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A B S T R A C T

An unprecedented enzyme-catalyzed asymmetric domino aza-Michael/aldol reaction of 2-aminoben-

zaldehyde and a,b-unsaturated aldehydes is achieved. Pepsin from porcine gastric mucosa provided

mild and efficient access to diverse substituted 1,2-dihydroquinolines in yields of 38–97% with 6–24%

enantiomeric excess (ee). This work not only provides a novel method for the synthesis of

dihydroquinoline derivatives, but also promotes the development of enzyme catalytic promiscuity.

� 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.
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1. Introduction

The prevalent structure of quinoline derivatives is fundamental
in heterocyclic compounds, and these key structural units have
been shown to have pharmaceutical applications [1–5]. Especially
1,2-dihydroquinolines, which can be transformed to 1,2,3,4-
tetrahydroquinolines through the reduction reaction [6,7], were
widely synthesized due to their special biological activity and the
characteristics of the drug intermediates. To date, catalysts
including transition metals [8–16], Brønsted acids [17], Lewis acids
[18] and iodine [19], etc. have been reported for achieving 1,2-
dihydroquinoline derivatives. In 2001, Shibasaki and co-workers
first reported that a bifunctional Lewis acid was able to catalyze the
asymmetric addition of cyanide to various substituted quinolones
(isoquinoline) to give the corresponding Reissert compounds
[20]. In 2003, Hamada et al. used N-protected o-aminobenzalde-
hydes and a,b-unsaturated carbonyl compounds for the preparation
of 1,2-dihydroquinolines in the presence of a quaternary ammonium
salt [21]. In 2007, Córdova et al. demonstrated the asymmetric aza-
Michael/aldol reaction between 2-aminobenzaldehydes and a,b-
unsaturated aldehydes for the synthesis of 1,2-dihydroquinolidines
51
52
53
54
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using a chiral amine catalyst [22]. Subsequently, several similar
approaches for the synthesis of dihydroquinoline by chiral amine
catalysts or bifunctional thiourea catalysts were independently
reported [23–25]. Good yields and ee were reported utilizing
chemical catalysis. In consideration of the great significance of 1,2-
dihydroquinolidines, development of new methods with environ-
mentally friendly and sustainable catalysts to form this important
structure is still desired.

Enzymes, as a kind of green catalyst for modern organic
synthesis, have attracted increased attention. Enzyme catalytic
promiscuity is the functional property of an enzyme to catalyze
an otherwise unnatural reaction, using the same active site
responsible for its natural activity. Enzyme catalytic promiscuity
widens the scope of enzyme use in organic synthesis and allows
for the discovery of new synthetic methods [26,27]. Continuing
research has shown that many enzymes exhibit catalytic
promiscuity [28]. Some examples of the use of enzyme promis-
cuity, such as enzyme-catalyzed aldol [29–34], Henry [35–37],
Mannich [38–42], Povarov [43] and domino reactions [44,45], etc.

have been reported.
Pepsin, a kind of hydrolase, belongs to the family of aspartic acid

protease [46,47] and is present during chemical digestion of
protein. In the 1930s, Northrop crystallized swine pepsin supply-
ing convincing evidence for its identity as a protein. The purified
pepsin provided the needed evidence for confirming its peptide
 asymmetric domino aza-Michael/aldol reaction for the synthesis
ucosa, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/
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Table 1
Solvent screening and control experiments.a

H

O

NH2

CHO Pepsin

Solvent/ H2O, 30o C N
H

CHO

1a 2
3a

Entry Solvent Time (h) Yield (%)b ee (%)c

1 1,4-Dioxane 70 32 10

2 DMF 118 31 16

3 MeCN 118 30 14

4 DMSO 118 25 14

5 n-Butyl acetate 118 24 2

6 Toluene 94 21 0

7 EtOH 117 20 16

8 CHCl3 70 20 4

9 MeOH 70 19 16

10 Isopropyl ether 94 18 2

11 CH2Cl2 94 14 4

12 Solvent-free 48 11 3

13 THF 70 10 2

14 Cyclohexane 70 10 2

15 H2O 118 8 0

16 DMF (no enzyme) 118 Trace –

17 Albumin from chicken

egg white (30 mg)

118 2 –

18 DMF + pepsind 118 Trace –

19 DMF + pepsine 118 Trace –

20 DMF + pepsinf 118 Trace –

21 DMF + pepsing 118 4 –

22 Pepsin (recombinant

as comparison)h

118 45 14

a Unless otherwise noted, reaction conditions: cinnamaldehyde (0.26 mmol), 2-

aminobenzaldehyde (0.30 mmol), pepsin (13.5 kU), solvent (0.5 mL), deionized

water (0.1 mL) at 30 8C.
b Yield of the isolated product after silica gel chromatography.
c Determined by chiral HPLC.
d Pepsin (13.5 kU) in Ag+ solution (0.25 mol/L) [AgNO3 (42.5 mg) in deionized

water (1.0 mL)] was stirred at 30 8C for 24 h, and then the water was removed by

lyophilization before use.
e Pepsin (13.5 kU) in Cu2+ solution (0.25 mol/L) [CuSO4 (39.9 mg) in deionized

water (1.0 mL)] was stirred at 30 8C for 24 h, and then the water was removed by

lyophilization before use.
f Pepsin (13.5 kU) in GuHCl solution (3.12 mol/L) [GuHCl (300 mg) in deionized

water (1.0 mL)] was stirred at 30 8C for 24 h, and then the water was removed by

lyophilization before use.
g Pepsin (13.5 kU) in CDI (1.85 M) [CDI (300 mg) in CH2Cl2 (1.0 mL)] was stirred at

30 8C for 4 h, and then dialyzed against deionized water. The water was removed by

lyophilization before use.
h Reaction conditions: cinnamaldehyde (0.052 mmol), 2-aminobenzaldehyde

(0.060 mmol), pepsin recombinant, expressed in E. coli (0.86 kU), DMF (0.1 mL),

deionized water (0.02 mL) at 30 8C. Yield determined by HPLC analysis.
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ructure which is characteristic of proteins [48]. Pepsin-catalyzed
dol reactions have been developed [32,33]. Herein, we report a
vel example of enzyme catalytic promiscuity using pepsin from
rcine gastric mucosa to catalyze the domino aza-Michael/aldol
action for the synthesis of 1,2-dihydroquinolidines.

 Experimental

Pepsin from porcine gastric mucosa [EC 3.4.23.1, P7000-25g, Lot
50M1304V, powder, 49.0% protein (UV), 920 units/mg protein,
d P7125-100g, Lot #SLBD7698V, powder, 18.0% protein (UV),
1 units/mg protein; one unit will produce a DA280 nm of 0.001 per
in at pH 2.0 at 37 8C, measured as TCA-soluble products using
moglobin as substrate. (Final vol. = 16 mL. Light path = 1 cm)]

ere purchased from Sigma–Aldrich. Recombinant pepsin expressed
 E. coli was purchased from Hangzhou Biosci Biotech Co., Ltd. Other
emical reagents and solvents were purchased from commercial
ndors, and used without any further purification unless otherwise
ated.

Flash column chromatography was carried out using 200–300
esh silica gel at increased pressure. The NMR spectra were
corded with TMS as the internal standard in CDCl3 on a Bruker
ance 600 Spectrometer (600 MHz 1H, 150 MHz 13C) at room

mperature. In each case, the enantiomeric excess was deter-
ined by chiral HPLC analysis on Chiralpak AD-H, IA-H and
iralcel OD-H in comparison with authentic racemates. High-

solution mass spectra were obtained using an ESI ionization
urce (Varian 7.0T FTICR-MS). All reactions were monitored by
in-layer chromatography (TLC) with Haiyang GF254 silica gel
ates.

General procedure for the pepsin-catalyzed domino aza-
ichael/aldol reactions: To a mixture of 2-aminobenzaldehyde
.30 mmol), a,b-unsaturated aldehyde (0.26 mmol), pepsin
2.3 kU) and DMF (0.5 mL), deionized water (0.3 mL) was added.
e resultant mixture was stirred for the specified time at 40 8C,
d monitored by TLC analysis. The reaction was terminated
 filtering the enzyme. Ethyl acetate was employed to wash
e residue on the filter paper to assure that products obtained
ere all dissolved in the filtrate. The filtrate was washed with
turated brine three times, and the combined organic layers were
ied over anhydrous Na2SO4, and concentrated under vacuum.
e residue was purified by flash column chromatography on

lica gel using a mixture of petroleum ether and ethyl acetate
tio 3:1–20:1 as eluent.

 Results and discussion

Through a large number of screenings, we found that pepsin
m porcine gastric mucosa could catalyze aza-Michael/aldol

action of 2-aminobenzaldehyde and cinnamaldehyde. Thus, this
action was used as a model to investigate the influence of
fferent parameters on the pepsin-catalyzed aza-Michael/aldol
action. In view of the fact that the reaction medium plays an
portant role in the enzymatic reactions [49], different solvents

ere screened (Table 1, entries 1–15). Based on the experimental
ta, pepsin showed certain catalytic activity, not only in polar
lvents, but also in nonpolar solvents in the model reaction. The
ghest yield of 32% was obtained in 1,4-dioxane (Table 1, entry 1).
e best enantioselectivity of 16% ee was observed in DMF, ethanol,
d methanol, respectively (Table 1, entries 2, 7 and 9). Among
em, the yield of 31% was obtained in DMF. Considering both yield
d selectivity, DMF was selected as a suitable solvent for further
vestigation.

Next, to confirm the specific catalytic effect of pepsin on the
a-Michael/aldol reaction, some control experiments were
rformed (Table 1, entries 16–21). The blank experiment was
Please cite this article in press as: X.-D. Zhang, et al., Enzyme-catalyze
of 1,2-dihydroquinolines using pepsin from porcine gastric 
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conducted and only a trace amount of the desired product observed
(Table 1, entry 16). To exclude the possibility that the catalytic
activity of the pepsin for the aza-Michael/aldol reaction could arise
from the catalysis of an unspecific amino acid residue on the surface
of the enzyme [50], albumin from chicken egg white, representing a
protein without an enzymatic function, was used as a catalyst in the
model reaction, and only gave the product in 2% yield without ee

(Table 1, entry 17). Therefore, it can be assumed that the protein
surface of pepsin is predominately catalytically inactive in the
process. Enzymes maintain their native tertiary structures mainly
through a combination of coordinated hydrogen bonding, hydro-
phobic, electrostatic, steric, and other interactions [51]. Heavy metal
ions, as common denaturation agents, can inactivate enzymes by
reacting with some structural groups (e.g., –SH groups) resulting in
irreversible damage, or interacting with some amino acid residues
causing changes in three-dimensional structure. Thus, metal ions
Ag+ and Cu2+ were employed to pretreat the pepsin, separately,
and then the pretreated pepsin was used to catalyze the model
d asymmetric domino aza-Michael/aldol reaction for the synthesis
mucosa, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/
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reaction, which gave only trace amounts of product (Table 1, entries
18 and 19). Another denaturation agent, guanidine hydrochloride
(GuHCl), also can change the conformational structure of enzymes,
and ultimately denature the enzyme; the reaction with GuHCl
pretreated pepsin only gave a trace amount of product (Table 1,
entry 20). These control experiments indicated that the three-
dimensional structure of the enzyme was responsible for its catalytic
activity in the domino reaction. Moreover, according to the literature
[52], the active site of pepsin from porcine gastric mucosa contains
Asp32 and Asp215 residues. Carbonyldiimidazole (CDI), an irrevers-
ible inhibitor of aspartic acid, which can bond covalently with the
carbonyl of aspartic acid was used to pretreat pepsin, and the
reaction with CDI pretreated pepsin only gave the product in a low
yield of 4% without ee (Table 1, entry 21). This result implied that the
enzyme-catalyzed domino aza-Michael/aldol reaction may occur
at the active site of the enzyme, or in close proximity. The above
experiments demonstrated that inhibition and denaturation of
pepsin caused a nearly complete disruption of the catalytic activity
of the enzyme. As a consequence, it can be concluded that pepsin has
the ability to catalyze the domino aza-Michael/aldol reaction with a
certain degree of enantioselectivity, and the native structure of the
enzyme is responsible for its activity and aspartic acids may play a
key role in this catalysis event.

To rule out the possibility of catalysis by the presence of some
impure proteins, we purchased the pepsin from porcine gastric
mucosa, recombinant, expressed in E. coli for comparison. The
purity of this protein was checked by SDS-PAGE (for the SDS-PAGE
image, please see the Supporting information), which showed a
clear pepsin band with a molecular weight of 35 kDa and that the
protein was quite pure. Then, recombinant pepsin was used to
catalyze the model domino reaction providing yields of 45% and
14% ee (Table 1, entry 22). This result clearly confirmed that pepsin
indeed has the ability to catalyze the reaction.

Usually enzymes require water molecules to maintain their
optimum spatial structure via hydrogen bonding and other non-
covalent interactions, thus, a small amount of water is often required
for enzymatic reactions in non-aqueous medium. Consequently, the
influence of water content on pepsin-catalyzed domino reaction in
DMF was investigated (Fig. 1). It can be seen that the yield of the
product tended to rise as the addition of water increased from 0 to
0.3 mL in DMF (0.5 mL), and further increases of water additions
caused a decrease in yield. The best yield of 41% with 16% ee was
obtained when 0.3 mL of water was added to the reaction system.
The addition of water had slight effects on the enantioselectivity of
the reaction. Thus 0.3 mL of water in DMF (0.5 mL) was chosen as the
optimal reaction medium for the following study.
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Fig. 1. Influence of water addition on the pepsin-catalyzed domino reaction.

Please cite this article in press as: X.-D. Zhang, et al., Enzyme-catalyzed
of 1,2-dihydroquinolines using pepsin from porcine gastric m
j.cclet.2016.02.013
Hereto, our supply of the enzyme preparation (pepsin from por-
cine gastric mucosa, Sigma–Aldrich, P7000-25g, Lot #050M1304V)
used for the above investigations (Table 1 and Fig. 1) was exhausted.
We then continued the study using another enzyme preparation
(Pepsin from porcine gastric mucosa, Sigma–Aldrich, P7125-100g,
Lot #SLBD7698V) for the following investigation.

The influence of catalyst loading on the pepsin-catalyzed
domino reaction of 2-aminobenzaldehyde and cinnamaldehyde
was surveyed (Fig. 2). The best yield of 35% with 18% ee was
obtained when 12.3 kU of enzyme was used in the reaction system,
which was similar to the results obtained with the former enzyme
preparation (13.5 kU of enzyme, product yield 41% with 16% ee,
Fig. 2). On the other hand, these results demonstrated that this
procedure was not only applicable to a specific enzyme prepara-
tion, but also to other preparations of the same enzyme. Thus,
12.3 kU of enzyme was selected as a suitable catalyst loading for
the reaction system discussed.

Temperature has effects on the selectivity and rate of the
reaction, and also on the stability of the enzyme. Thus, the
influence of temperature on the pepsin-catalyzed model domino
reaction was examined (Fig. 3), demonstrating that a lower
temperature was beneficial to improve the enantioselectivity and
18% ee was obtained at 30–40 8C. A higher temperature was
beneficial to improve the yield, and a yield of 45% was received at
40–50 8C. Therefore, 40 8C was chosen as the optimal temperature
for the pepsin-catalyzed domino reaction.
Fig. 2. Influence of enzyme loading on the pepsin-catalyzed domino reaction.
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Fig. 3. Influence of temperature on the pepsin-catalyzed domino reaction.
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Table 2
Substrate scope of the pepsin-catalyzed domino reactions.a

H

O

NH2

R
CHO Pepsin

DMF/H2O,  40o C N
H

CHO

R

1 2
3

Entry R Products Time (h) Yield (%)b ee (%)c

1 C6H5 3a 118 45 18

2 4-CH3C6H4 3b 72 51 17

3 4-CH3OC6H4 3c 72 44 15

4 4-FC6H4 3d 72 38 21

5 4-ClC6H4 3e 72 47 10

6 4-BrC6H4 3f 118 52 14

7 4-NO2C6H4 3g 36 55 10

8 3-ClC6H4 3h 36 43 15

9 2-CH3OC6H4 3i 36 41 15

10 2-ClC6H4 3j 118 43 11

11 n-Propyl 3k 24 57 22

12 n-Butyl 3l 24 45 24

13 CO2Et 3m 7 97 6

a Reaction conditions: a,b-unsaturated aldehyde (0.26 mmol), 2-aminobenzal-

dehyde (0.30 mmol), pepsin (12.3 kU), DMF (0.5 mL), deionized water (0.3 mL) at

40 8C.
b Yield of the isolated product after chromatography on silica gel.
c The ee was determined by chiral HPLC analyses; absolute configurations of the

products were determined by comparison with the known chiral HPLC analysis

results [22]. (For details, please see the Supporting information.)

X.-D. Zhang et al. / Chinese Chemical Letters xxx (2016) xxx–xxx4

G Model

CCLET 3600 1–5
After having established the optimal reaction conditions,
e scope generality of this pepsin-catalyzed domino aza-
ichael/aldol reaction was explored (Table 2). As documented

 the table, a variety of aliphatic and aromatic substituents in
e a,b-unsaturated aldehydes were well tolerated, leading to
e corresponding products in moderate to good yields with low
antioselectivity (Table 2, entries 1–13). Different electron-
nating and electron-withdrawing aromatic a,b-unsaturated

dehydes were used to test the influence of electronic effects of
bstituents on the reaction (Table 2, entries 2–7), and some
omatic a,b-unsaturated aldehydes with substituents in a
fferent position of the benzene ring were also investigated
 examine the steric effects of substituents on the reaction
able 2, entries 5, 8 and 10). Both electronic and steric effects of
omatic a,b-unsaturated aldehydes had no obvious impact on
e yield and enantioselectivity of the reaction. The reactions
ith aliphatic a,b-unsaturated aldehydes, trans-2-hexenal and
ans-2-heptenal, gave the products in yields of 57% and 45% with
% and 24% ee, respectively (Table 2, entries 11 and 12). It was
table that trans-4-oxo-2-butenoate was successfully utilized

 the reaction providing the desired product in 97% yield with 6%
 (Table 2, entry 13).

 Conclusion

In summary, we developed a biocatalytic strategy to synthesize
2-dihydroquinoline derivatives. Pepsin from porcine gastric
ucosa has the ability to promote the enantioselective domino
a-Michael/aldol reaction of a,b-unsaturated aldehydes and
aminobenzaldehyde. The desired products were obtained in
elds of 38–97% with 6–24% ee. Although the yields and
ereoselectivities were not thoroughly satisfactory in comparison
ith those reported by chemical catalysis, this is the first reported
udy utilizing pepsin to catalyze the aza-Michael/aldol reaction to
ford 1,2-dihydroquinoline derivatives. The enzyme-catalyzed
mino reaction showed the comprehensive advantages of

ocatalysis, such as mild reaction conditions and reduced toxicity
Please cite this article in press as: X.-D. Zhang, et al., Enzyme-catalyze
of 1,2-dihydroquinolines using pepsin from porcine gastric 
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to humans and the environment. As a proof of the concept, this
work provides a novel case of a promiscuous enzyme-catalyzed
enantioselective domino reaction. Meanwhile, this finding broad-
ens the application of pepsin in organic synthesis.
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2.3 Å resolution, J. Mol. Biol. 214 (1990) 199–222.

[47] X.L. Lin, R.N. Wong, J. Tang, Synthesis, purification, and active site mutagenesis of
recombinant porcine pepsinogen, J. Biol. Chem. 264 (1989) 4482–4489.

[48] J.S. Fruton, A history of pepsin and related enzymes, Q. Rev. Biol. 77 (2002)
127–147.

[49] A.M. Klibanov, Enzymatic catalysis in anhydrous organic solvents, Trends Bio-
chem. Sci. 14 (1989) 141–144.
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