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Treatment of �-(trifluoromethyl)styrenes with arylboronic
esters and MeMgCl in the presence of a rhodium(I) catalyst
affords gem-difluoroalkenes. The reaction proceeds through the
addition of arylrhodium(I) species across the electron-deficient
carbon–carbon double bond and the subsequent �-fluoride
elimination.

The rhodium-catalyzed addition reactions of organoboron
reagents to unsaturated functionalities have grown dramatically
in organic synthesis.1 The reaction generally proceeds via a
transmetalation step generating an organorhodium(I) species
from RhI–OR (OR = hydroxy or alkoxy) and organoboron
followed by a carborhodation step onto various unsaturated
functional groups. For regeneration of the RhI–OR species,
there are two major elementary steps available. One is protode-
metalation by a proton source, i.e., water or an alcohol that is
present as a co-solvent or an additive,2 and the other is �-oxygen
elimination from a �-oxy-substituted organorhodium(I) inter-
mediate.3 We have described a variety of catalytic reactions
which proceed through a sequential carborhodation/�-oxygen
elimination pathway.4 As a continuation of our studies on
rhodium-catalyzed addition reactions, we report herein a new
rhodium-catalyzed addition reaction of arylboronic esters to
�-(trifluoromethyl)styrenes,5 in which an organorhodium(I)
intermediate undergoes �-fluoride elimination6 to afford gem-
difluoroalkenes.7

A mixture of �-(trifluoromethyl)styrene (1a) and phenyl-
boronic acid (2a, 3 equiv) in 1,4-dioxane was heated at 100 �C
in the presence of [Rh(OH)(cod)]2 (5mol% Rh, cod = cyclo-
octa-1,5-diene). An aqueous workup afforded a mixture of prod-
ucts 4aa (39%), 5aa (2%), and 6aa (22%) (Table 1, Entry 1).
Scheme 1 depicts the pathways conceivable for the formation
of the products. Initially, an alkylrhodium(I) intermediateA aris-
es from regioselective 1,2-addition of phenylrhodium(I) species
across the electron-deficient carbon–carbon double bond of 1a.
Whereas �-fluoride elimination takes place with A to afford
the product 4aa, �-hydride elimination of A gives the product
5aa.8 On the other hand, protodemetalation of A by H2O or 2a
forms 6aa.

When phenylboronic ester 3a (PhBneo = 5,5-dimethyl-2-
phenyl-1,3,2-dioxaborinane) was used in place of phenylboronic
acid (2a), the formation of 6aa was diminished and the yield
of 4aa increased to 60% (Table 1, Entry 2). Next, the effect of
several additives was examined (Entries 3–7). Among them,
the use of methylmagnesium chloride gave a better yield of
4aa.9 We assume that the Mg–F interaction activates the C–F
bond to promote the �-fluoride elimination step.10 The product
4aa was obtained in 73% yield even with 1.5 equiv of phenylbo-
ronate 3a (Entry 8).

A control experiment was carried out using a combination

of methylboronic ester and phenylmagnesium chloride (eq 1).
The sequential arylation/�-fluoride elimination reaction pro-
ceeded under similar conditions to give 4aa in 67% yield. This
result indicated generation of magnesium methyl(phenyl)borate
from organoboronic esters and Grignard reagents.11
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Under the optimized reaction conditions using MeMgCl
as the activator, a wide range of arylboronic esters 3b–3i partici-
pated in the reaction with 1a to furnish gem-difluoroalkenes
4ab–4ai (Table 2).

The scope of the substrate 1 was also examined (Table 3).
The methoxy-substituted substrate 1b was more reactive than
the substrates having electron-withdrawing substituents 1c–1e
(Entries 1–4). No reaction took place with alkyl-substituted
substrate 1g (Entry 6).

When �-(difluoromethyl)styrenes 7a and 7b were subjected
to similar reaction conditions, �-fluoride elimination occurred

Table 1. Optimization of reaction conditionsa
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CF3

Ph
Ph
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Entry X
PhB(OR)2 (equiv) (3 equiv) 4aa 5aa 6aa

1 OH PhB(OH)2 (3.0) none 39 2 22
2 OH PhBneo (3.0) none 60 5 8
3 OH PhBneo (3.0) CsF 55 1 4
4 Cl PhBneo (3.0) CsF 51 4 4
5 Cl PhBneo (3.0) NaOEt 37 3 0
6 Cl PhBneo (3.0) MeLi 60 5 0
7 Cl PhBneo (3.0) MeMgCl 72 2 0
8 Cl PhBneo (1.5) MeMgCl 73 1 0

aReaction conditions: la (0.2mmol), 2a or 3a, additive (0.6
mmol), [RhX(cod)]2 (5.0mmol, 5mol% Rh) in dioxane (4mL)
at 100 �C for 12 h. bGC analysis (J&W DB-1).
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Scheme 1. Plausible reaction pathways.
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selectively to produce fluoroalkenes 8aa and 8ba in good yield
as a single stereoisomer (E/Z = >95 : 5, eq 2).12
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7a 8aa
(3.0 equiv)
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In summary, we have demonstrated that the rhodium-
catalyzed addition of arylboronic esters to �-(trifluoromethyl)-
styrenes provides a new synthetic route to gem-difluoro-
alkenes.13 This catalytic process presents a rare example of �-
fluoride elimination of an organorhodium(I) complex.
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Table 2. Scope of arylboronate reagents 3a

CF3

Ph Ph

FF

ArO

O
BAr

2.5 mol % [RhCl(cod)]2

Dioxane, 100 °C, 12 h

3.0 equiv MeMgCl

1a 3 (1.5 equiv) 4

Entry Ar Product Yield/%b

1 3b 4-Me–C6H4 4ab 78
2 3c 4-F–C6H4 4ac 77
3 3d 3-Cl–C6H4 4ad 79
4 3e 3-MeO–C6H4 4ae 77
5 3f 3-CN–C6H4 4af 55c

6 3g 3-MeO2C–C6H4 4ag 74c

7 3h 2-Me–C6H4 4ah 75
8 3i 2-Cl–C6H4 4ai 48

aReaction conditions: 1a (0.5mmol), 3 (0.75mmol),
MeMgCl (1.5mmol), [RhCl(cod)]2 (12.5mmol, 5mol%
Rh) in dioxane (10mL) at 100 �C for 12 h unless otherwise
noted. bIsolated material of >95% purity. c3 (1.5mmol).

Table 3. Scope of substrates 1a

CF3

Ar Ar

FF

PhO

O
BPh

2.5 mol % [RhCl(cod)]2

Dioxane, 100 °C, 12 h

3.0 equiv MeMgCl

1 3a (3.0 equiv) 4

Entry Ar Product Yield/%b

1 1b 4-MeO–C6H4 4ba 80
2 1c 4-F–C6H4 4ca 60
3 1d 4-Br–C6H4 4da 61
4 1e 4-CN–C6H4 4ea 54
5 1f 2-Naphthyl 4fa 88
6 1g n-C10H21 4ga 0

aReaction conditions: 1a (0.2mmol), 3a (0.6mmol),
MeMgCl (0.6mmol), [RhCl(cod)]2 (5.0mmol, 5mol% Rh)
in dioxane (4mL) at 100 �C for 12 h unless otherwise noted.
bIsolated material of >95% purity.
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