- 8 Barz, W, Koster, J, Weltring, K.-M and Strack, D. (1985) Ann. Phytochem Soc. Europe 25, 307.
- 9 Harborne, J B (1986) Phytochemistry 25, 1887
- 10. Harbone, J B and Self, R. (1987) Phytochemistry 26, 2417
- 11 Mabry, T J, Markham, K. R and Thomas, M. B. (1970) The Systematic Identification of Flavonoids Springer, Berlin.
- 12 Sandermann, H Jr (1969) Phytochemistry 8, 1571
- 13 Krause, H and Strack, D (1979) Z Pflanzenphysiol 95, 183

Phytochemistry, Vol 27, No 11, pp 3715-3716, 1988 Printed in Great Britain 0031-9422/88 \$3.00+0.00 © 1988 Pergamon Press plc.

LUPIN ALKALOIDS FROM THE SEEDS OF THERMOPSIS LUPINOIDES

Kazuki Saito, Satoshi Takamatsu, Shigeru Ohmiya,* Hirotaka Otomasu,* Masaho Yasuda,† Yoshihiro Kano† and Isamu Murakoshi

Faculty of Pharmaceutical Sciences, Chiba University, Yayoi-cho 1-33, Chiba 260, Japan, *Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan, †Hokkaido Institute of Pharmaceutical Sciences, Katsuraoka-cho 7-1, Otaru 047-02, Japan

(Received 18 March 1988)

Key Word Index—*Thermopsis lupinoides*, Leguminosae, seeds, lupin alkaloids, quinolizidine alkaloids, (+)-lupanine N₁₆-oxide, (+)-lupanine

Abstract—A new lupin alkaloid, (+)-lupanine N-oxide, was isolated from the seeds of *Thermopsis lupinoides* together with nine known alkaloids. The structure of the new compound was determined by spectroscopic methods and chemical transformations.

INTRODUCTION

Thermopsis lupinoides Link is a herbaceous plant containing a large amount of lupin alkaloids [1]. We have already reported the isolation of eight lupin alkaloids from the flowers, leaves, stems and roots of *T. lupinoides* [2]. In the present communication, we describe the isolation of a new alkaloid, (+)-lupanine *N*-oxide (1), from the seeds of *T. lupinoides* and the structural elucidation by spectroscopic methods and chemical transformations.

RESULTS AND DISCUSSION

From the 75% EtOH extract of the seeds of T lupinoides, a new alkaloid (1) was isolated in a yield of 0 005% of the fr. wt by repeated silica gel chromatography. We also isolated nine known lupin alkaloids, (+)-lupanine (2, main base), (-)-anagyrine, (-)-cytisine, (-)-N-methylcytisine, (-)-sparteine, (+)-17oxolupanine, N-formylcytisine, baptifoline, and ammodendrine.

The in-beam HRMS spectrum of 1 indicated the molecular formula $C_{15}H_{24}N_2O_2$ (M⁺, m/z 264 1838, calc. 264.1837). The fragment pattern of 1 was similar to that of (+)-lupanine (2). The IR spectrum showed the presence of an amido group (1640 cm⁻¹) and an N-oxide bond (930 cm⁻¹). In the ¹³C NMR spectrum of 1 (Table 1), the signals of C-11, C-15 and C-17 were shifted downfield in the range, δ 7–14 compared to those of 2. The up-field

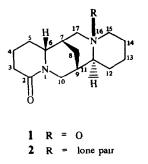
shifts, on the contrary, were observed in the signals of C-8, C-12 and C-14, because of the steric effects of axial *N*-oxide bond at *N*-16. These substituent effects of *N*-oxide group were also reported in other lupin alkaloids [3–5]. In the ¹H NMR spectrum of 1, the signals in low field were assigned by decoupling experiments and comparison

Table 1 ¹³C NMR chemical shifts of (+)lupanine N-oxide (1) and (+)-lupanine (2) in CDCl₃

,			
с	1	2	Δ(1-2)
2	172 1	171.3	+0.8
3	33 0	33 1	-01
4	194	197	-03
5	27.7	26 8	+0.9
6	61.8	60.9	+0.9
7	336	35.0	-1.4
8	22 7	27.4	-47
9	317	32.5	-0.8
10	470	46 8	+02
11	71.4	640	+74
12	277	336	-59
13	25.7	24 5	+1.2
14	20 3	25 3	- 5.0
15	69.6	554	+14.2
17	65 2	52 9	+123

with the spectral data of **2** The 10α and 10β protons resonated at $\delta 4.52$ and 2.55, respectively. The protons at C-15 and C-17 appeared in low-field between $\delta 2.9$ and 3 7 compared with those of **2** because of the substituent effects of *N*-oxide [6] Thus, the structure of **1** was determined as (+)-lupanine *N*-oxide

To confirm the structure of 1, chemical conversions between 1 and 2 were performed. Compound 1 was reduced by sulphur dioxide gas to give 2. Furthermore, 1 was synthesized from 2 by oxidation with *m*-chloroperoxybenzoic acid.


The N-oxides of lupin alkaloids are apparently rare in plants [7, 8]. Only seven N-oxides [8] and a few other examples [3, 4] are reported in the literature Many of the known lupin alkaloids are, however, oxygenated on carbons adjacent to nitrogen, e.g. lupanine, 17-oxolupanine, and 6β -hydroxylupanine [9] The present study is the first isolation of (+)-lupanine N-oxide (1) from natural sources, although 1 had already been synthesized artificially [10, 11] It is interesting that we have also isolated (+)-lupanine and (+)-17-oxolupanine from the seeds of *T. lupinoides* Because it is possible that 1 is the biosynthetic intermediate from (+)-lupanine to (+)-17oxolupanine [7]

EXPERIMENTAL

Extraction and isolation of alkaloids The seeds of T lupinoides were collected in July in Hokkaido, Japan 10 g of total alkaloidal fraction from 400 g of the seeds was prepared as described in ref [2] This fraction was dissolved in *n*-hexane The insoluble fraction was further purified on a silica gel column 1 was eluted by the solvent system of CH_2Cl_2 -MeOH-28% NH₄OH (50 10 1) The 20 mg of 1 was recrystallized from C_6H_6

(+)-Lupanine N-oxide (1) Hygroscopic needle, mp 58° (C₆H₆), [α]₂²⁴ + 65 5° (EtOH) HRMS (in-beam) m/z (rel int) 264 1838. [M] ⁺ (16), 248 [M-O] ⁺ (58), 247 [M-OH] ⁺ (29), 150 (30), 149 (45), 148 (50), 136 (100), 110 (38), 98 (53), 97 (46). 84 (42), 41 (67) IR v_{max}^{neat} cm⁻¹ 1640 (C=O), 930 (N-O) ⁻¹H NMR (400 MHz, CDCl₃) $\delta 4 52$ (1H, d, J=130 Hz, 10α-H), 382 (1H, m, $W_{h/2}$ = 20 Hz, 6β-H), 3 66 (1H, t, J=116 Hz, 17β-H), 3 40 (2H, m, $W_{h/2}$ = 21 Hz, 15β-H), 2 99 (1H, t, J=12.0 Hz, 15α-H), 2 94 (1H, dd, J=116 and 2 7 Hz, 17α-H), 2 55 (3H, d like, J=130 Hz, 10β-H), ¹³C NMR see the data in Table 1

Reduction of 1 to 2. 10 mg of 1 was dissolved in 2 ml of MeOH and reduced with SO₂ gas for 15 min at 0° The purification by prep TLC using solvent system of CH₂Cl₂-MeOH-28% NH₄OH (980 20 1) gave 4 mg of pure 2, $[\alpha]_{6^4}^{2^4} + 650$

Synthesis of 1 from 2 (+)-Lupanine (2) (260 mg) was dissolved in 5 ml of CH_2Cl_2 *m*-Chloroperoxybenzoic acid (174 mg) in CH_2Cl_2 was added gradually to the former soln After stirring 6 hr at room temp the products were extracted and purified by CC on silica gel with the solvent system of CH_2Cl_2 -MeOH-28% NH₄OH (200 8 1) 1, $[\alpha]_D$ +65 3°, was obtained with a yield of 71% (190 mg)

REFERENCES

- Mears, J A and Mabry, T J (1971) Chemotaxonomy of the Leguminosae (Harborne, J B, Boulter, D and Turner, B L, eds), pp 73-178 Academic Press, London
- 2 Ohmiya, S., Otomasu, H., Haginiwa, J. and Murakoshi, I. (1984) Phytochemistry 23, 2665
- 3 Murakoshi, I, Kidoguchi, E, Nakamura, M, Haginiwa, J., Ohmiya, S, Higashiyama, K and Otomasu, H (1981) *Phytochemistry* **20**, 1725
- 4 Murakoshi, I., Ito, M., Haginiwa, J., Ohmiya, S., Otomasu, H. and Hurano, R. T. (1984) Phytochemistry 23, 887
- 5 Saito, K., Tsai, S., Ohmiya, S., Kubo, H., Otomasu, H and Murakoshi, I (1986) Chem Pharm Bull 34, 3982
- 6 Bachmann, K and von Philipsborn, W (1972) Helv Chim Acta 55, 637
- 7 Phillipson, J. D (1971) Xenobiotica 1, 419
- 8 Phillipson, J D and Handa, S S (1978) Lloydia 5, 385
- 9 Asres, K, Phillipson, J D and Mascagni, P (1986) Phytochemistry 25, 1449
- 10 Ochiai, E., Ito, Y and Maruyama, M (1939) J Pharm Soc Jpn 59, 705
- 11 Baranowski, P and Wiewiorowski, M (1964) Bull Acad Polan Sci., Ser Sci Chim 12, 761