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A B S T R A C T

A convenient, efficient and environmentally benign procedure has been developed for the synthesis of

pyrano[4,3-b]pyran derivatives via a one-pot, three-component reaction of 4-hydroxy-6-methylpyran-

2-one, aldehydes and malononitrile in water using H6P2W18O62�18H2O as catalyst. Reusability of the

catalyst and reaction media, short reaction times and easy isolation of products are some added

advantages of the present methodology.

� 2013 Balwant S. Keshwal. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.
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1. Introduction

In recent years, heteropolyacids have attracted much attention
as environmentally benign catalysts for organic synthetic
processes. They possess unique physicochemical properties, such
as super-acidity, high thermal and chemical stability, ability to
accept and release electrons, high proton mobility, and the
possibility of varying their acidity and oxidizing potential [1].
Their significantly higher Brønsted acidity makes them more
effective catalysts than conventional acid catalysts, such as
mineral acids, ion exchange resins and mixed oxides zeolites [2].
They are non-corrosive, inexpensive and reusable and require less
waste disposal [3]. They are used as industrial catalysts for several
liquid phase reactions [4–7].

Multicomponent reactions (MCRs), due to their operational
simplicity, high bond forming efficiency, reduced waste and rapid
access to structural diversity, have attracted much attention of
synthetic organic chemists for building highly functionalized
organic molecules and pharmacologically important heterocyclic
compounds [8–11]. Developing MCR protocols in aqueous medium
is an active area of research in this direction. Water is recognized as
an attractive medium for many organic reactions because it is the
lowest cost, most abundantly available solvent. Water, as a green
solvent, is highly polar and therefore immiscible with most organic
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compounds. Moreover, the water soluble catalyst resides and
operates in the aqueous phase and separation of organic materials
is thus easy. Also, dramatic rate enhancements have been achieved
in water in many organic reactions [12,13]. Reactions in aqueous
media are generally environmentally safe, devoid of any carcino-
genic effects, simple to handle, comparatively more economic and
especially important in industry.

It is well known that fused pyran derivatives exhibit a wide
spectrum of pharmacological activities and biological activities,
such as insecticidal [14], antiviral and antileishmanial [15,16],
anticonvulsant and antimicrobial activities [17]. Also, many of
them are non-peptide human immunodeficiency virus (HIV)
protease inhibitors [18–20]. A literature survey revealed that
comparatively few methods have been reported for the prepara-
tion of pyrano[4,3-b]pyran derivatives. Recently, a one-pot, three-
component reaction of 4-hydroxy-6-methylpyran-2-one with
malononitrile and aromatic aldehydes has enjoyed wider
utilization in the synthesis of these compounds. A variety of
reagents, such as piperidine [21,22], triethylbenzyl ammonium
chloride [23], KF/Al2O3 [24], magnesium oxide [25], ionic liquids
[16,26], DBU [27], and also without any catalyst [28] have been
employed to accomplish this transformation. Some of the
reported methods suffer from serious limitations, such as long
reaction times, complex synthetic pathways, tedious work-up,
use of organic solvents, lower product yields and non-reusability
of the catalyst. Therefore, it is still necessary to develop clean,
efficient and convenient methods to construct such significant
heterocyclic compounds.
18H2O: A green and reusable catalyst for one-pot synthesis of
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Scheme 1. H6P2W18O62�18H2O catalyzed synthesis of 2-amino-4-aryl-3-cyano-5-

oxo-4H,5H-pyrano[4,3-b]pyrans in water.
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Based on the previous studies on the use of heteropolyacids as
catalysts, and in a continuation of our endeavors for the develop-
ment of simple and highly expedient methods for the synthesis of
polyfunctionalized heterocycles of biological importance [29], we
examined the possibility of using H6P2W18O62�18H2O, a Wells-
Dawson type heteropolyacid, as a catalyst for the one-pot synthesis
of pyrano[4,3-b]pyran derivatives by condensing aromatic alde-
hydes, malononitrile and 4-hydroxy-6-methylpyran-2-one in water
under reflux (Scheme 1).

2. Experimental

All the chemicals were purchased from Merck and Sigma–
Aldrich and used without further purification. Melting points were
determined in open glass capillaries and are uncorrected. IR
spectra were recorded on a Perkin Elmer-1430 spectrophotometer
using potassium bromide discs. 1H NMR and 13C NMR spectra were
obtained at 400 MHz with a Bruker WM-400 spectrometer using
DMSO-d6 as solvent and TMS as an internal standard. MS spectra
were measured at Micromass ZMD ESI (70 eV) system.

2.1. General procedure for the synthesis of 2-amino-4-aryl-5-oxo-4H,

5H-pyrano[4,3-b]pyran-3-carbonitriles

A mixture of 4-hydroxy-6-methylpyran-2-one (1 mmol), aro-
matic aldehyde (1 mmol), malononitrile (1.2 mmol) and
H6P2W18O62�18H2O (1 mol%) in 20 mL of water was stirred under
reflux for appropriate time. After completion of the reaction as
monitored by TLC, the reaction mixture was cooled to room
temperature. The solid product was collected by filtration, washed
with aqueous ethanol (1:1) and recrystallized from ethanol to yield
the pure product. All products were characterized by their spectral
and physical data.

2.2. Characterization data for the representative compounds

2.2.1. 2-Amino-7-methyl-5-oxo-4-phenyl-4H,5H-pyrano[4,3-b]pyran

-3-carbonitrile (4a, C16H12N2O3)

Yellow crystals; yield: 92%; Mp 234–236 8C (236–238 8C) [22];
IR (KBr, cm�1): n 3458, 3260, 3131, 3088, 2293, 1649, 1555, 1342,
1053, 790; 1H NMR (400 MHz, DMSO-d6): d 2.56 (s, 3H, CH3), 4.76
(s, 1H, CH), 6.43 (s, 1H, 55CH), 7.20–7.22 (dd, 2H, ArH, Ja = 3.9 Hz,
Jb = 1 Hz), 7.27 (s, 2H, NH2), 7.42 (d, 1H, ArH, J = 3.5 Hz), 7.63–7.65
(dd, 2H, ArH, Ja = 4.2 Hz, Jb = 0.9 Hz); 13C NMR (100 MHz, DMSO-
d6): d 23.15, 31.94, 57.84, 103.97, 116.22, 118.94, 122.51, 124.27,
124.58, 124.67, 127.72, 140.90, 152.95, 153.84, 158.40, 159.49.

2.2.2. 2-Amino-4-(4-methoxyphenyl)-7-methyl-5-oxo-4H,5H-

pyrano[4,3-b]pyran-3-carbonitrile (4h, C17H14N2O4)

Yellow crystals; yield: 86%; Mp 202–205 8C (205–207 8C) [22];
IR (KBr, cm�1): n 3472, 3365, 2925, 2212, 1637, 1540, 1296, 1039,
824; 1H NMR (400 MHz, DMSO-d6): d 2.57 (s, 3H, CH3), 3.76 (s, 3H,
OCH3), 5.13 (s, 1H, CH), 6.35 (s, 1H, 55CH), 6.65–6.66 (m, 2H, ArH);
7.41 (m, 2H, ArH), 7.57 (s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6):
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d 23.27, 30.49, 55.87, 101.64, 111.55, 112.90, 116.17, 118.86,
122.44, 124.11, 150.92, 151.67, 152.05, 153.94, 158.71, 159.50.

2.2.3. 2-Amino-4-(furan-2-yl)-7-methyl-5-oxo-4H,5H-pyrano[4,3-

b]pyran-3-carbonitrile (4i, C14H10N2O4)

Pink crystals; yield: 95%; Mp 223–225 8C (223–224 8C) [29]; IR
(KBr, cm�1): n 3208, 3085, 2195, 1620, 1384, 1258, 1139, 1013,
980, 754; 1H NMR (400 MHz, DMSO-d6): d 2.25 (s, 3H, CH3), 4.47 (s,
1H, CH), 6.10 (s, 1H, 55CH), 6.16 (d, 1H, ArH, J = 3.1 Hz); 6.30 (dd,
1H, ArH, Ja = 1.8, Jb = 1.2 Hz); 6.97 (s, 2H, NH2), 7.37 (d, 1H, ArH,
J = 1.0 Hz); 13C NMR (100 MHz, DMSO-d6): d 19.43, 29.88, 55.36,
97.95, 98.40, 105.90, 110.17, 118.89, 141.55, 154.12, 158.58,
158.75, 161.13, 162.36. MS (m/z): 270.0 (M+).

2.2.4. 2-Amino-7-methyl-5-oxo-4-(thiophen-2-yl)-4H,5H-

pyrano[4,3-b]pyran-3-carbonitrile (4j, C14H10N2O3S)

Colorless crystals; yield: 92%; Mp 242–244 8C (242–244 8C)
[29]; IR (KBr, cm�1): n 3081, 2857, 2196, 1717, 1614, 1375, 1254,
1189, 1044, 777; 1H NMR (400 MHz, DMSO-d6): d 2.23 (s, 3H, CH3),
4.66 (s, 1H, CH), 6.13 (s, 1H, 55CH), 6.91 (dd, 1H, ArH, Ja = 3.5 Hz,
Jb = 1.5 Hz); 6.97 (d, 1H, ArH, J = 2.9 Hz); 7.13 (s, 2H, NH2), 7.25 (d,
1H, ArH, J = 3.9 Hz); 13C NMR (100 MHz, DMSO-d6): d 19.40, 31.26,
57.81, 97.94, 100.89, 119.03, 124.44, 124.63, 126.61, 147.78,
157.72, 158.44, 161.22, 162.57. MS (m/z): 286.1 (M+).

2.2.5. 2-Amino-7-methyl-4-(5-methyl-thiophen-2-yl)-5-oxo-4H,5H-

pyrano[4,3-b]pyran-3-carbonitrile (4k, C15H12N2O3S)

Brown crystals; yield: 93%; Mp 176–177 8C (175–177 8C) [29];
IR (KBr, cm�1): n 3471, 3363, 3119, 2923, 2211, 1639, 1549, 1296,
1039, 743; 1H NMR (400 MHz, DMSO-d6): d 2.24 (s, 3H, CH3), 2.39
(s, 3H, CH3), 4.57 (s, 1H, 55CH), 6.04 (s, 1H, 55CH), 6.55 (d, 1H, ArH,
J = 1.6 Hz), 6.74 (d, 1H, ArH, J = 3.3 Hz), 6.84 (s, 2H, NH2); 13C NMR
(100 MHz, DMSO-d6): d 14.97, 19.44, 31.30, 58.19, 97.89, 101.02,
118.97, 124.29, 124.47, 138.17, 140.64, 157.51, 158.28, 161.30,
162.10. MS (m/z): 301.1 (M++1).

2.2.6. 2-Amino-4-(5-chlorothiophen-2-yl)-7-methyl-5-oxo-4H,5H-

pyrano[4,3-b]pyran-3-carbonitrile (4l, C14H9ClN2O3S)

Yellow crystals; yield: 89%; Mp 226–227 8C (228–229 8C) [29];
IR (KBr, cm�1): n 3322, 3191, 3112, 2196, 1671, 1606, 1514, 1344,
1262, 1037, 732; 1H NMR (400 MHz, DMSO-d6): d 2.22 (s, 3H, CH3),
4.24 (s, 1H, CH), 6.13 (s, 1H,55CH), 6.84 (d, 1H, ArH, J = 2.7 Hz), 6.93
(s, 2H, NH2), 7.11 (d, 1H, ArH, J = 1.5 Hz); 13C NMR (100 MHz,
DMSO-d6): d 19.35, 35.47, 58.28, 97.89, 101.18, 119.19, 123.95,
128.44, 133.26, 135.34, 159.97, 161.28, 162.07, 164.28. MS (m/z):
320.0 (M+).

3. Results and discussion

We report herein a green approach for the synthesis of
pyrano[4,3-b]pyrans catalyzed by H6P2W18O62�18H2O in water
under reflux. In our initial study, the reaction of 4-hydroxy-6-
methylpyran-2-one, benzaldehyde and malononitrile was used as
a model reaction to optimize the reaction conditions. The model
reaction was carried out in the presence of a variety of catalysts
and solvents under different conditions. The results obtained are
summarized in Table 1 and determined that the best results in
terms of reaction time, cost and yield were obtained with 1 mol% of
H6P2W18O62�18H2O as catalyst in water under reflux. Higher
loading of the catalyst did not improve the product yield to a great
extent (Table 1, entry 9). The product formation was also observed
under reaction conditions at room temperature. However, the yield
was unsatisfactory (62%) and the reaction was incomplete even
after 4 h (Table 1, entry 8). Thus, refluxing all the components in
presence of 1 mol% of H6P2W18O62�18H2O in water proved to be
the optimum conditions for this reaction.
18H2O: A green and reusable catalyst for one-pot synthesis of
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Table 1
Optimization of the reaction conditions for the synthesis of 4a.

Entry Catalyst (mol%) Solvent T (8C) Time (min) Yielda (%)

1 H6P2W18O62�18H2O (1) EtOH Reflux 60 87

2 H6P2W18O62�18H2O (1) CH2Cl2 Reflux 180 42

3 H6P2W18O62�18H2O (1) CH3CN Reflux 120 56

4 H6P2W18O62�18H2O (1) H2O Reflux 45 94

5 H4SiW12O40 (1) H2O Reflux 60 86

6 Sulfamic acid (10) H2O Reflux 90 72

7 p-Toluenesulfonic acid (10) H2O Reflux 90 74

8 H6P2W18O62�18H2O (1) H2O r.t. 240 62

9 H6P2W18O62�18H2O (5) H2O Reflux 45 95

a Isolated yield.

Table 2
Synthesis of 2-amino-4-aryl-3-cyano-5-oxo-4H,5H-pyrano[4,3-b]pyrans in water using H6P2W18O62�18H2O (1 mol%) as catalyst under reflux.

Entry Ar Product Time (min) Yield (%) Mp (8C) found (reported)

1 C6H5 4a 45 94 234–236 (236–238) [22]

2 4-O2NC6H4 4b 45 87 215–218 (216–218) [22]

3 3-O2NC6H4 4c 50 91 232–233 (234–235) [24]

4 4-ClC6H4 4d 45 94 228–230 (230–231) [24]

5 2,4-Cl2C6H3 4e 60 88 232–235 (230–231) [24]

6 4-BrC6H4 4f 50 93 226–227 (223–224) [24]

7 4-CH3C6H4 4g 50 90 224–225 (223–225) [23]

8 4-CH3OC6H4 4h 60 86 202–205 (205–207) [22]

9 2-Furanyl 4i 45 95 223–225 (223–224) [29]

10 2-Thienyl 4j 45 92 242–244 (242–244) [29]

11 5-Me-2-Thienyl 4k 60 93 176–177 (175–177) [29]

12 5-Cl-2-Thienyl 4l 50 89 226–227 (228–229) [29]

Table 3
Comparison of the present method with other reported protocols for the synthesis of 4a.

Entry Catalyst Conditions Time (h) Yield (%)

1 Piperidine (1–2 drops) MeOH, reflux 1 79 [22]

2 TMGT (1 mol%) 100 8C 1 77 [26]

3 – H2O, 80 8C 10.5 65 [28]

4 MgO H2O/EtOH, reflux 0.5 89 [25]

5 H6P2W18O62�18H2O (1 mol%) H2O, reflux 1 94a

a This work.
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Using these optimized reaction conditions, a series of pyr-
ano[4,3-b]pyran derivatives (4a–l) were prepared in high to
excellent yields from different aromatic aldehydes having elec-
tron-donating as well as electron-withdrawing groups. These
results are listed in Table 2. It is noteworthy to mention that the
methodology worked well for heteroaromatic aldehydes (Table 2,
entries 9–12).

A plausible mechanism for the above reaction is depicted in
Scheme 2. The reaction may proceed via an in situ initial formation
of the arylidenenitrile from the Knoevenagel condensation of
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Scheme 2. Probable reaction pathway for 
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an aldehyde with malononitrile. The unsaturated nitrile then
undergoes subsequent reactions with 4-hydroxy-6-methylpyran-
2-one to give the final product.

Recovery and reuse of the catalyst and reaction medium was
investigated by using the model reaction. After the reaction was
completed, the product was collected by simple filtration and the
aqueous filtrate containing H6P2W18O62�18H2O was used as such
for the next reaction run. Again, the product 4a was obtained in
comparative yield. Following four consecutive reaction cycles,
there was a slight decrease in yield (94%, 92%, 87% and 84%). Since
CN
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the formation of pyrano[4,3-b]pyrans.
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the solvent containing catalyst is reused ‘as is’, we believe that any
organic impurities generated in each run may cause the decrease in
yield observed after each use.

Furthermore, to show the advantages of this methodology in
comparison with previously reported procedures, we selected the
synthesis of 4a as a representative example. As can be seen from
Table 3, the reaction catalyzed by H6P2W18O62�18H2O in water gave a
comparable yield and requires less time than other protocols.

4. Conclusion

In conclusion, we have developed a green, efficient and
convenient approach for the synthesis of pyrano[4,3-b]pyran
derivatives using H6P2W18O62�18H2O as a catalyst in water.
Reusability of the catalyst and reaction media, use of a non-toxic
and inexpensive catalyst with operational simplicity makes this
method an attractive choice for the preparation of pyrano[4,3-
b]pyrans.
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