

PII: S0040-4020(96)00549-2

A Novel and General Route to Diverse A-Ring Aromatic Trichothecanes via Cyclobutanes

Hideo Nemoto, Junji Miyata, and Keiichiro Fukumoto*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Abstract: A novel and generally applicable approach to A-ring aromatic trichothecane 2 was achieved by the regiocontrolled cyclization of 25, 26, 29, and 30 as a key step, followed by stereoselective construction of the epoxide ring. This manuscript also described the regiocontrolled ring expansion of the olefinic cyclobutanols 19-22 to give the enones 23 and 24 which were the important intermediates in this approach. Copyright © 1996 Elsevier Science Ltd

Introduction

The trichothecane type of sesquiterpenes have been isolated from various species of fungi¹ and attracted much attention because of its significant biological activities such as antifungal, antibacterial, antiviral, insecticidal properties,² and inhibition of the growth of tumor cells.³ These biological activities and unique structural feature have stimulated many organic chemists to make great deal of contributions for the synthesis of this class of compounds.⁴ During our studies⁵ directed toward the enantioselective construction of cyclobutanones and application to the synthesis of biologically desirable compounds, our recent interests have been focused on the development of the efficient synthesis of A-ring aromatic trichothecanes,⁶ since such compounds have been shown to possess significant *in vivo* antileukemic activity⁷ and also could be a potential intermediate for the synthesis of trichothecanes **1** (general structure of trichothecanes). Here we wish to report a novel route to A-ring aromatic trichothecane **2**, the methodology of which could be applied to the synthesis of diverse such compounds (Chart 1).

Chart 1

This synthesis involves the regiocontrolled ring expansion followed by the reduction of the cyclobutane 3 to the allyl alcohol 5 via the enone 4, the regiocontrolled cyclization of 5 to 6 having the basic carbon framework of trichothecanes, and the stereoselective construction of the epoxide 7 (Scheme 1).

Results and Discussion

As the preliminary studies, the cyclization of the type of the compound 5 (R=MOM in Scheme 1) at single stroke was examined under the deprotective conditions of R. The syntheses of 2,2-disubstituted cyclobutanone 13 and the substrates 19 and 20 for the regioselective ring expansion were straightforward and as follows (Scheme 2).

The ketone 9 prepared (76%) by methoxymethylation of 8^8 was converted into the cyclopropylidene ether 11 (96%) by Wittig reaction with cyclopropylidenetriphenylphosphorane under the modified McMurry's conditions⁹ and then into the cyclobutanone 13 (98%) by the tandem epoxidation and 1,2-rearrangement of 11. The Grignard reaction of 13 afforded stereoselectively the allyl alcohols (93%, 15 : 16/1 : 5.2)¹⁰ which on silylation gave the triethylsilyl ethers 19 and 20 (99%). Next, the regiocontrolled ring expansion of 19 and 20 was examined (Scheme 3).

Scheme 3

Thus, the mixture of the silvl ethers 19 and 20 was subjected to the palladium mediated ring expansion¹¹ and it was found that the reaction proceeded regioselectively to give the ketone 23 (63%) as a sole product. The reduction of 23 with NaBH₄ in the presence of CeCl₃ afforded the allyl alcohols (88%, 25: 26/2: 2.1).¹² Finally, the regiocontrolled cyclization of the mixture of 25 and 26 was examined resulting in the formation (29%) of the basic carbon framework 31 of trichothecanes. The direct introduction of epoxide ring into 31 was achieved by the oxidation (46%) of 31 with *m*-chloroperbenzoic acid to give the epoxide 2^{13} (Scheme 4). Thus, we could develop a novel route to A-ring aromatic trichothecanes. However, the last two steps including one $(26 \rightarrow 31)$ of the key steps in this approach did not proceed in satisfactory yields (13.4%). So, another efficient route to 2 was explored by using trimethylsilylethoxymethyl (SEM) group instead of methoxymethyl (MOM) group as the protecting group of phenol. The synthesis of the allyl alcohols 27 and 28 was achieved by following the almost same procedures described for 25 and 26 (see Schemes 2 and 3). The ketone 10, prepared (100%) by silvlethoxymethylation of 8, was converted into the substrates (88% overall yield from 10, 21: 22/1: 6.2) for the ring expansion via the cyclopropylidene ether 12, the cyclobutanone 14, and the allyl alcohols 17 and 18.¹⁵ The regiocontrolled ring expansion of the mixture of 21 and 22 proceeded in 78% yield which was better than that of 19 and 20. The allyl alcohols¹⁶ $\{27, (52\%), 28, (47\%)\}$, prepared by the reduction of the ketone 24, were deprotected to give the phenols 29 (81%) and 30 (92%) respectively. The regiocontrolled cyclization of the both isomers 29 and 30 was effected by using BF₃.Et₂O as acid to give the compound 31 in 62 and 81% yields, respectively. Finally, the compound 31 was oxidized to the diol 3217 (93%) which was converted into the epoxide 2 (82%) in one pot operation (see Scheme 4).

Thus, we could disclose a novel and generally applicable methodology for the synthesis of A-ring aromatic trichothecanes.

Experimental Section¹⁸

General Procedure: All reactions were carried out under positive atmosphere of dry N_2 unless indicated otherwise. Solvents were freshly distilled prior to use: THF and Et₂O were distilled from sodium benzophenone, and DMSO, HMPA, CH₂Cl₂ and Et₃N were distilled from sodium hydride and kept over 4 Å molecular sieves. The phrase "residue upon workup" refers to the residue obtained when the organic layer was separated and dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. Silica gel column chromatography was carried out with Merck Kieselgel 60 Art. 7734, while Merck Kieselgel 60 Art. 9385 was used for flash chromatography.

[2-(Methoxymethyl)oxy-4-methyl]phenyl methyl ketone (9). To a stirred suspension of NaH (6.45 g, 60% oil suspension, 0.161 mol) in THF (120 mL) was added a solution of the ketone 8 (2.61 g, 0.134 mol) in THF (30 mL) at 0 °C and stirring was continued for 15 min at the same temperature. Chloromethyl methyl ether (MOMCl) (13.3 mL, 0.175 mol) was added dropwise and stirring was continued for 1 h at the same temperature. The reaction mixture was quenched with water and extracted with Et₂O. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (95 : 5 v/v) to give the ketone 9 (19.9 g, 76%) as a yellow oil: IR (neat) 1690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.37 (3H, s), 2.62 (3H, s), 3.52 (3H, s), 5.23 (2H, s), 6.83–6.89 (1H, m), 6.99(1H, br s), 7.66

(1H, d, J = 8.1 Hz); ¹³C NMR (75 MHz,CDCl₃) δ 21.72, 31.72, 56.41, 94.39, 115.40, 122.69, 126.31, 130.48, 144.89, 156.79, 199.45; MS *m*/z 194 (M⁺). Anal. Calcd for C₁₁H₁₄O₃: C, 68.02; H, 7.26. Found: C,67.79; H, 7.05.

{2-[(2-Trimethylsilyl)ethoxymethyl]oxy-4-methyl}phenyl methyl ketone (10). By following the same procedure described for 9, the ketone 10 was prepared from 8 and (2trimethylsilyl)ethoxymethyl chloride: yield 100%; a yellow oil; IR (neat) 1670 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.01 (9H, s), 0.98 (2H, t, J = 8.3 Hz), 2.36 (3H, s), 2.61 (3H, s), 3.79 (2H, t, J = 8.3 Hz), 5.31 (2H, s), 6.84 (1H, br d, J = 7.5 Hz), 7.01 (1H, br s), 7.65 (1H, d, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 1.51, 17.88, 21.60, 31.60, 66.56, 92.63, 115.30, 122.18, 126.04, 130.14, 144.31, 156.70, 198.57; MS m/z 207 (M⁺-73). Anal. Calcd for C₁₅H₂₄O₃Si: C, 64.24; H, 8.63. Found: C, 64.32; H, 8.65.

1-Cyclopropylidene-1-[2-(methoxymethyl)oxy-4-methyl]phenylethane (11). To a stirred suspension of NaH (8.44 g, 60% oil suspension, 0.221 mol) in THF (100 mL) was added cyclopropyltriphenylphosphonium bromide (8.09 g, 0.211 mol) at rt. After the mixture was stirred for 12 h at 62 °C, a solution of the ketone 9 (24.1 g, 0.124 mol) in THF (20 mL) was added dropwise and stirring was continued for 2 h under reflux. The reaction mixture was quenched with water and extracted with Et₂O. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (99 : 1 v/v) to give the cyclopropylidene ether 11 (25.9 g, 96%) as a colorless oil: IR (neat) 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.13–1.18 (2H, m), 2.19–2.23 (3H, m), 2.33 (3H, s), 3.47 (3H, s), 5.16 (2H, s), 6.80 (1H, br d, J = 7.5 Hz), 6.94 (1H, br s), 7.14 (1H, d, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 2.37, 4.05, 21.27, 21.68, 55.81, 94.57, 115.68, 121.20, 122.33, 123.02, 129.50, 129.91, 137.63, 154.37; MS *m*/z 218 (M⁺). Anal. Calcd for C₁₄H₁₈O₂: C,77.03; H, 8.31. Found: C, 76.99; H, 8.34.

1-Cyclopropylidene-1-{2-[(2-trimethylsilyl)ethoxymethyl]oxy-4-methyl}phenyl-ethane (12). By following the same procedure described for 11, the cyclopropylidene ether 12 was prepared from 10: yield 98%; a colorless oil; IR (neat) 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.00 (9H, s), 0.96 (2H, t, J =8.3 Hz), 1.13-1.18 (4H, m), 2.18-2.23 (3H, m), 2.33 (3H, s), 3.75 (2H, t, J = 8.3 Hz), 5.21 (2H, s), 6.76-6.81(1H, br d, J = 7.5 Hz), 6.97 (1H, br s), 7.13 (1H, d, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ -1.40, 2.41, 4.12, 18.02, 21.33, 21.74, 66.01, 92.97, 115.77, 121.05, 122.16, 123.11, 129.47, 129.91, 137.52, 154.56; MS *m/z* 304 (M⁺). Anal. Calcd for C₁₈H₂₈O₂Si: C, 71.00; H, 9.27. Found: C, 71.01; H, 9.27.

2-[2-(Methoxymethyl)oxy-4-methyl]phenyl-2-methylcyclobutanone (13). To a stirred solution of the cyclopropylidene ether 11 (926 mg, 4.23 mmol) in CH₂Cl₂ (5 mL) and saturated aqueous NaHCO₃ (5 mL) was added *m*-chloroperbenzoic acid (*m*-CPBA) (1.00 g, 80% active, 4.65 mmol) portionwise at 0 °C and stirring was continued for 30 min at the same temperature. The reaction mixture was extracted with CH₂Cl₂ and the extract was washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (98 : 2 v/v) to give the cyclobutanone 13 (973 mg, 98%) as a colorless oil: IR (neat) 1780 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.55 (3H, s), 1.92–2.08 (1H, m), 2.31 (3H, s), 2.35–2.47 (1H, m), 3.10–3.20 (2H, m), 3.47 (3H, s), 5.12–5.21 (2H, m), 6.77 (1H, br d, *J* = 8.0 Hz), 6.93 (1H, br s), 7.17(1H, d, *J* = 8.0 Hz); MS *m*/z 234 (M⁺). Anal. Calcd for C₁₄H₁₈O₃: C, 71.77; H, 7.74. Found: C, 71.74; H, 7.80.

2-Methyl-2-{2-[(2-trimethylsilyl)ethoxymethyl]oxy-4-methyl}phenylcyclo-butanone (14). By following the same procedure described for 13, the cyclobutanone 14 was prepared from 12: yield 94%; a colorless oil; IR (neat) 1780 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.02 (9H, s), 0.95 (2H, t, J = 8.4 Hz), 1.55 (3H, s), 1.96–2.07 (1H, m), 2.32 (3H, s), 2.34–2.46 (1H, m), 3.14–3.20 (2H, m), 3.66–3.84(2H, m), 5.18–5.28 (2H, m), 6.74–6.83 (1H, br d, J = 7.8 Hz), 6.96 (1H, br s), 7.17 (1H, d, J = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ –1.31, 18.07, 21.38, 21.94, 26.97, 52.52, 64.73, 66.42, 92.57, 114.83, 121.96, 126.24, 127.85, 138.27, 154.76, 212.76; MS *m/z* 320 (M⁺). Anal. Calcd for C₁₈H₂₈O₃Si: C, 67.46; H, 8.81. Found: C, 67.35; H, 8.63.

(1S,2R)- and (1R,2R)-2-[2-(Methoxymethyl)oxy-4-methyl]phenyl-2-methyl-1vinylcyclobutanols (15 and 16). To a stirred suspension of cerium chloride (12.6 g, 51.1 mmol) in THF (120 mL) was added a solution of vinylmagnesium bromide (62.2 mL, 1 M THF solution, 62.2 mmol) at 0 °C. After stirring was continued for 1 h, a solution of the cyclobutanone 13 (7.33 g, 31.3 mmol) in THF (100 mL) was added dropwise to this reaction mixture at the same temperature and the temperature was then raised to rt in 1 h. The reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (95 : 5 v/v) to give the mixture of the cyclobutanols 15 and 16 (7.66 g, 93%) as a colorless oil: IR (neat) 3560 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.35 (0.48H, s), 1.46 (2.52H, s), 1.78–2.00 (2H, m), 2.06–2.20 (1H, m), 2.25–2.46 (3.84H, m), 2.62–2.75 (0.16H, m), 2.81 (1H, br s), 3.47 (0.48H, s), 3.52 (2.52H, s), 4.83 (0.84H, br d, J = 10.6 Hz), 5.02–5.30 (3.16H, m), 5.91 (0.84H, dd, J = 10.6 and 16.8 Hz), 6.34 (0.14H, dd, J = 10.8 and 17.4 Hz), 6.74–7.00 (3H, m); MS *m/z* 262 (M⁺); HRMS calcd for C₁₆H₂₂O₃ 262.1569 (M⁺), found 262.1562.

(1S,2R)- and (1R,2R)-2-Methyl-2-{2-[(2-trimethylsilyl)ethoxymethyl]oxy-4-methyl}phenvl-1-vinvlcvclobutanols (17 and 18). After following the same reaction conditions for 15 and 16. the residue upon workup of the reaction mixture resulted from the ketone 14 was chromatographed on silica gel with hexane-AcOEt (99.5: 0.5 v/v) to give the cyclobutanols 18 (4.68 g, 82%) from the first fraction and 17 (0.757 g, 13%) from the second fraction as a colorless oil each other. Data for 17: IR (neat) 3580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ -0.02 (9H, s), 0.90-0.97 (2H, m), 1.34 (3H, s), 1.81-1.91 (2H, m), 2.30 (3H, s), 2.31-2.39 (2H, m), 2.62-2.70 (1H, m), 3.63-3.75 (2H, m), 5.19 (1H, d, J = 7.0 Hz), 5.24 (1H, dd, J = 7.0 (1H, 1.7 and 17.4 Hz), 6.32 (1H, dd, J = 11.0 and 17.4 Hz), 6.80 (1H, br d, J = 7.7 Hz), 6.91 (1H, br s), 6.96 $(1H, d, J = 7.7 \text{ Hz}); {}^{13}\text{C}$ NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta -1.35, 18.04, 21.33, 25.85, 28.40, 29.87, 50.73,$ 66.51, 80.88, 91.95, 112.34, 114.69, 123.00, 128.19, 132.33, 137.38, 142.17, 153.77; MS m/z 348 (M+); HRMS calcd for C20H32O3Si 348.2119 (M⁺), found 348.2089. Data for 18; IR (neat) 3550 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.02 (9H, s), 0.98 (2H, t, J = 8.5 Hz), 1.44 (3H, s), 1.77-1.83 (1H, m), 1.90-1.95 (1H, m), 2.06-2.16 (1H, m), 2.28 (3H, s), 2.34-2.42 (1H, m), 2.90 (1H, br s), 3.69-3.83 (2H, m), 4.81 (1H, dd, J = 1.8 and 10.6 Hz), 5.08 (1H, d, J = 6.2 Hz), 5.25 (1H, d, J = 6.2 Hz), 5.23 (1H, dd, J = 1.8 and16.9 Hz), 5.88 (1H, dd, J = 10.6 and 16.9 Hz), 6.73–6.78 (2H, m), 6.86 (1H, d, J = 7.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ -1.31, 18.26, 21.39, 22.87, 25.42, 30.10, 50.60, 67.25, 77.41, 93.41, 110.07, 114.32, 122.33, 126.43, 133.65, 136.84, 142.57, 154.09; MS m/z 348 (M⁺); HRMS calcd for C₂₀H₃₂O₃Si 348.2119, found 348.2100.

(1R,2S)- and (1R,2R)-1-[2-(Methoxymethyl)oxy-4-methyl]phenyl-1-methyl-2-triethylsiloxy-2-vinylcyclobutanes (19 and 20). To a stirred solution of the mixture of the cyclobutanols 15 and 16 (198 mg, 0.754 mmol) in CH₂Cl₂ (2 mL) was added 2,6-lutidine (0.177 mL, 1.52 mmol) at rt. Triethylsilyl methanesulfonate (TESOTf) (0.207 mL, 0.914 mmol) was added at 0 °C and stirring was continued for 15 min at rt. The reaction mixture was diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃ and brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (99 : 1 v/v) to give the mixture of the silyl ethers 19 and 20 (280 mg, 99%) as a colorless oil: IR (neat) 1610 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.42 (0.96H, q, J = 7.5 Hz), 0.64 (5.04H, q, J = 7.8 Hz), 0.73 (1.44H, t, J = 7.5 Hz), 1.00 (7.56H, t, J = 7.8 Hz), 1.26 (0.48H, s), 1.46 (2.52H, s), 1.69–1.86 (1H, m), 1.99–2.35 (5.68H, m), 2.46– 2.74 (0.32H, m), 3.47 (3H, s), 4.84 (0.84H, br d, J = 11.0 Hz), 5.03–5.20 (3.16H, m), 5.85 (0.84H, dd, J =11.0 and 17.3 Hz), 6.25 (0.16H, dd, J = 11.3 and 17.3 Hz), 6.67–6.75 (1H, m), 6.83–6.91 (1.84H, m), 6.98 (0.16H, d, J = 7.5 Hz); MS *m/z* 376 (M⁺); HRMS calcd for C₂₂H₃₆O₃Si 376.2434 (M⁺), found 376.2409.

(1S,2R)- and (1R,2R)-2-Methyl-1-triethylsiloxy-2-{2-[(2-trimethylsilyl)ethoxymethyl]-oxy-4-methyl}phenyl-1-vinylcyclobutanes (21 and 22). By following the same procedure described for 19 and 20, the cyclobutanes 21 and 22 were prepared from the mixture of 17 and 18: yield 100%; a colorless oil; IR (neat) 1610 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ -0.01-0.05 (9H, m), 0.42 (0.84H, q, J = 7.8 Hz), 0.64 (5.16H, q, J = 7.8 Hz), 0.74 (1.26H, t, J = 7.8 Hz), 0.93-1.06 (9.74H, m), 1.23 (0.42H, s), 1.44 (2.58H, s), 1.68-1.85 (1H, m), 1.98-2.34 (5.72H, m), 2.43-2.73 (0.28H, m), 3.67-3.82 (6H, m), 4.84 (0.86H, br d, J = 10.5 Hz), 5.07-5.23 (3.14H, m), 5.85 (0.86H, dd, J = 10.5 and 17.1 Hz), 6.26 (0.14H, dd, J = 11.3 and 17.0 Hz), 6.67-6.74 (1H, m), 6.81-7.00 (2H, m); MS *m/z* 348 (M⁺ -114); HRMS calcd for C₂₀H₃₂O₃Si 348.2121 (M⁺-114), found 348.2100.

3-[2-(Methoxymethyl)oxy-4-methyl]phenyl-3-methyl-2-methylenecyclopentanone (23). To a stirred solution of the mixture of the silyl ethers 19 and 20 (1.03 g, 2.73 mmol) in THF (30 mL) and MeCN (5 mL) were added Pd(OAc)₂ (400 mg, 1.78 mmol) and PdCl₂ (518 mg, 2.92 mmol) at rt and stirring was continued for 3 h under reflux. The solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel with hexane-AcOEt (95 : 5) to give the cyclopentanone 23 (448 mg, 63%) as a yellow oil: IR (neat) 1720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.60 (3H, s), 1.78–1.90 (1H, m), 2.32 (3H, s), 2.39–2.64 (3H, m), 3.40 (3H, s), 4.98–5.17 (3H, m), 5.96 (1H, s), 6.77 (1H, br d, J = 8.0 Hz); MS m/z 260 (M⁺); HRMS calcd for C₁₆H₂₀O₃ 260.1412 (M⁺), found 260.1438.

3-Methyl-2-methylene-3-{2-[(2-trimethylsilyl)ethoxymethyl]oxy-4-methyl}phenylcyclopentanone (24). To a stirred solution of the mixture of the silyl ethers 21 and 22 (1.02 g, 2.21 mmol) in THF (30 mL) and MeCN (6 mL) were added PdCl₂ (431 mg, 2.43 mmol) and Cu(OAc)₂·H₂O (0.882 g, 4.42 mmol) at rt and stirring was continued for 5 h at 50 °C. The reaction mixture was filtered through short column of silica gel and the residue upon the evaporation of the solvent was chromatographed on silica gel with hexane-AcOEt (98 : 2) to give the cyclopentanone 24 (595 mg, 78%) as a yellow oil: IR (neat) 1720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.00(9H, s), 0.93 (2H, t, J = 8.4 Hz), 1.60 (3H, s), 1.73–1.88 (1H, m), 2.31 (3H, s), 2.40–2.48 (2H, m), 2.49–2.61 (1H, m), 3.56–3.73 (2H, m), 5.00 (1H, br s), 5.06–5.20 (2H, m), 5.96 (1H, br s), 6.76 (1H, br d, J = 7.8 Hz), 6.95 (1H, br s), 7.18 (1H, d, J = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ –1.31, 18.05, 21.25, 28.09, 34.19, 36.29, 45.68, 66.38, 92.28, 115.45, 115.63, 121.51, 126.63, 133.22, 138.01, 154.67, 155.08, 207.59; MS *m*/z 346 (M⁺). Anal. Calcd for C₂₀H₃₀O₃Si: C, 69.32; H, 8.73. Found: C, 69.35; H, 8.70.

(1R, 3S)and (18,38)-3-[2-(Methoxymethyl)oxy-4-methyl]phenyl-3-methyl-2methylene-cyclopentanois (25 and 26). To a stirred solution of the cyclopentanone 23 (122 mg, 0.469 mmol) in MeOH (3 mL) was added CeCl₃·7H₂O (227 mg, 0.609 mmol). Sodium borohydride (NaBH₄) (23.0 mg, 0.609 mmol) was added portionwise at 0 °C and stirring was continued for 15 min at the same temperature. The reaction mixture was quenched with water and extracted with CH₂Cl₂. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (98 : 2 v/v) to give the cyclopentanol 26 (55.3 mg, 45%) and with hexane-AcOEt (93:7 v/v) to give the cyclopentanol 25 (52.8 mg, 43%) as a colorless oil each other. Data for 25: IR (neat) 3350 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.56 (3H, s), 1.56–1.71 (2H, m), 1.72–1.83 (1H, m), 2.09–2.29 (2H, m), 2.31 (3H, s), 3.45 (3H, s), 4.68–4.78 (1H, m), 4.82 (1H, d, J = 2.4 Hz), 5.08-5.24 (3H, m), 6.74 (1H, br d, J = 8.0 Hz), 6.91 (1H, br s), 7.25(1H, d, J = 8.0 Hz); MS m/z 262 (M⁺); HRMS calcd for C₁₆H₂₂O₃ 262.1569 (M⁺), found 262.1613. Data for 26: IR (neat) 3600 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.44 (3H, s), 1.55–1.67 (1H, m), 1.75–1.85 (1H, m), 1.96-2.08 (1H, m), 2.32 (3H, s), 2.47-2.59 (1H, m), 2.60-2.68 (1H, m), 3.48 (3H, s), 4.54-4.64 (1H, m), 4.76 (1H, br s), 5.12–5.25 (2H, m), 5.28 (1H, br s), 6.80 (1H, br d, J = 8.1 Hz), 6.91 (1H, br s), 7.33 (1H, d, J = 8.1 Hz); MS m/z 262 (M⁺); HRMS calcd for C₁₆H₂₂O₃ 262.1569 (M⁺), found 262.1617.

(1R,3S)and (1S,3S)-3-Methyl-2-methylene-3-{2-[(2-trimethylsilyl)ethoxymethyl]oxy-4-methyl]phenylcyclopentanols (27 and 28). By following the same procedure described for 25 and 26, the cyclopentanols 28 (47%) and 27 (52%) were given from the reaction of the cyclopentanone 24 as a colorless oil each other. Data for 27: IR (neat) 3390 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 0.01 (3H, s), 0.97 (2H, t, J = 8.1 Hz), 1.52 (3H, s), 1.58-1.70 (2H, m), 1.72-1.82 (1H, m), 2.08-2.27 (2H, m), 2.31(3H, m), 3.68-3.80 (2H, m), 4.67-4.78 (1H, m), 4.82 (1H, d, J = 2.1 Hz), 5.13-5.27 (3H, m), 6.74 (1H, br)d, J = 8.3 Hz), 6.94 (1H, br s), 7.25 (1H, d, J = 8.3 Hz); 13 C NMR (75 MHz, CDCl₃) δ -1.29, 18.08, 21.24, 28.38, 33.98, 36.45, 47.17, 66.24, 75.73, 92.23, 106.05, 115.31, 121.40, 126.98, 133.74, 137.39, 155.10, 164.19; MS m/z 348 (M⁺); HRMS calcd for C₂₀H₃₂O₃Si 348.2121 (M+), found 348.2112. Data for 28: IR (neat) 3430 cm⁻¹; ¹H NMR (300 MHz,CDCl₃) δ 0.00(9H, s), 0.93 (2H, t, J = 8.3 Hz), 1.43 (3H, s), 1.55– 1.64 (1H, m), 1.65–1.75 (1H, m), 1.95–2.09 (1H, m), 2.32 (3H, s), 2.48–2.59 (1H, m), 2.70–2.76 (1H, m), 3.60-3.86 (2H, m), 4.55-4.66 (1H, m), 4.74 (1H, br s), 5.18-5.30 (3H, m), 6.79 (1H, br d, J = 8.0 Hz), 6.92 (1H, br s), 7.33 (1H, d, J = 8.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ -1.32, 18.02, 21.19, 28.53, 33.85, 37.71, 47.86, 66.94, 75.94, 92.75, 109.46, 115.57, 121.77, 127.97, 133.30, 137.49, 154.47, 163.81; MS m/z 348 (M+); HRMS calcd for C20H32O3Si 348.2121, found 348.2135.

(1R,3S)-3-Methyl-2-methylene-3-(2-hydroxy-4-methyl)phenylcyclopentanol (29). To a stirred solution of the cyclopentanol 27 (168 mg, 0.482 mmol) in HMPA (10 mL) was added ⁿBu₄N+F⁻ (227 mg, 0.867 mmol) at rt and stirring was continued for 3 h at 45 °C. To the reaction mixture was added water and the mixture was extracted with Et₂O. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (90 : 10 v/v) to give the phenol 29 (85.0 mg, 81%) as colorless needles: mp 105.2–105.5 °C (from AcOEt-hexane); IR (CHCl₃) 3390, 3600 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.53 (3H, s), 1.61–1.81 (2H, m), 1.84–1.95 (1H, m), 2.10–2.52 (5H, m), 4.70–4.81 (1H, m), 5.03 (1H, d, *J* = 2.3 Hz), 5.36 (1H, d, *J* = 2.3 Hz), 6.56–6.60 (1H, m), 6.66–6.73 (1H, m), 7.21 (1H, d, *J* = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.87, 27.74, 33.18, 36.43, 47.29, 75.07, 107.66, 118.03, 121.13, 127.27, 130.67, 137.68, 153.63, 163.37; MS *m/z* 218 (M+); HRMS calcd for C₁₄H₁₈O₂ 218.1307 (M⁺), found 218.1293

(15,3S)-3-Methyl-2-methylene-3-(2-hydroxy-4-methyl)phenylcyclopentanol (30). By following the same procedure described for 29, the phenol 30 was prepared from 28: yield 92%; colorless needles; mp 143.8–144.0 °C (from AcOEt-hexane); IR (CHCl₃) 3390, 3600 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.44 (3H, s), 1.58–1.68 (1H, m), 1.88–2.09 (2H, m), 2.28 (3H, s), 2.53–2.68 (1H, m), 3.20–3.54 (1H, m), 4.72 (1H, m), 4.87 (1H, s), 5.29 (1H, s), 6.66–6.75 (2H, m), 7.28 (1H, d, J = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.83, 28.79, 33.20, 37.51, 46.51, 76.46, 112.16, 118.47, 120.55, 127.18, 130.40, 137.83, 153.28, 162.19; MS *m/z* 218 (M⁺). Anal. Calcd for C₁₄H₁₈O₂: C,77.03; H, 8.31. Found: C, 77.00; H, 8.37.

(2R,5S)-15-Nor-6,8,10,12-trichothecatetraene (31) from the mixture of 25 and 26. To a stirred solution of the mixture of the cyclopentanols 25 and 26 (21.6 mg, 0.108 mmol) in MeOH (1 mL) was added 70% aqueous HClO₄ (1 mL) at rt and stirring was continued for 30 min at the same temperature. The reaction mixture was treated with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (99 : 1 v/v) to give the tricyclic compound 31 (4.8 mg, 29%) as a colorless oil: IR (neat) 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.51 (3H, s), 1.66–1.80 (1H, m), 1.96–2.19 (3H, m), 2.24 (3H, s), 4.80 (1H, d, J = 5.4 Hz), 4.93 (1H, s), 5.11 (1H, s), 6.53–6.57 (1H, m), 6.61–6.68 (1H, m), 6.98 (1H, d, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 17.70, 21.09, 31.23, 42.50, 43.81, 80.58, 103.26, 116.43, 120.90, 123.11, 130.86, 137.75, 152.21, 152.81; MS *m/z* 200 (M⁺); HRMS calcd for C₁₄H₁₆O 200.1201 (M⁺), found 200.1190.

31 from 29. To a stirred solution of the cyclopentanol **29** (100 mg, 0.548 mmol) in CH₂Cl₂ (20 mL) was added BF₃·Et₂O (0.230 mL, 1.85 mmol) at 0 °C and stirring was continued for 1 h at the same temperature. The reaction mixture was quenched with water and extracted with Et₂O. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (99.5 : 0.5 v/v) to give the tricyclic compound **31** (57 mg, 62%) as a colorless oil.

31 from 30. By following the same procedure described for 31 from 29, the tricyclic compound 31 was prepared from 30: yield 81%.

(2R,5R,12S)-15-Nor-6,8,10-trichothecatriene-12,13-diol (32). To a stirred solution of the tricyclic compound 31 (249 mg, 1.24 mmol) in 'BuOH (2 mL) and water (2 mL) were added *N*-methylmorpholine-*N*-oxide (291 mg, 2.48 mmol) and a catalytic amount of OsO₄ at rt and stirring was continued for 12 h at the same temperature. To the reaction mixture was added saturated aqueous Na₂SO₄ and the solution was stirred for 30 min. The reaction mixture was extracted with Et₂O and the extract was washed with brine. The residue was chromatographed on silica gel with hexane-AcOEt (85 : 15 v/v) to give the diol 32 (270 mg, 93%) as colorless needles: mp 147.9–148.2 °C (from AcOEt-hexane); IR (CHCl₃) 3570 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.34 (3H, s), 1.84–1.98 (2H, m), 1.98–2.06 (1H, m), 2.08–2.24 (2H, m), 2.25 (3H, s), 2.81–2.92 (1H, m), 3.52 (1H, br d, *J* = 11.1 Hz), 3.85 (1H, br d, *J* = 11.1 Hz), 4.44 (1H, d, *J* = 5.1 Hz), 6.54 (1H, br s), 6.67 (1H, br d, *J* = 7.8 Hz), 6.97 (1H, d, *J* = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 14.05, 21.02, 29.45, 42.08, 46.26, 61.86, 78.89, 81.20, 116.30, 121.58, 124.39, 129.18, 137.80, 151.68; MS *m/z* 234 (M⁺); HRMS calcd for C₁₄H₁₈O₃ 234.1256 (M⁺), found 234.1248.

(2R,5R,12S)-12,13-Epoxy-15-nor-6,8,10-trichothecatriene (2) from 31. To a stirred solution of the tricyclic compound 31 (18.7 mg, 0.0934 mmol) in CH₂Cl₂ (1 mL) was added *m*-CPBA (23.3 mg, 80% active, 0.135 mmol) at rt and stirring was continued for 17 h at the same temperature. The combined extracts were washed with saturated aqueous NaHCO₃ and brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (99 : 1 v/v) to give epoxide 2 (9.3 mg, 46%) as a colorless oil: IR (neat) 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.18 (3H, s), 1.97–2.25 (4H, m), 2.27 (3H, s), 2.91 (1H, d, J = 4.2 Hz), 3.11 (1H, d, J = 4.2 Hz), 4.14 (1H, d, J = 5.4 Hz), 6.59 (1H, br s), 6.69 (1H, br d, J = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 13.14, 20.94, 29.82, 41.16, 41.64, 47.69, 66.94, 81.32, 116.65, 121.48, 124.29, 129.46, 138.33, 152.59; MS *m/z* 216 (M⁺); HRMS calcd for C₁₄H₁₆O₂ 216.1150, found 216.1142

2 from 32. To a stirred solution of the diol 32 (24.1 mg, 0.103 mmol) in THF (2 mL) was added a solution of ⁿBuLi (0.141 mL, 1.5 M solution in hexane, 0.211 mmol) at -78 °C and the temperature was raised up to 0 °C in 1 h. A solution of *p*-toluenesulfonyl chloride (TsCl) (23.4 mg, 0.124 mmol) in THF (2 mL) was added to the above solution at 0 °C and stirring was continued for 1 h. To the reaction mixture was added brine and the mixture was extracted with Et₂O. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (97 : 3 v/v) to give the epoxide 2 (18.2 mg, 82%).

(2R,5R,12S)-12,13-Dimethylmethylenedioxy-15-nor-6,8,10-trichothecatriene (36). To a stirred solution of the diol 32 (151 mg, 0.644 mmol) in CH₂Cl₂ (5 mL) were added 2,2-dimethoxypropane (0.396 mL, 3.22 mmol) and a catalytic amount of camphorsulfonic acid at rt and stirring was continued for 9 h. The reaction mixture was quenched with aqueous NaHCO₃ and extracted with Et₂O. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with hexane-AcOEt (99 : 1 v/v) to give the acetonide 36 (173 mg, 98%) as a colorless oil: IR (neat) 1620 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.37 (3H, s), 1.46 (6H, s), 1.88–2.04 (3H, m), 2.05–2.23 (1H, m), 2.25 (3H, s), 3.68 (1H, d, J = 9.2 Hz), 4.20 (1H, d, J = 9.2 Hz), 4.40 (1H, d, J = 5.5 Hz), 6.53 (1H, br s), 6.65 (1H, br d, J = 8.0 Hz), 6.98 (1H, d, J = 8.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 14.09, 20.64, 25.95, 26.67, 29.43, 41.35, 45.19, 65.02, 81.93, 87.29, 109.76, 116.33, 121.25, 124.36, 129.01, 137.59, 152.05; MS *m/z* 274 (M⁺); HRMS calcd for C₁₇H₂₂O₃ 274.1569 (M⁺), found 274.1577.

References and Notes

- (a) Devon, T. K.; Scott, A. I. Handbook of Naturally Occurring Compounds Vol. II, Terpenes: Academic Press, New York, 1972, p 114. (b) Terpenoids and Steroids; The Chemical Society, London, Vol. 1-12.
 (c) Grove, J. F. Nat. Prod. Rep. 1988, 187-209. (d) ApSimon, J. W.; Blackwell, B. A.; Blais, L.; Fielder, D. A.; Greenhalgh, R.; Kasitu, G.; Miller, J. D.; Savard, M. Pure Appl. Chem. 1990, 62, 1339-1346.
- (a) Bamburg, J. R. Clin. Toxicol. 1972, 5, 495-515. (b) Tamm, C. Fortschr. Chem. Org. Naturst. 1974, 31, 63-117. (c) Purchase, I. F. H. Ed., Mycotoxins; American Elsevier, New York, 1974. (d) Kupchan, S. M.; Jarvis, B. B.; Dailey Jr., R. G.; Bright, W.; Bryan, R. F.; Shizuri, Y. J. Am. Chem. Soc. 1976, 98, 7092-7093. (e) Ueno, Y. Trichothecanes-Chemical, Biological and Toxicological Aspects, Developments in Food Science 4, American Elsevier, New York, 1983.
- Doyle, T. W.; Bradner, W. T. In Anticancer Agents Based on Natural Product Models; Cassady, J. M.; Douros, J. D., Eds.; Academic, New York, 1980, p 43.
 (a) McDougal, P. G.; Schmuff, N. R. In Progress in the Chemistry of Organic Natural Products; Herz,
- (a) McDougal, P. G.; Schmuff, N. R. In Progress in the Chemistry of Organic Natural Products; Herz, W.; Grisebach, H.; Kirby, G. W.; Tamm, Ch., Eds.; Springer-Verlag, New York, 1985. Vol. 47, p 153.
 (b) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. In The Total Synthesis of Natural Products; ApSimon, J. W., Ed.; John Wiley & Sons, Inc., New York, 1983, Vol. 5, p 238. (c) Boeckman, R. H.; Goldstein, M. *ibid*. 1988, Vol. 7, p 116. (d) Schlessinger, R. H.; Nugent, R. A. J. Am. Chem. Soc. 1982, 104, 1116-1118. (e) Trost, B.M.; McDougal, P. G. *ibid*. 1982, 104, 6110-6112. (f), Kraus, G. A.; Roth, B.; Frazier, K.; Shimagaki, M. *ibid*. 1982, 104, 1114-1116. (g) Rousch, W. R.; D'Ambra, T. E. *ibid*. 1983, 105, 1058-1060. (h) Brooks, D. W.; Grothaus, P. G.; Mazdiyasni, H. *ibid*. 1983, 105, 4472-4473. (i) Gilbert, J. C.; Selliah, R. D. Tetrahedron Lett. 1992, 33, 6259-6262. (j) idem J. Org. Chem. 1993, 58, 6255-6265 and references cited therein.
- (a) Nemoto, H.; Ishibashi, H.; Fukumoto, K. Heterocycles, 1992, 33, 549-552. (b) Nemoto, H.; Ishibashi, H.; Nagamochi, M.; Fukumoto, K. J. Org. Chem. 1992, 57, 1707-1712. (c) Nemoto, H.; Nagamochi, M.; Fukumoto, K. J. Chem. Soc., Chem. Commun. 1992, 1695-1697. (d) Nemoto, H.; Nagamochi, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1993, 2329-2332. (e) Nemoto, H.; Nagamochi, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1993, 2329-2332. (e) Nemoto, H.; Tanabe, T.; Nagamochi, M.; Fukumoto, K. Heterocycles 1993, 35, 707-710. (f) Nemoto, H.; Shiraki, M.; Nagamochi, M.; Fukumoto, K. Tetrahedron Lett. 1993, 34, 4939-4942. (g) Nemoto, H.; Shiraki, M.; Fukumoto, K. Synlett. 1994, 599-600. (h) Nemoto, H.; Shiraki, M.; Fukumoto, K. Tetrahedron 1994, 50, 10391-10396. (i) Nemoto, H.; Tanabe, T.; Fukumoto, K. Tetrahedron Lett. 1994, 35, 6499-6502. (j) Nemoto, H.; Nagamochi, M.; Ishibashi, H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74-79. (k) Nemoto, H.; Tanabe, T.; Fukumoto, K. ibid. 1995, 60, 6785-6790. (l) Nemoto, H.; Shiraki, M.; Fukumoto, K. Tetrahedron Lett. 1995, 36, 8799-8802.
- (a) Nemoto, H.; Hakamata, H.; Nagamochi, M.; Fukumoto, K. Heterocycles 1994, 39, 467-470. (b) Nemoto, H.; Miyata, J.; Hakamata, H.; Fukumoto, K. Tetrahedron Lett. 1995, 36, 1055-1058. (c) Nemoto, H.; Miyata, J.; Hakamata, H.; Nagamochi, M.; Fukumoto, K. Tetrahedron 1995, 51, 5511-5522.
- 7. Anderson, W. K.; Lee, G. E. J. Med. Chem. 1980, 23, 96-97.
- 8. Weber, H. W. Fr. 1, 511, 331 (Chem. Abstr. 1969, 70, 77767 h).
- Stafford, J. A.; McMurry, J. E. Tetrahedron Lett. 1988, 29, 2531-2534.
 The stereochemistry of 15 was confirmed by the definite NOE enhancement between methyl (Ha) (1.35 ppm, s) and vinylic hydrogen (Hb) (6.34 ppm, dd, J = 10.8 and 17.4 Hz) in its ¹H NMR (300 MHz) spectrum. The ratio of 15 and 16 was determined by ¹H NMR integration of methyl signals (1.35 ppm for 15 and 1.46 ppm for 16). These isomers could not be separated and used as a mixture (Figure 1).
- 11. This type of transformation has been developed by us and others, see 5j and references cited therein.
- The structures of 25 and 26 were determined mainly by ¹H NMR (300 MHz) studies as follows. Namely, the definite NOE enhancement between methyl (Ha) (1.56 ppm, s) and allylic 1hydrogen (Hb) (4.66–4.76 ppm,

Figure 1

15 : R = MOM 17 : R = SEM

m) of 25 confirmed these two groups to be *cis*. On the other hand, no such enhancement between methyl (Ha) (1.44 ppm, s) and allylic hydrogen (Hb) (4.54– 4.64 ppm, m) of 26 showed these two groups to be *trans* (Figure 2). Since the next cyclization process giving 31 seems to proceed via allylic cation, the both diastereomers 25 and 26 might be used for this reaction.

13. The stereochemistry of the epoxide 2 was tentatively assigned at the moment by the analogous reaction¹⁴ of the compound 33 in which the epoxidation took place in the completely stereoselective manner to give the compound 34 with the *syn* relationship between the methylene hydrogens of the epoxide ring and the aromatic ring. This stereochemical outcome was explained by the effective size of the π system making the aromatic region of 33 to be more encumbered one. This stereochemical assignment was also supported by the somewhat large difference of the chemical shifts between the two hydrogens Ha (2.91 ppm, d, J = 4.2 Hz) and Hb (3.11 ppm, d, J = 4.2 Hz) of the epoxide 2 due to the deshielding effect of the phenoxy group and this seemed not to be the case for the isomeric epoxide 35. This was also confirmed afterward by the identification with the sample obtained *via* the diol 32 (Figure 3).

Figure 3

- 14. Goldsmith, D. J.; John, T. K.; Kwong, C. D.; Painter III, G. R. J. Org. Chem. 1980, 45, 3989-3993.
- 15. The stereochemistry of 17 was confirmed by the definite NOE enhancement between methyl (Ha) (1.34 ppm, s) and vinylic hydrogen (Hb) (6.32 ppm, dd, J = 11.0 and 17.4 Hz) in its ¹H NMR (500 MHz) spectrum. The ratio of 17 and 18 was determined by ¹H NMR integration of methyl signals (1.34 ppm for 17 and 1.44 ppm for 18) (see Figure 1).
- 16. The structure of 27 and 28 was determined mainly by ¹H NMR (300 MHz) studies as follows. The difinite NOE enhancement between methyl (Ha) (1.52 ppm, s) and allylic hydrogen (Hb) (4.67-4.78 ppm, m) of 27 showed these two groups to be *cis*. On the other hand, no such enhancement between methyl (Ha) (1.43 ppm, s) and allylic hydrogen (Hb) (4.55-4.66 ppm, m) of 28 confirmed these two groups to be *trans*. These two isomers were separated at this stage and used separately for further elaboration (see Figure 2).
- 17. The stereochemistry of the diol 32 was tentatively assigned by ¹H NMR (500 MHz) studies of the corresponding acetonide 36 as follows. The signals of the methylene hydrogens Ha and Hb were observed at 3.68 ppm (d, J = 9.2Hz) and 4.20 ppm (d, J = 9.2 Hz) respectively with large difference (0.52 ppm) of chemical shifts which could be due to the deshielding effect of phenoxy

group. On the other hand, the two methyl groups of acetonide were observed at 1.46 ppm with the same chemical shift. This showed the aromatic ring and the methylene group of dioxolane ring to be syn relationship. This could not be the case for the isomeric acetonide 37 (Figure 4).

18. All compounds reported in this paper are racemic. For convenience, only one enantiomer is shown.

(Received in Japan 16 May 1996; accepted 10 June 1996)