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ABSTRACT: A sandwich zwitterionic ruthenium complex (4) was
prepared by an intramolecular 1,3-dipolar cycloaddition of the
ruthenium azido isocyanide [CpMe5Ru(CNAr)2N3] (2). The reaction
involved a formal 1,3-migration mechanism along a highly conjugated
system linking to a cyanamido group.

The design and construction of reactive charge-neutral
zwitterionic platinum-group-metal complexes have at-

tracted considerable interest over the past few years because
some such complexes have a high potential as catalysts in varied
organic transformations.1−4 For instance, while zwitterionic
rhodium(I) complexes have shown divergent reactivity, such as
in the hydrosilylation of ketones,2a diboration of vinylarenes,2b

hydroformylation of olefins,2c,d and tandem cyclohydrocarbo-
nylation/CO insertion of α-imino alkynes,2g several zwitter-
ionic ruthenium(II) complexes3 have been recently applied to
the activation in the atom transfer radical addition of CCl4,

4a

the geminal Si−H bond of an organosilane,4b the ring-opening
metathesis polymerization of cyclooctene,4c reversible H2
splitting,4d and so on.4d

On the other hand, 1.3-dipolar cycloaddition of metal azido
and isocyanides is one of the routes to the preparation of
transition-metal cyanamido complexes with terminal nitrogen
coordination as well as C-bonded tetrazolato compounds,5

where cyanamido complexes are regarded as the thermolysis
products of the C-bonded tetrazolato compounds.5a,f−h

Recently, it has been postulated that π-bonded cyanamido
allyl metal intermediates might isomerize in solution and might
play a key role in the metal-catalyzed (especially palladium-
catalyzed) preparation of organic cyanamides.6 Due to the
importance of cyanamides for heterocyclic compounds in the
fields of organic and inorganic chemistry,7 the inferred
mechanism of the isomerized π-bonded cyanamido allyl metal
intermediates is significant in understanding the formation of
cyanamides6 as well as cyanamido complexes.5 However, such
species have not been evidenced experimentally to date. Herein,
we report a half-sandwich cyanamido ruthenium compound (3)
and one sandwich arene ruthenium complex with a cyanamido
anion group (4), both of which likely derive from isomerized π-
bonded cyanamido allyl ruthenium intermediates. Probably
owing to their high reactivity, the formal 1,3-isomerized

products of π-bonded cyanamido allyl metal intermediates
such as 4 have not been isolated and characterized structurally
before the present work.
As shown in Scheme 1, the complex [Cp*RuL2Cl] (1; L =

CNAr, Ar = 2,6-dimethylphenyl) was easily obtained by the

reaction of [Cp*RuCl]4
8 and 2 equiv of 2,6-dimethylphenyl

isocyanide (L) in CH2Cl2 in 94.4% yield as dark orange crystals
(Scheme 1).9 The ruthenium azido complex [Cp*RuL2N3] (2)
was further synthesized by the salt elimination reaction of 1 and
NaN3 in dry ethanol as a orange solid in 90.1% yield.10 The
intramolecular [3 + 2] cycloaddition occurred when 2 was
refluxed in o-xylene for 4 days in the presence of additional 0.6
equiv of 2,6-dimethylphenyl isocyanide (L) (Scheme 1). The
reaction led to the formation of 3 and 4 as a mixture ([3]/[4] =
4/1), which was further isolated in good to fair yield (63.0% for
3, 24.8% for 4), respectively.11 Alternatively, the reaction may
be performed within 5 h at 200 °C in a sealed evacuated Carius
tube by using 1,2,4,5-tetramethylbenzene as solvent. Complexes
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Scheme 1. Preparation of Complexes 1−4
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3 and 4 are readily soluble in THF and chlorinated solvents but
only somewhat soluble in ether.
The elemental analysis results are in complete agreement

with the formulas of compounds 1−4.12 The 1H NMR (CD3Cl,
23 °C) spectrum of complex 3 shows signals at δ 1.91 (s), 2.31
(s), 2.40 (s), 6.55−6.81 (m), and 7.06 (s) ppm that are
assigned to CpMe5, NCNAr, and CNAr groups, respectively.
Two resonances at δ 117.98 and 170.60 ppm in the 13C{1H}
NMR spectrum evidenced the NCN and Ru−CN groups. The
NCN stretching vibrations in the IR spectrum appear at
1598 (m) and 2164 (m) cm−1, while the band at 2363(w) cm−1

is attributed to CN of the coordinated acetonitrile.13 The 1H
NMR spectrum (CD2Cl2, 23 °C) of compound 4 is, however,
quite different from that of 3 and shows one set of signals at δ
1.82 (s, 15 H), 2.14 (s, 6 H), and 4.95 (m, 3 H) ppm. The
upfield resonance at δ 4.95 (m) is assigned to the protons on
the η6-coordinated phenyl ring, suggesting the formation of a
metal arene complex. The 13C{1H} NMR spectrum shows the
upfield signals of the carbon atoms on the phenyl ring at about
δ 90 ppm. The broad resonance at δ 131.54 ppm is assigned to
the NCN group. The −NCN stretching vibration of 4 in
the IR spectrum appears at 2096 (m) cm−1 but bands without
stretching appear at about 2360 and 1600 cm−1.
An X-ray crystal structure determination of 1−4 was carried

out.12,13 In the structures of complexes 1−3, the Ru center is
coordinated by two CNAr units, one chloro for 1 (azido for 2
or NCNAr for 3), and one η5-CpMe5 group. The overall
geometry about ruthenium exclusively featured a typical “piano
stool” conformation (Figure 1).13 The bond distances (Ru(1)−

N(3) = 2.080(3) Å and Ru(1)−C(1) = 1.931(3) Å) and bond
angles (C(10)−Ru(1)−C(1) = 90.85(5)° and C(10)−Ru(1)−
N(3) = 90.84(1)°) at ruthenium in 3 are comparable to those
found in 1 and 2.12,13

In contrast to the piano-stool structures of 1−3, the X-ray
analysis clearly revealed that 4 is a sandwich molecule with [η5-
(CpMe5)]

− and [η6-(arene)NCN]− moieties (Figure 2).12,13

The carbon atom (C(6)) deviation from the least-squares plane
of phenyl ring is only 0.0331° (0.0105 Å), and the angle
between two best planes of the ligand rings is 0.41°, so that the
sandwich is almost perfectly stacked parallel. The longer C(1)−

N(1) bond length (1.360(9) Å, vs N(1)−C(9) = 1.297(7) Å)
and C(9)−N(2) (1.149(8) Å) and the smaller bond angle at
N(1) (C(1)−N(1)−C(9) = 127.48(9)°, vs N(2)−C(9)−N(1)
= 169.97(2)°) are indicative of C(1)−N(1) single-bond
character. The difference between Ru(1)−C(1) (2.360(1) Å)
and the average Ru(1)−C bond length in the phenyl ring
(2.235(5) Å) is 0.12(2) Å. The packing structure of 4 showed
that the cyanamido group was neither affected by any packing
force from the group and atoms nor oriented to the metal
center of a neighboring molecule. The amino nitrogen atom
(N(1)) of the cyanamido group has therefore one lone pair of
electrons that seems to conjugate with both cyano and arene
groups. Since the C(1) atom is almost coplanar, the phenyl ring
must remain aromatic to comply with the 4n + 2 rule; complex
4 is thus a zwitterionic species with an anionic NCN−

functional group. Ruthenium arene complexes with an anionic
functional group on the phenyl ring are rare, and only a few
structurally characterized examples such as [CpRu(η6-
C6H5BPh3)], [(η6-C6H5BPh2H)Ru(PMe3)2(SiMe3)], [(η6-
C6H5BPh3)RuH(depe)], and [(η6-C6H5BPh3)Ru((1−3,5,6-η)-
C8H11)] as well as [CpMe5Ru(η

6-PhCOO)], [(η5-C8H11)Ru-
(η6-PhSO3)], and [(η5-C5H4OH)Ru(η

6-p-MeC6H4SO3)] are
known.14,15 However, it is notable that the significantly longer
Ru(1)−C(1) bond length may indicate another resonance form
of 4: namely, a η5 species containing a CN−CN group,
similar to that found in [CpMe5Ru(η

5-C5F5CO)].14n−p

The mechanism for the formation of 3 and 4 seems to be an
alternative three-step mechanism involving intermediates A−C
at high temperatures (Scheme 2). The C-bonded tetrazolato
ruthenium complex (A) forms and then decomposes at high
temperatures to give a π-bonded cyanamido allyl metal
intermediate (B). It seems reasonable that a formal 1,3-
migration of the [Ru]L2 unit would occur along the allyl group
in B to give complexes 3 and 4.16a It seems that 3 is a kinetic
product and 4 is a thermodynamic species.16b However, we
could not observe the proton resonances of these intermediates
in the 1H NMR spectra at varying temperatures (100−145 °C),
indicating that they are all unstable at high temperatures.16 We
also investigated the possible equilibrium between complexes 3
and 4. Compound 3 only converted to compound 4 (only
about 5% yield) slightly when an o-xylene-d10 solution of 3 was
heated at 145 °C in a sealed combustion tube for 100 h. In
contrast, compound 4 is quite stable and could not convert to
compound 3 even after 150 h under similar conditions.16

Figure 1. ORTEP drawing of complex 3 with thermal ellipsoids drawn
at the 30% probability level. Hydrogen atoms are omitted for clarity.
Selected bond lengths (Å) and angles (deg): Ru(1)−C(30) =
2.237(5), Ru(1)−C(1) = 1.931(3), Ru(1)−N(3) = 2.080(3), N(3)−
C(19) = 1.152(5), C(19)−N(4) = 1.269(1), N(4)−C(20) =
1.391(2); C(10)−Ru(1)−C(1) = 90.85(5), C(10)−Ru(1)−N(3) =
90.84(1), Ru(1)−C(1)−N(1) = 178.15(9), Ru(1)−N(3)−C(19) =
170.16(5), N(3)−C(19)−N(4) = 170.16 (5), C(19)−N(4) −C(20) =
128.28(4).

Figure 2. ORTEP drawing of complex 4 with thermal ellipsoids drawn
at the 30% probability level. Hydrogen atoms are omitted for clarity.
Selected bond lengths (Å) and angles (deg): Ru(1)−C(11) =
2.194(2), Ru(1)−C(6) = 2.235(5), Ru(1)−C(1) = 2.360(1), C(1)−
N(1) = 1.360(9), N(1)−C(9) = 1.297(7), C(9)−N(2) = 1.149(8);
C(1)−N(1)−C(9) = 127.48(9), N(2)−C(9)−N(1) = 169.97(2).
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In summary, an intramolecular 1,3-dipolar cycloaddition of
the azido metal isocyanide 2 occurred to afford the two
isomeric cyanamido ruthenium complexes 3 and 4, the latter of
which is a zwitterionic ruthenium complex with a non-
coordinating cyanamido group that has potential in organic
transformations.4 The formation of isomers 3 and 4 suggested
that a metal 1,3-migration to 2N or even to 5N occurred
probably via the π-allyl ruthenium cyanamido intermediate B
after the breakdown of the tetrazolato ring. The migration to
2N may be regarded as a formal Curtius rearrangement,17 while
the migration to 5N, however, was never observed due to a
bulky substituent on the nitrogen atom. In addition, the
structure of 4 rendered a unique example that may give insight
into the bonding capability of the phenylcyanamido ligand with
transition metals, which usually presents a terminal or side-on
cyanamido coordination with metals.18a The successful
preparation and structural characterization of 4 may thus
open a path to the preparation of novel sandwich zwitterionic
phenylcyanamide complexes with specific electronic and
magnetic communication properties.18
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