320 Papers synthesis

Diastereoselective Synthesis of 10-(Alkylsulfinyl)- and 10-(Alkenylsulfinyl)isoborneols by Oxidation of the Corresponding Sulfides with 3-Chloroperoxybenzoic Acid

Yoshitsugu Arai, Makoto Matsui, Toru Koizumi*

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

The oxidation of 10-(alkylsulfinyl)- and 10-(alkenylsulfinyl)isoborneols with 3-chloroperoxybenzoic acid gives the corresponding S-oxides in good yields and with high diastereoselectivity.

Asymmetric reactions using chiral sulfoxides have provided useful new methods for synthetic organic chemistry. Generally, two procedures for the preparation of chiral sulfoxides are available: asymmetric oxidation of parent sulfides by chemical and microbiological methods² and the Andersen procedure³ (reaction of organometallic reagents such as alkylmagnesium halides with chiral sulfinic esters). In the oxidation methods, the optical purity of the sulfoxides depends on the oxidizing agent used and the sulfide, whilst Andersen's method suffers from the fact that only a few chiral sulfinates such as menthyl 4-methylbenzenesulfinate are easily available. Therefore, the search for a general method for the highly asymmetric oxidation of sulfides is still of considerable practical interest.

In the course of research on asymmetric induction reactions using chiral sulfoxides, we introduced dimethyl $(R)_{s}$ -2-(2-exo-hydroxy-10-bornylsulfinyl)maleate (10-[1,2-bis(methoxycarbonyl)ethenylsulfinyl]isoborneol **3j**) as a useful dienophile.⁴ The chiral sulfoxide **3j** is readily obtained by oxidation of the corresponding sulfide **2j** with 3-chloroperoxybenzoic acid in a highly diastereoselective manner. Similar oxidations of 10-(alkenylthio)isoborneols with 3-chloroperoxybenzoic acid have been described.⁵

It has been shown⁶ for a related system (6-methylthio-2-hydroxymethylnorbornane) that a hydroxy group in a suitable position may exert a directing effect on the diastereoselectivity of the oxidation of alkylthio—substituted bicyclo[2.2.1]heptane derivatives. We now descibe a facile diastereoselective synthesis of sulfoxides 3

[10-(alkylsulfinyl)- and 10-(alkenylsulfinyl)isoborneols] by oxidation of the corresponding sulfides **2** [10-(alkylthio)- and 10-(alkenylthio)isoborneols] with 3-chloroperoxybenzoic acid.

		0.0.4 B	
2,3,4	R	2,3,4 R	
a	Me	0 Ⅱ CH ₂ CCH ₃	
b	Et	Q.	
c	i-Pr	h CH2CPh	
d	$CH_2CH = CH_2$	i CH ₂ P(OEt) ₂	
e	CH ₂ Ph	· ~ H	
f	CH ₂ CH ₂ Ph	MeO ₂ C CO ₂ Me	

The sulfides 2a-h were prepared by S-alkylation (or S-alkenylation) of (1S)-10-mercaptoisoborneol⁷ (1) via successive treatment with sodium hydride and alkyl or alkenyl halides in benzene/dimethylformamide. The sul-

Table 1. Sulfides 2 Prepared

Prod- uct	Reaction Time (h)	R-X	Yield (%)	mp (°C)	$[\alpha]_D^a$	Molecular ^b formula	MS (70 eV) ^c m/z
2a 2b 2c 2d 2e 2f 2g 2h 2i 2j	12 1 2.5 4 1.5 6 3.5 3 3	MeI EtI i-PrBr H ₂ C = CHCH ₂ Br PhCH ₂ Br PhCH ₂ CH ₂ Br BrCH ₂ COCH ₃ BrCH ₂ COPh ICH ₂ P(O)(OEt) ₂ DMAD ^d	73 80 70 93 63 90 61 86 89 79	oil	-62.4° -57.7° -51.0° -40.6° -59.7° -49.8° -53.0° -12.4° -34.2° -8.8°	C ₁₁ H ₂₀ OS (200.1) C ₁₂ H ₂₂ OS (214.1) C ₁₃ H ₂₄ OS (228.2) C ₁₃ H ₂₂ OS (226.1) C ₁₇ H ₂₄ OS (276.2) C ₁₈ H ₂₆ OS (290.2) C ₁₃ H ₂₂ O ₂ S (242.1) C ₁₈ H ₂₄ O ₂ S (304.1) C ₁₅ H ₂₉ O ₄ SP (336.2) C ₁₆ H ₂₄ O ₅ S (328.4)	200 (M ⁺), 185, 167, 152, 135, 108 214 (M ⁺), 108, 95, 41 228 (M ⁺), 108, 95, 43, 41 226 (M ⁺), 208, 108, 93, 41 276 (M ⁺), 258, 124, 108, 91 290 (M ⁺), 138, 108 242 (M ⁺), 108, 93, 43, 41 304 (M ⁺), 286, 200, 153, 152, 105 336 (M ⁺), 319, 303, 249, 184 328 (M ⁺), 310, 295, 267

^a Recorded on a JASCO DIP-140 digital polarimeter in chloroform solution (c = 1.0, 25-26 °C).

The mircoanalyses or high resolution MS data were in satisfactory agreement with the calculated value: $C \pm 0.05$, $H \pm 0.03$; $m/z = \pm 0.0042$ (M⁺).

Recorded on a JEOL JMS-D 200 spectrometer.

DMAD = dimethyl acetylenedicarboxylate.

Uncorrected and measured with a YANACO micro melting point apparatus.

Table 2. Spectral Data of Compounds 2

Com- pound	IR (neat) ^a v (cm ⁻¹)	1 H-NMR (TMS) b δ , J (Hz)
2a	3450, 2950, 1640, 1070	0.82 (s, 3H, CH ₃), 1.03 (s, 3H, CH ₃), 1.0 – 2.0 (m, 7H), 2.10 (s, 3H, SCH ₃), 2.38 (d, 1H, J = 12, CHHS), 2.75 (d, 1H, J = 12, CHHS), 3.8 (m, 1H, CHOH)
2b	3480, 2960, 1455, 1260, 1070	0.84 (s, 3 H, CH_3), 1.07 (s, 3 H, CH_3), 1.29 (t, 3 H, $J=7$, CH_3), $1.0-1.9$ (m, 7 H), 2.45 (d, 1 H, $J=11$, CH_2), 2.56 (d, 1 H, $J=11$, CH_2), 2.56 (d, 1 H, $J=11$, CH_3), 2.58 (q, 2 H, $J=7$, CH_2 S), 2.79 (d, 1 H, $J=11$, CH_3 H), 3.88 (dt, 1 H, $J=8$, 3 , $CHOH$), $3.6-4.0$ (br, 1 H, $CHOH$)
2c	3470, 2950, 1450, 1065, 1045	0.84 (s, 3 H, CH ₃), 1.07 (s, 3 H, CH ₃), 1.30 [d, 6 H, $J = 7$, CH(CH ₃) ₂], $1.0 - 1.9$ (m, 7 H), 2.47 (br d, 1 H, $J = 3$, OH), 2.54 (d, 1 H, $J = 11$, CHS), 2.78 (d, 1 H, $J = 11$, CHS), 2.91 (sep, 1 H, $J = 7$, CHCH ₃), 3.86 (m, 1 H, CHOH)
2d	3470, 2930, 1630, 1070, 1020, 910	0.83 (s, 3 H, CH ₃), 1.04 (s, 3 H, CH ₃), 0.8–2.0 (m, 7 H), 2.15 (d, 1 H, J = 3, OH), 2.33 (d, 1 H, J = 11, CHHS), 2.67 (d, 1 H, J = 11, CHHS), 3.10 (d, 2 H, J = 6, CH = CH ₂), 3.80 (m, 1 H, CHO), 4.9–5.2 (m, 2 H, = CH ₂), 5.4–6.1 (m, 1 H, CH=)
2e	3450, 2950, 2870, 1490, 1450, 1070, 700	0.78 (s, 3 H, CH ₃), 0.98 (s, 3 H, CH ₃), 1.0–1.8 (m, 7 H), 2.07 (br s, 1 H, OH), 2.50 (d, 1 H, $J = 11$, CHHS), 2.67 (d, 1 H, $J = 11$, CHHPh), 3.77 (d, 1 H, $J = 11$, CHHPh),
2f	3500, 2970, 1450, 1070, 700	3.82 (dt, 1H, $J = 8$, 3, CḤOH), 7.2–7.3 (m, 5H _{arom}) 0.83 (s, 3 H, CH ₃), 1.05 (s, 3 H, CH ₃), 1.0–1.9 (m, 7 H), 2.35 (d, 1 H, $J = 4$, OH), 2.52 (d, 1 H, $J = 11$, CḤHS), 2.78 (d, 1 H, $J = 11$, CḤHS), 2.7–3.0 [m, 4 H, S(CḤ ₂) ₂ Ph], 3.85 (dt, 1 H, $J = 8$, 4, CḤOH), 7.2–7.4 (m, 5 H _{arom})
2 g	3470, 2950, 2870, 1490, 1450, 1070, 700	0.82 (s, 3 H, CH ₃), 1.04 (s, 3 H, CH ₃), 1.0–1.9 (m, 7 H), 2.29 (s, 3 H, CH ₃), 2.54 (d, 1 H, $J = 11$, CHHS), 2.71 (d, 1 H, $J = 11$, CHHS), 2.8 (br, 1 H, OH), 3.31 (d, 1 H, $J = 15$, SCHHCO), 3.92 (dd, 1 H, $J = 8$, 4, CHOH)
2h	3500, 2950, 1680, 1450, 1280, 1070	0.82 (s, 3H, CH ₃), 1.05 (s, 3H, CH ₃), 0.8–2.0 (m, 7H), 2.65 (d, 1H, J = 12, CHHS), 2.78 (d, 1H, J = 12, CHHS), 3.17 (br, 1H, OH), 3.92 (br s, 3H, SCH ₂ CO, CHOH), 7.4–8.2 (m, 5H _{atom})
2i	3400, 2950, 1220, 1025	0.85 (s, 3 H, CH ₃), 1.10 (s, 3 H, CH ₃), 1.1–1.9 (m, 14H), 2.6–3.0 (m, 4H, SCH ₂ P, CH ₂ S), 4.0 (m, 1H, CHOH), 4.1–4.3 [m, 4H, P(OCH ₂ CH ₃) ₂]
2j	3300, 2950, 1730, 1380, 1260	0.88 (s, 3H, CH ₃), 1.08 (s, 3H, CH ₃), 1.1–1.8 (m, 7H), 2.15 (br s, 1H, OH), 2.76 (d, 1H, $J = 10.6$, CHHS), 3.10 (d, 1H, $J = 10.6$, CHHS), 3.72 (s, 3H, OCH ₃), 3.89 (s, 3H, OCH ₃), 5.78 (s, 1H, CH=)

Recorded as film on a JASCO A-102 spectrophotometer except for 2j (KBr).

Table 3. Sulfoxides 3 and 4 Prepared

Prod- uct	Reaction Conditions Temperature (°C), Time (h)	Yield (%)	mp (°C) ^a (solvent)	$[\alpha]_D^b$	de (%)	Molecular Formula c	MS (70 eV) ^d m/z
3a°	-80 → -40, 1	82	79-81 (hexane)	+31.7°	~100	$C_{11}H_{20}O_2S$ (216.1)	217 (M ⁺ +1), 109, 107, 93, 41
3b	$-80 \rightarrow 10, 2$	95	100-101 (hexane)	-12.4°	~100	$C_{12}H_{22}O_2S$ (230.1)	231 (M ⁺ +1), 135, 109, 93
3c	$-80 \rightarrow 10, 2$	89	58-60 (hexane)	+ 0.4°	~100	$C_{13}H_{24}O_2S$ (244.1)	245 (M ⁺ +1), 153, 135, 109, 41
3d	$-50 \rightarrow -30, 1$	90	oil	+27.9°	~100	$C_{13}H_{22}O_2S$ (242.1)	243 (M ⁺ + 1), 242 (M ⁺), 153, 135
3e	$-70 \rightarrow -20, 1$	91	oil	+ 6.6°	~ 100	$C_{17}H_{24}O_2S$ (292.1)	292 (M ⁺), 184, 109, 91
3f°	$-80 \rightarrow 10, 3$	68	oil	−39.1°	~ 100	$C_{18}H_{26}O_2S$ (306.2)	307 (M ⁺ + 1), 306 (M ⁺), 153, 135, 109, 92
3ge	$-80 \rightarrow 10, 2$	76	68-71 (hexane)	+31.7°	~100	$C_{13}H_{22}O_3S$ (258.1)	259 (M ⁺ + 1), 241, 135, 109, 93,
3h°	$-70 \rightarrow -10, 2$	57	oil	−17.6 °	73	$C_{18}H_{24}O_3S$ (320.1)	321 (M ⁺ +1), 320 (M ⁺), 168, 105, 77, 41
4h		9	oil	−27.7°		(520.1)	321 (M ⁺ +1), 320 (M ⁺), 168, 135, 105, 77, 41
3i	$-80 \rightarrow 10, 3$	57	oil	+49.5°	61	$C_{15}H_{29}O_5SP$ (352.1)	353 $(M^+ + 1)$, 352 (M^+) , 200,
4i		14	oil	110.3°		(334.1)	174, 144, 41 353 (M ⁺ +1), 352 (M ⁺), 310,
3j	$-50 \rightarrow 0, 2$	89	oil	+32.8°	93	$C_{16}H_{24}O_6S$	144, 108, 41 344 (M ⁺), 328, 310, 144, 108, 41
4j 		3	oil	-34.2°		(344.1)	344 (M ⁺), 328, 310, 279, 177, 41

Uncorrected and measured with a YANACO micro melting point apparatus.

^b Recorded on a JEOL GX 270 spectrometer in CDCl₃ solution (except for 2d) and a JEOL PMX-60 spectrometer in CCl₄ solution (for 2d).

Recorded with a JASCO DIP-140 digital polarometer in CHCl₃ solution ($T = 26 \pm 1$ °C, c = 1.0).

^c The microanalyses or high resolution MS data were in satisfac-

tory agreement with the calculated values: $C \pm 0.17$, $H \pm 0.23$; $m/z = \pm 0.0036$ (M⁺). Recorded on a JEOL JMS-D 200 spectrometer.

Small amounts (5-9%) of the corresponding sulfones were also obtained.

fide 2i was prepared by adding 1 to diethyl iodomethylphosphonate under phase-transfer conditions (20% sodium hydroxide/tetrabutylammonium bromide) according to the procedure of Lit.8 The sulfide 2j was obtained from dimethyl acetylenedicarboxylate and 1 in the presence of a catalytic amount of methyldiphenylphosphine. Treatment of compounds 2 with 3-chloroperoxybenzoic acid afforded the sulfoxides 3 in good yields. The diastereoisomeric excesses (de $\sim 100\%$) of the sulfoxides obtained from sulfides 2a-g were determined by ¹H-NMR analysis of the crude oxidation product. From the oxidation of sulfides 2h,i,j, the minor diastereoisomers 4 were also obtained (Table 3). Since the absolute stereochemistry of 3j has been confirmed by single-crystal X-ray analysis of the cycloadduct of 3j,4 the stereochemistry of the sulfur center of other sulfoxides was tentatively assigned assuming the same stereochemistry of oxidation of 2a-i in these cases. The results show that 10-(alkylthio)isoborneols can be easily and diastereoselectively converted into the sulfoxides by oxidation with 3-chloroperoxybenzoic acid. The procedure is simple and suitable for large-scale preparations.

(-)-10-(Phenacylthio)isoborneol (2h); Typical Procedure:

To a stirred suspension of NaH (283 mg, 11.8 mmol, prewashed 3 times with dry $\rm Et_2O$) in dry benzene (10 mL) is added dropwise (1S-(-)-10-mercaptoisoborneol⁷ (1; 2.00 g, 10.8 mmol) in dry benzene (20 mL) at r. t. After completion of the addition, the mixture is cooled to 0°C and DMF (8 mL) is added. The mixture is stirred until a clear solution is obtained (~20 min). Then, phenacyl bromide (2.25 g, 11.3 mmol) in dry benzene (10 mL) is added dropwise and the mixture is warmed to r.t. and stirred for 3 h. After removal of most of the solvent under reduced pressure, the residue is poured into cold 1 M aq HCl (50 mL). The aqueous layer is extracted with CHCl₃ (3×30 mL). The combined extracts are washed with brine (30 mL), dried (MgSO₄), and concentrated under reduced pressure. The residual oil is purified by chromatography on silica gel (eluent: hexane/EtOAc, 12:1) to give pure 2h as a pale yellow oil; yield: 2.83 g (86%).

(+)-10-(Diethoxyphosphorylmethylsulfinyl)isoborneol (3i); Typical Procedure:

To a stirred solution of (-)-10-(diethoxyphosphorylmethylthio) isoborneol (2i; 100 mg, 0.3 mmol) in dry CH_2Cl_2 (5 mL) is added dropwise a solution of 3-chloroperoxybenzoic acid (68 mg, 80 % purity, 0.31 mmol) in dry CH_2Cl_2 (10 mL) at -80 °C. The mixture is warmed to -10 °C over a period of 3 h, diluted with Et_2O (30 mL), and then poured into cold aq 1 M NaHSO₃ (40 mL).

Table 4. Spectral Data of Sulfoxides 3 and 4

Prod- uct	IR a v (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) b δ , J (Hz)
<u>uct</u>	v (cm)	0, J (112)
3a	3350, 2950, 1075,	0.83 (s, 3H, CH ₃), 1.12 (s, 3H, CH ₃), 1.0–2.0 (m, 7H), 2.27 (d, 1H, $J = 13$, HHCS), 2.65 (s, 3H, CH ₃), 2.6
21	1030	SCH ₃), 3.25 (d, 1H, <i>J</i> = 13, HHCS), 3.6–3.8 (m, 1H, OH), 3.8–4.2 (m, 1H, CHOH)
3b	3350, 2970, 1455,	$0.81 \text{ (s, 3 H, CH_3), } 1.08 \text{ (s, 3 H, CH_3), } 1.34 \text{ (t, 3 H, } J = 8, \text{CH}_3), } 1.0-1.9 \text{ (m, 7 H), } 2.30 \text{ (d, 1 H, } J = 13, } 1.00 \text{ (m, 7 H), } 2.30 \text{ (d, 1 H, } J$
	1080	С <u>Н</u> HS), 2.75 (q, 2 H, $J = 8$, С <u>Н</u> ₂ CH ₃), 3.19 (d, 1 H, $J = 13$, С <u>Н</u> <u>H</u> S), 3.8 (br, 1 H, OH), 4.04 (dd, 1 H, $J = 8$, 4, CHOH)
3c	3310, 2950, 1075,	0.84 (s, 3 H, C H ₃), 1.11 (s, 3 H, C H ₃), 1.31 (d, 3 H, $J = 7$, C H ₃), 1.33 (d, 3 H, $J = 7$, C H ₃), $0.8-1.9$ (m,
	990	7H), 2.30 (d, $J = 13$, CHHS), 2.81 (sep, 1H, $J = 7$, CHCH ₃), 3.12 (d, 1H, $J = 13$, CHHS), 4.07 (dd,
		1H, J = 8.5, 4, CHOH), 4.09 (br, 1H, OH)
3d	3400, 2950, 1070,	0.83 (s, 3H, CH ₃), 1.11 (s, 3H, CH ₃), 1.1–1.9 (m, 7H), 2.38 (d, 1H, $J = 13$, CHHS), 3.21 (d, 1H, $J = 13$, CHHS)
	1000	= 13, CHHS), 3.48 (dd, 1H, J = 12, 6, SCHH), 3.54 (dd, 1H, J = 12, 6, SCHH), 3.92 (br s, 1H, CH),
		4.05 (m, 1H, OH), 5.41 (dd, 1H, $J = 16$, < 1 , CH=), 5.46 (d, 1H, $J = 8$, CH=), 5.90 (ddt, 1H, $J = 16$,
		8, 6, CH=)
3e	3400, 2950, 1070,	0.76 (s, 3 H, CH ₃), 1.08 (s, 3 H, CH ₃), 0.8–1.9 (m, 7 H), 2.38 (d, 1 H, J = 13, CHHS), 3.14 (d, 1 H, J
	1025, 1000	= 13, CHHS), 3.93 (br, 1H, OH), 3.96 (d, 1H, $J = 13$, CHHPh), 4.0-4.1 (m, 1H, CHOH), 4.10 (d, 1H,
	,	J = 13, CHHPh), 7.3–7.5 (m, 5 H _{arom})
3f	3400, 2950, 1075,	0.78 (s, $3H$, CH_3), 1.09 (s, $3H$, CH_3), $1.0-1.9$ (m, $7H$), 2.28 (d, $1H$, $J = 13$, $CHHS$), $2.9-3.2$ [m, $4H$,
	1030, 1000	$(CH_2)_2$, 3.25 (d, 1H, $J = 13$, CHHS), 4.0 (br, 1H, OH), 4.05 (dd, 1H, $J = 8$, 4, CHOH), 7.2–7.4 (m,
		5H _{arom})
3g	3340, 2950, 1075,	0.84 (s, 3 H, CH ₃), 1.11 (s, 3 H, CH ₃), $0.8-1.9$ (m, 7 H), 2.37 (s, 3 H, CH ₃), 2.55 (d, 1 H, $J = 13$, CHHS),
	1030, 1000	3.34 (d, 1H, $J = 13$, CHHS), 3.70 (br, 1H, OH), 3.82 (d, 1H, $J = 14$, CHHCO), 3.88 (d, 1H, $J = 14$,
		CHHCO), 4.03 (dd, 1 H, $J = 8$, 4, $CHOH$)
3h	3420, 2950, 1675,	0.84 (s, 3 H, CH ₃), 1.10 (s, 3 H, CH ₃), $1.0-2.0$ (m, 7 H), 2.77 (d, 1 H, $J = 13$, CHHS), 2.87 (br, 1 H, OH),
	1450, 1290, 1075	3.38 (d, 1H, $J = 13$, CHHS), 4.04 (dd, 1H, $J = 8$, 4, CHOH), 4.36 (d, 1H, $J = 15$, CHHCO), 4.59 (d,
		1H, $J = 15$, CHHCO), 7.5–8.0 (m, 5H _{arom})
4h	3400, 2960, 1675,	0.87 (s, 3H, CH ₃), 1.10 (s, 3H, CH ₃), $1.0-2.2$ (m, 7H), 2.72 (d, 1H, $J = 13$, CHHS), 3.50 (d, 1H, $J = 13$), 3.50 (d, 1H, $J = 13$)
	1280, 1075	= 13, CHHS), 4.12 (dd, 1H, $J = 7$, 4, CHOH), 4.51 (d, 1H, $J = 16$, CHCO), 4.60 (d, 1H, $J = 16$,
		CHHCO), 7.5-8.0 (m, 5H _{arom})
3i	3450, 2970, 1250,	0.86 (s, 3H, CH ₃), 1.12 (s, 3H, CH ₃), 1.20 (t, 6H, $J = 6$, 2CH ₃), $1.0 - 2.1$ (m, 7H), 2.94 (d, 1H, $J = 13$, $3.0 - 2.1$ (m, 7H), $3.0 - 2.$
	1050, 1020	CHHS), 3.34 (dd, 1H, $J = 18$, 15, CHHP), 3.39 (dd, 1H, $J = 16$, 15, CHHP), 3.39 (d, 1H, $J = 13$,
		CHHS), 3.73 (d, 1H, $J = 3$, OH), 4.02 (dd, 1H, $J = 8$, 3, CHOH), 4.1–4.3 (m, 4H, 2CH ₂)
4i	3420, 2970, 1240,	0.87 (s, 3H, CH ₃), 1.10 (s, 3H, CH ₃), 1.37 (t, 3H, $J = 7$, CH ₃), 1.38 (t, 3H, $J = 7$, CH ₃), $1.0 - 2.1$ (m,
	1025, 970	7H), 2.69 (d, 1H, $J = 13$, CHHS), 3.31 (dd, 1H, $J = 18$, 15, CHHP), 3.55 (dd, 1H, $J = 15$, 13, CHHP), 2.67 (d, 1H, $J = 15$, 13, CHHP), 4.1 (4, 2), 4.1 (4, 3), 4.1 (4, 4, 2), 4.1 (4, 4, 3), 4.1 (4,
		3.66 (d, 1H, $J = 13$, CHHS), 3.87 (br, 1H, OH), 4.00 (dd, 1H, $J = 7$, 4, CHOH), 4.1–4.3 (m, 4H, $J = 13$)
	2450 2060 4520	2CH ₂)
3j	3470, 2960, 1730,	0.84 (s, 3H, CH ₃), 1.07 (s, 3H, CH ₃), 1.1-1.8 (m, 7H), 2.90 (d, 1H, $J = 13$, CHHS), 3.17 (d, 1H, $J = 13$, CHHS), 3.28 (s, 1H, CH ₂), 3.28 (s, 1H, CH ₂), 4.40 (m, 1H, CHOH), 6.98 (s, 1H, CH ₂)
4:	1380, 1260	= 13, CHHS), 3.86 (s, 3H, OCH ₃), 3.89 (s, 3H, OCH ₃), 4.10 (m, 1H, CHOH), 6.98 (s, 1H, CH=)
4j	3470, 2960, 1730	0.83 (s, 3H, CH ₃), 1.06 (s, 3H, CH ₃), $1.1-1.8$ (m, 7H), 2.62 (d, 1H, $J = 14$, CHHS), 3.57 (d, 1H, $J = 14$, CHHS), 3.83 (s, 3H, OCH ₃), 3.85 (s, 3H, OCH ₃), 3.85 (m, 1H, CHOH), 7.00 (s, 1H, CH =)
		$= 14, \text{Cnno}_3, 5.05 (8, 5n, \text{OCn}_3), 5.05 (8, 5n, \text{OCn}_3), 5.05 (m, 111, \text{CnOh}_3, 7.00 (8, 111, \text{CnOh}_3))$

Recorded on a JASCO A-102 Infrared spectrophotometer, as b Recorded on a JEOL GX-270 spectrometer. film for oily material and in KBr disc for crystalline material.

April 1990 Papers 323

The organic layer is washed with 1 M Na₂CO₃ solution $(2 \times 15 \text{ mL})$ and with brine (20 mL), and dried $(MgSO_4)$. The solvent is removed and the residue is purified by flash chromatography (silica gel 12 g, 230–400 mesh; hexane/EtOAc, $1:4 \rightarrow \text{EtOAc/MeOH}$, 4:1). Early fractions contain the major diastereoisomer 3i as a colorless oil; yield: 60 mg (57%). The latter fractions contain the minor diastereoisomer 4i as a colorless oil; yield: 15 mg (14%).

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture (No. 63570985 to T.K.), and from the Research Foundation for Pharmaceutical Sciences (to Y.A.).

Received: 16 August 1989; revised: 10 October 1989

(1) For example, see: Posner, G.H., in: Asymmetric Synthesis, Vol. 2, Morrison, J.D. (ed.), Academic Press, New York, 1983, p. 225.

- (2) For a leading reference, see: Madesclaire, M. Tetrahedron 1986, 42, 5459.
- (3) Andersen, K.K. Tetrahedron Lett. 1962, 93.
- (4) Arai, Y.; Hayashi, K.; Koizumi, T.; Shiro, M.; Kuriyama, K. Tetrahedron Lett. 1988, 29, 6143.
- (5) De Lucchi, O.; Lucchini, V.; Marchioro, C.; Valle, G.; Modena, G. J. Org. Chem. 1986, 51, 1457.
- (6) Glass, R.S.; Stezer, W.N.; Prabhu, U.D.G.; Wilson, G.S. Tetrahedron Lett. 1982, 23, 2335, and references therein.
- (7) Eliel, E.L.; Frazee, W.J. J. Org. Chem. 1979, 44, 3598. For a detailed experimental procedure for 1, see Ref. 5.
- (8) Landini, D.; Rolla, F. Synthesis 1974, 565.
- (9) McDonald, J.W.; Corbin, J.L.; Newton, W.E. *Inorg. Chem.* 1976, 15, 2056.