluting with dichloromethane-methanol (19:1), to give a mixture of the diastereoisomeric esters **38** as an oil (537 mg, 90%). An aliquot (106 mg) was purified by HPLC on a Spherisorb S5CN semipreparative column, eluting with diethyl ether-ethyl acetate (3:1), to give four fractions, as follows.

(i) The ester **38b** (peak Y in Fig. 1) as an oil (27.6 mg, 23%) (Found: MH^+ , 1360.1447. $C_{57}H_{60}Br_3N_3O_{21}$ requires M + H, 1360.1349); $\lambda_{max}(MeCN)/nm$ 283; $\delta_H(CDCl_3, 400 MHz)$ 2.35–2.67 (10 H, m, $CH_2CH_2CO_2$), 2.82 and 3.07 (2 H, ABq, J 15) and 2.86 and 3.10 (2 H, ABq, J 15, CH_2CCH_2), 3.00 (2 H, m, $CH_2CH_2CO_2$), 3.32 and 3.42 (2 H, ABq, J 17, CH_2CO_2), 3.51,

3.54, 3.55, 3.58, 3.60 (each 3 H, s, OMe), 3.68 and 3.79 (2 H, ABq, J 18, CH₂CO₂), 3.69 (2 H, s, CH₂CO₂), 4.33 and 4.53 (2 H, ABq, J 13, lactone-6-H₂), 4.55 (1 H, d, J 8, lactone-5-H), 4.81 (1 H, dd, J 8 and 3, lactone-4-H), 5.00 and 5.06 (2 H, ABq, J12, CH₂CBr₃), 5.12 and 5.19 (2 H, ABq, J12, CH₂Ph), 5.61 (1 H, d, J 3, lactone-3-H), 5.74 (1 H, s, CHPh), 7.25-7.43 (10 H, m, 2 $\,\times\,$ Ph) 7.48 (1 H, br s, lactam-NH) and 9.69 and 10.04 (each 1 H, br s, pyrrole-NH); $\delta_{C}(CDCl_3, 100 \text{ MHz})$ 19.18, 19.79 and $20.53 (3 \times CH_2CH_2CO_2), 29.28, 29.70, 30.28, 30.69, 31.02,$ 34.90 and 35.97 $(3 \times CH_2CH_2CO_2)$ 31.44. 34.64, $3 \times CH_2CO_2$, CH_2CCH_2 , CBr_3), 51.50, 51.63, 51.80, 51.85 and 52.31 (5 × OMe), 65.81, 66.18, 67.62, 70.16, 73.38 and 74.10 (ribonic lactone, C-4 and CH₂Ph), 76.75 (CH₂CBr₃), 104.82 (CHPh), 116.53, 117.00, 119.25, 122.40 (2 C), 127.32 (2 C), 128.14 (2 C), 128.48 (2 C), 128.61 (2 C), 130.46 (2 C), 130.57, 131.41, 135.54, 138.08, 138.41 and 148.56 (C=C) and 158.81, 160.63, 165.59, 170.66, 171.83, 172.02, 173.00, 173.34, 173.55 and 173.94 (10 × C=O); m/z (FD) 1359, 1361, 1363 and 1365 $(1:3:3:1, M^+, 100\%).$

(ii) The ester 38a (peak X in Fig. 1) as an oil (25.4 mg, 22%) (Found: MH⁺, 1360.1229); λ_{max} (MeCN)/nm 283; δ_{H} (CDCl₃, 400 MHz) 2.39-2.54 (8 H, m) and 2.69 (2 H, t, 7, CH₂CH₂CO₂), 2.78 and 3.15 (2 H, ABq, J 16, CH₂CCH₂), 2.95-3.06 (4 H, m, CH2CH2CO2 and CH2CCH2), 3.15 and 3.48 (2 H, ABq, J 16, CH₂CO₂), 3.55, 3.56, 3.56, 3.57, 3.58 (each 3 H, s, OMe), 3.68 and 3.87 (2 H, ABq, J 18, CH₂CO₂), 3.71 and 3.81 (2 H, ABq, J 18, CH₂CO₂), 4.40 and 4.61 (2 H, ABq, J13, lactone-6-H₂), 4.73 (1 H, d, J8, lactone-5-H), 4.94 (1 H, dd, J 8 and 3, lactone-4-H), 4.99 and 5.08 (2 H, ABq, J 12, CH₂CBr₃), 5.17 and 5.25 (2 H, ABq, J 12, CH₂Ph), 5.64 (1 H, d, J 3, lactone-3-H), 5.83 (1 H, s, CHPh), 7.28-7.47 (10 H, m, 2 × Ph), 7.69 (1 H, br s, lactam-NH) and 9.24 and 9.89 (each 1 H, br s, pyrrole-NH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 19.28, 20.00 and $20.45 (3 \times CH_2CH_2CO_2)$, 29.10, 30.12, 30.49, 30.61, 31.03, 32.94, 34.80, 35.05 and 36.05 $(3 \times CH_2CH_2CO_2)$, $3 \times CH_2CO_2$, CH_2CCH_2 , CBr_3), 51.49, 51.64, 51.70, 51.85 and 52.37 (5 × OMe), 65.82, 66.02, 67.74, 70.22, 73.34 and 74.12 (ribonic lactone, C-4 and CH₂Ph), 76.71 (CH₂CBr₃), 105.07 (CHPh), 116.19, 116.72, 119.37, 122.52, 122.63, 127.32 (2 C), 127.88, 128.20, 128.39 (2 C), 128.53 (2 C), 128.63 (2 C), 130.48, 130.57, 131.10, 134.40, 136.03, 138.83 and 148.31 (C=C) and 158.82, 160.30, 165.22, 171.15, 171.75, 171.83, 173.30, 173.47 and 173.53 (2 C) (10 × C=O); m/z (FD) 1359, 1361, 1363 and 1365 (1:3:3:1, M⁺, 100%).

(iii) The 2,2-*dibromoethenyl ester* **39a** (peak P in Fig. 1) as an oil (7.6 mg, 7%); $\lambda_{max}(CH_2Cl_2)/m289$; $\delta_H(CDCl_3, 400 \text{ MHz})$ 2.41–2.69 and 2.96–3.01 (12 H, m, 3 × CH_2CH_2CO_2), 2.82 and 3.11 (2 H, ABq, J 15) and 2.85 and 3.14 (2 H, ABq, J 15, CH_2CCH_2), 3.23 and 3.48 (2 H, ABq, J 17, CH_2CO_2), 3.54, 3.56, 3.57, 3.61 and 3.62 (each 3 H, s, OMe), 3.68 and 3.87 (2 H, ABq, J 18, CH_2CO_2), 3.75 (2 H, s, CH_2CO_2), 4.37 and 4.61 (2 H, ABq, J 13, lactone-6-H_2), 4.70 (1 H, d, J 8, lactone-5-H), 4.89 (1 H, dd, J 8 and 3, lactone-4-H), 5.18 and 5.24 (2 H, ABq, J 12, CH_2Ph), 5.57 (1 H, d, J 3, lactone-3-H), 5.80 (1 H, s, CHPh), 7.28–7.45 (11 H, m, 2 × Ph and lactam-NH), 8.02 (1 H, s, CH=CBr_2) and 9.38 and 9.80 (each 1 H, br s, pyrrole-NH); m/z (FD) 1279, 1281 and 1283 (1:2:1, M⁺, 100%).

(iv) The 2,2-dibromoethenyl ester **39b** (peak Q in Fig. 1) as an oil (4.7 mg, 4%); λ_{max} (CH₂Cl₂)/nm 289; δ_{H} (CDCl₃, 400 MHz) 2.39–2.58, 2.67–2.73 and 2.95–3.05 (15 H, m, 3 × CH₂CH₂CO₂ and CH₂CCH_AH_B), 3.12 (1 H, d, J 17, CH_AH_BCO₂), 3.16 (1 H, d, J 15, CH₂CCH_AH_B), 3.46–3.98 (5 H, m, CH_AH_BCO₂ and 2 × CH₂CO₂), 3.53, 3.55, 3.56, 3.58 and 3.59 (each 3 H, s, OMe), 4.39 and 4.63 (2 H, ABq, J 13, lactone-6-H₂), 4.77 (1 H, d, J 7, lactone-5-H), 4.98 (1 H, dd, J 8 and 3, lactone-4-H), 5.18 and 5.27 (2 H, ABq, J 12, CH₂Ph), 5.60 (1 H, d, J 3, lactone-3-H), 5.85 (1 H, s, CHPh), 7.27–7.65 (10 H, m, 2 × Ph), 7.65 (1 H, br s, lactam-NH), 8.01 (1 H, s, CH=CBr₂) and 8.99 and 10.11 (each 1 H, br s, pyrrole-NH); *m*/*z* (FD) 1279, 1281 and 1283 (1:2:1, M⁺, 100%).

4-[5-Benzyloxycarbonyl-3-(2-methoxycarbonylethyl)-4-(methoxycarbonylmethyl)pyrrol-2-ylmethyl]-2,8-bis(2methoxycarbonylethyl)-3,7-bis(methoxycarbonylmethyl)-9-(2,2,2-tribromoethoxycarbonyl)-4,5-dihydrodipyrrin-1(10*H*)-one 40

A solution of the resolved lactam **38b** (75.4 mg, 55 μ mol) in methanol (6.5 cm³) and tetrahydrofuran (1.2 cm³) was stirred with a solution of sodium methoxide (1.19 mg, 22 μ mol) in methanol (0.1 cm³) under argon at room temperature for 25 min. Water (5 cm³) was added, the pH was adjusted to *ca*. 4 with glacial acetic acid and the solution was extracted with dichloromethane (4 × 4 cm³). The combined extracts were washed with water (1 × 2.5 cm³), dried and evaporated. The residue was purified by preparative TLC, eluting with diethyl ether-methanol (19:1), to give the *lactam* **40b** (61.9 mg, 97%) as a glass (Found: M⁺, 1155.0782. C₄₆H₅₂Br₃N₃O₁₇ requires *M*, 1155.0847).

The resolved *lactam* **38a** (94.0 mg, 69 μ mol) was similarly converted into the enantiomeric *lactam* **40a** (70.4 mg, 88%) (Found: M⁺, 1155.0782). Both enantiomers **40** were identical (apart from optical properties) to authentic racemic material⁷ by TLC [run separately and in admixture, R_f 0.32, diethyl ether-methanol (19:1)], ¹H and ¹³C NMR and UV spectroscopy.

4,19-Methylene-2,8,13,18-tetrakis(2-methoxycarbonylethyl)-3,7,12,17-tetrakis(methoxycarbonylmethyl)bilan-1(4H)-one 54

The conversion of the resolved *lactams* 40 into the respective enantiomers of the spiro lactam 54 was accomplished using the chemistry and procedures developed for the racemic series.⁷ At each stage of the sequence $47 \rightarrow 48 \rightarrow 49 \rightarrow 50 \rightarrow 51$, the pure enantiomers were shown by TLC, ¹H NMR spectroscopy and mass spectrometry to match authentic samples of their racemic analogues which had been rigorously characterised.⁷ Finally, the spiro lactams 54b (Found: M⁺, 964.3916. C₄₈H₆₀N₄O₁₇ requires *M*, 964.3954) and 54a (Found: M⁺, 964.3905) were both identical to authentic racemic material by TLC [run separately and in admixture, R_f 0.37, diethyl ether–methanol (19:1)], UV and ¹H and ¹³C NMR spectroscopy.⁷

As described in the text, the first time the conversion of **48b** into **50b** was attempted under the published conditions,⁷ the main product after the hydrogenation step was the $bis(\alpha$ -free) compound **53b** (Found: M⁺, 952.3946. C₄₇H₆₀N₄O₁₇ requires M, 952.3954); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.24–2.40 and 2.51–2.72 (18 H, m, 4 × CH₂CH₂CO₂ and CH_AH_BCCH_AH_B), 2.91 and 2.92 (each 1 H, d, J 15, CH_AH_BCCH_AH_B), 3.25 (1 H, d, J 16, CH_AH_BCO₂), 3.34–3.77 (9 H, m, CH_AH_BCO₂, 3 × CH₂CO₂ and 10-H₂), 3.62 (6 H, s, 2 × OMe), 3.65 (9 H, s, 3 × OMe), 3.68, 3.71 and 3.74 (each 3 H, s, OMe), 6.43 (2 H, m, 2 × α -H), 7.12 (s, lactam-NH) and 8.55, 8.68 and 9.22 (each 1 H, br s, pyrrole-NH); m/z (FD) 952 (100%).

This undesired process could be almost completely avoided simply by carrying out the iodination in the normal way ⁷ except running the reaction at room temperature for just 20 min, followed by work-up and hydrogenation. This gave the desired product **50b** (86%) along with a very small amount of bis(α -free) product **53b** (trace to 7% in different runs).

For the conversion of the bis(α -free) product **53b** into the spiro lactam **54b**, paraformaldehyde (5.6 mg) was first stirred with trifluoroacetic acid (10 cm³) at room temperature for 30 min. An aliquot of this solution (0.2 cm³) and trifluoroacetic acid (0.88 cm³) were stirred with a solution of the bis(α -free) tripyrrolic lactam **53b** (1.8 mg, 1.9 µmol) in methanol (83 mm³) under argon at room temperature. After 20 min, a further aliquot (0.2 cm³) of the paraformaldehyde–trifluoroacetic acid solution was added. After a further 35 min, the solution was evaporated and the residue was dissolved in dichloromethane (2 cm³), washed with water (1 cm³) followed by 5% aqueous sodium hydrogen carbonate (1 cm³), dried and evaporated.

The residue was purified by preparative TLC, eluting with dichloromethane-methanol (19:1), to give the spiro lactam **54b** (0.5 mg, 27%) identified by direct chromatographic and spectroscopic comparison with authentic material.

Enzymic studies

Each enantiomer, 54a and 54b, of the spiro lactam was hydrolysed with aqueous methanolic potassium hydroxide exactly as described for racemic 54.⁷ These conditions had been shown to hydrolyse only the eight methyl ester groups. The solutions of the potassium salts of the enantiomeric octa-acids, 4a and 4b, after adjustment of the pH as earlier, were used for inhibition experiments on cosynthetase with synthetic hydroxymethylbilane 1 as substrate. The methods and controls developed for the study of racemic 4, which have been fully described,⁷ were followed. The data so obtained are presented as Dixon plots in Fig. 3, from which the K_i values in Table 1 are derived.

Acknowledgements

Grateful acknowledgement is made to Zeneca, Roche Products, F. Hoffmann-La Roche and EPSRC for financial support. We also thank the SERC for an Instant Award (to M. C. C.) and for a Studentship (to N. C.), Dr A. F. Drake (Birkbeck College, London) for measuring the CD spectra, Dr G. J. Hart for assisting with the early enzymic studies and Dr A. Capretta and Dr A. C. Spivey for their help with the manuscript.

References

- 1 Part 43: F. Kiuchi, F. J. Leeper and A. R. Battersby, Chem. Biol., 1995, 2, 527.
- 2 Preliminary report of part of this work: M. A. Cassidy, N. Crockett, F. J. Leeper and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1991, 384.
- 3 F. J. Leeper and A. R. Battersby, *Chem. Rev.*, 1990, 90, 1261. F. J. Leeper, *Nat. Prod. Rep.*, 1989, 6, 171.

- 4 A. R. Battersby, C. J. R. Fookes, M. J. Meegan, E. McDonald and H. K. W. Wurziger, J. Chem. Soc., Perkin Trans. 1, 1982, 2786.
- 5 A. R. Battersby, G. L. Hodgson, E. Hunt, E. McDonald and J. Saunders, J. Chem. Soc., Perkin Trans. 1, 1976, 273.
- 6 J. H. Mathewson and A. H. Corwin, J. Am. Chem. Soc., 1961, 83, 135.
- 7 W. M. Stark, C. J. Hawker, G. J. Hart, A. Philippides, P. M. Petersen, J. D. Lewis, F. J. Leeper and A. R. Battersby, J. Chem. Soc., Perkin Trans. 1, 1993, 2875; W. M. Stark, G. J. Hart and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1986, 465.
- 8 A. R. Battersby, C. J. R. Fookes, K. E. Gustafson-Potter, E. McDonald and G. W. J. Matcham, J. Chem. Soc., Perkin Trans. 1, 1982, 2413.
- 9 A. H. Jackson, K. R. N. Rao, N. S. Ooi and E. Adelakun, Tetrahedron Lett., 1984, 25, 6049.
- A. R. Battersby, E. Hunt, E. McDonald, J. B. Paine III and J. Saunders, J. Chem. Soc., Perkin Trans. 1, 1976, 1008.
 B. V. Gregorovich, K. S. Y. Liang, D. M. Clugston and S. F.
- 11 B. V. Gregorovich, K. S. Y. Liang, D. M. Clugston and S. F. McDonald, *Can. J. Chem.*, 1968, **46**, 3291.
- 12 M. W. Roomi and S. F. McDonald, Can. J. Chem., 1970, 48, 139.
- 13 B. Haveaux, A. Dekoker, M. Rens, A. R. Sidani, J. Toye and L. Ghosez, Org. Synth., 1979, 59, 26.
- 14 C. C. Duke and R. J. Wells, Aust. J. Chem., 1987, 40, 1641.
- 15 G. J. Hart and A. R. Battersby, Biochem. J., 1985, 232, 151.
- 16 M. Dixon and E. C. Webb, in *Enzymes*, 3rd edn., Longman, London, 1979, p. 62.
- 17 A. C. Spivey, A. Capretta, C. S. Frampton, F. J. Leeper and A. R. Battersby, J. Chem. Soc., Perkin Trans. 1, 1996, 2091.
- 18 A. D. Miller, F. J. Leeper and A. R. Battersby, J. Chem. Soc., Perkin Trans. 1, 1989, 1943.
- 19 G. W. Kenner, J. Rimmer, K. M. Smith and J. F. Unsworth, J. Chem. Soc., Perkin Trans. 1, 1977, 332.
- 20 A. R. Battersby, M. H. Block, C. J. R. Fookes, P. J. Harrison, G. B. Henderson and F. J. Leeper, J. Chem. Soc., Perkin Trans. 1, 1992, 2175.
- 21 L. Hough, J. K. N. Jones and D. L. Mitchell, Can. J. Chem., 1958, 36, 1720.

Paper 6/016211 Received 7th March 1996 Accepted 7th June 1996