

Agricultural and Biological Chemistry

ISSN: 0002-1369 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/tbbb19

Plant Growth-promototing Activities of **Mercaptriazinone Derivatives**

Masami Ogawa, Takashi Matsui, Junzo Tobitsuka & Hiroko Kitamura

To cite this article: Masami Ogawa, Takashi Matsui, Junzo Tobitsuka & Hiroko Kitamura (1980) Plant Growth-promototing Activities of Mercaptriazinone Derivatives, Agricultural and Biological Chemistry, 44:9, 2161-2167, DOI: 10.1080/00021369.1980.10864291

To link to this article: http://dx.doi.org/10.1080/00021369.1980.10864291

Published online: 09 Sep 2014.

🕼 Submit your article to this journal 🗗

Article views: 8

View related articles

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbbb19

Agric. Biol. Chem., 44 (9), 2161~2167, 1980

2161

Plant Growth-promototing Activities of Mercaptriazinone Derivatives*

Masami OGAWA, Takashi MATSUI,** Junzo Tobitsuka** and Hiroko Kitamura

Agricultural Chemicals Research Laboratories, Sankyo Co., Ltd., Yasu-cho, Yasu-gun, Shiga-ken 520–23, Japan Received April 14, 1980

Twenty-nine mercaptotriazinone derivatives were synthesized and their plant growthpromoting activities were examined by the rice (*Oryza sativa*) seedling test in the presence or absence of gibberellic acid (GA₈). For high activity in promoting the GA₃-induced shoot elongation, an isopropyl or an appropriately substituted phenyl group, a hydrogen atom and a lower alkyl thio group were required in the 1-, 3- and 4-positions, respectively, of the 1,3,5triazine-2,6-dione structure. In more detailed experiments, 4-methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione, one of the most potent mercaptotriazinones, was found to synergistically promote the GA₃-induced elongation of the first and second leaves of rice seedlings. Several mercaptotriazinone derivatives, active or inactive, in the rice seedling test were examined by the radish (*Raphanus sativus*) leaf disk expansion test, but all of them were completely inactive. Structure-activity relationships of mercaptotriazinone derivatives are discussed in relation to those of the corresponding alkoxytriazinone derivatives.

A series of alkoxycarbonylisourea derivatives (Fig. 1A) were reported to act synergistically with gibberellic acid (GA_3) in the shoot elongation of rice (Oryza sativa L.) seedlings.^{1,2)} Alkoxytriazinone derivatives (Fig. 1B) chemically synthesized by intramolecular cyclization of alkoxycarbonylisoureas were also active in synergistically enhancing the effect of GA_3 , and thought to be the active form of alkoxycarbonylisoureas in rice seedlings.^{3,4)} 4-Ethoxy-1-(p-tolyl)-s-triazine-2,6(1H,3H)-dione, one of the most potent alkoxytriazinones, has been investigated at the ultrastructural and biochemical levels in rice seedlings.^{5,6)} These studies led us to speculate that GA₃-synergists might be useful tools for studies on the role of GA_3 in plant growth and development.

OR3 (A) R1-NHCONH-C=N-COOR4

In the present paper, we synthesized a number of mercaptotriazinone derivatives (Fig. 1C) and assayed them for activity in promoting

* This paper is Part 8 in the series "Plant growthregulating activities of isourea derivatives and related compounds." For Part 7, see ref. 6.

FIG. 1. Chemical Structure of Isourea and Its Cyclic Derivatives.

(C)

the growth of rice seedlings in the presence or absence of GA_3 . In addition some of them were assayed in the radish leaf disk expansion test. The results in the rice seedling and radish leaf tests were compared with those of alkoxytriazinone derivatives, focusing on the structure-activity relationships.

MATERIALS AND METHODS

** Permanent address: Agricultural Chemicals
Research Laboratories, Sankyo Co., Ltd., Hiro-machi,
Shinagawa-ku, Tokyo 140, Japan.
Abbreviation: GA₈, gibberellic acid.
Plant materials. Seeds of rice (Oryza sativa L. var.
Kinmaze) were germinated by soaking in water for
2 days at 28~30°C. Unless otherwise stated, 5 ger minated seeds with uniform-sized coleoptiles were plant-

M. OGAWA, T. MATSUI, J. TOBITSUKA and H. KITAMURA

ed on 10 ml of 0.5% agar medium containing the test compound with or without GA₃ in a glass tube (2.6 cm in diameter \times 6 cm in height). Rice seedlings were grown at 28 ~ 30°C under continuous fluorescent illumination of 4500 lux. They were harvested at a given period of growth and their lengths of coleoptiles, first leaves or second leaves were measured.

Radish (Raphanus sativus L. var. acathiformis Makino Risodaikon) was grown in a green house under natural light conditions for $2 \sim 3$ weeks. When the area of first leaves reached $0.4 \sim 0.5 \text{ cm}^2$, the seedlings were transferred to the dark room and kept for

about 24 hr at room temperature to increase their sensitivity to applied chemicals. Thereafter, a disk, 5 mm in diameter, was punched out from each first leaf. The effect of compaunds on the expansion of excised leaf disks was examined by floating 15 leaf disks on 10 ml incubation solution in a Petri dish (5.5 cm in diameter). The solution contained 64 μ mol $Ca(NO_3)_2 \cdot 4H_2O$, 34 μ mol KCl, 10 μ mol MgSO₄ $\cdot 7H_2O$, 3.7 μ mol KH₂PO₄, 584 μ mol sucrose and a test compound at appropriate concentrations. The upper surface of leaf disks was handled with care not so as to be covered with water. They were incubated at $28 \sim 30^{\circ}$ C under fluorescent light of 4500 lux. After 18 hr the leaf disks were lightly blotted with a sheet of filter paper and its fresh weight was measured.⁷⁾

Twenty-nine mercaptotriazinone de-Chemicals. rivatives were synthesized according to the procedure outlined in Fig. 2. Their purities were checked by silica gel TLC and their structures were confirmed by elemental analyses and if necessary IR and NMR spectra. The uncorrected melting points of each compound are shown in Fig. 3. Examples illustrating the preparation of typical mercaptotriazinones, 4-methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione derivatives are hereinafter described.

FIG. 2. Synthetic Flow Sheet of Mercaptotriazinone Derivatives.

stances were removed by filtration). After cooling, the solution was neutralized by adding dropwise 5 N HCl. The resulting crystalline solid was separated by filtration and dried. Recrystallization from methanol gave 1.6 g (64%) of 4-methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione (17) as colorless prisms, mp. 275~ 276°C (decomp.), IR $\nu_{\max}^{\text{Nujol}}$ cm⁻¹: 1740, 1660 (C=O), NMR (DMSO- d_6) δ : 2.30 (3H, s), 2.45 (3H, s), 6.9~ 7.2 (4H, arom.). Anal. Calcd. for C₁₁H₁₁N₃O₂S: C,

a) A mixture of 3.1 g (0.021 mol) of ethyl 3-thioallophanate⁸⁾ and 4.25 g (0.03 mol) of methyl iodide in 50 ml of acetone was stirred with 2.0 g of K_2CO_3 at room temperature for about 8 hr. After removal of insoluble substances by filtration, 2.66 g (0.02 mol) of *p*-tolyl isocyanate was added to the filtrate and the mixture was refluxed for 30 min. The solvent was then removed by evaporation under reduced pressure. Recrystallization of the residue from methanol gave 4.8 g (82%) of 1-ethoxycarbonyl-2-methyl-3-(p-tolylcarbamoyl)isothiourea (I) as colorless prisms, mp. $128 \sim 130^{\circ}$ C, IR ν_{max}^{Nujo1} cm⁻¹: 1735 (C=O), 1640

b) 2.94 g of I in 20 ml of methanol was refluxed Pure Chemical Industries, Ltd. (Osaka, Japan). with 0.6 g (0.011 mol) of CH_8ONa (anhydrous powder) for about 1 hr. After removal of the solvent, the residue was dissolved in 20 ml of water (insoluble sub-

53.00; H, 4.45; N, 16.86; S, 12.86. Found: C, 53.15; H, 4.34; N, 16.85; S, 12.72%.

c) A mixture of 1.25 g (0.005 mol) of **17** and 1.06 g(0.0075 mol) of methyl iodide in 20 ml of acetone was stirred with 1.0 g of K_2CO_3 at room temperature for about 5 hr. After adding 10 ml of water, the mixture was extracted with 30 ml of chloroform. The chloroform solution was washed with water and dried over anhyd. Na₂SO₄. After removal of the solvent, the residue was recrystallized from methanol, giving 0.85 g (65%) of 3-methyl-4-methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione (28) as colorless needles, mp. $242 \sim$ 244°C, IR ν_{max}^{Nujol} cm⁻¹: 1740, 1680 (C=O), NMR $(CDCl_{s}) \delta: 2.40 (3H, s), 2.60 (3H, s), 3.50 (3H, s),$ 7.1 ~ 7.4 (4H, arom.). Anal. Calcd. for $C_{12}H_{13}N_3O_2S$: C. 54.74; H, 4.98; N, 15.96; S, 12.18. Found: C, 54.77; H, 4.99; N, 15.89; S, 12.12%.

Alkoxytriazinone derivatives were synthesized ac-(CONH), NMR (CDCl₃) δ (J=Hz): 1.28 (3H, t, cording to the method previously reported.³⁾ GA₃ J=7.0), 2.30 (3H, s), 2.40 (3H, s), 4.20 (2H, g, J=7.0), was a generous gift from Kyowa Hakko Co., Ltd. $7.0 \sim 7.5$ (4H, arom.). (Tokyo, Japan). Kinetin was purchased from Wako

Growth-promoting Activities of Mercaptotriazinones

RESULTS AND DISCUSSION

Structure-activity relationships

Twenty-nine mercaptotriazinone derivatives were synthesized and their plant growthpromoting activities were examined in the concentrations of 1, 10 and 50 mg/liter by the rice seedling test in the presence or absence of 10 mg/liter GA₃. The evaluation was conducted by testing their abilities to promote the growth of shoots of rice seedlings and to enhance the GA₃-induced shoot elongation of rice seedlings. As shown in Fig. $3a \sim 3c$, large variations in activity resulted from changes in the substituents R₁, R₂ and R₃ in the structure. The structural requirements for the growthpromoting activity in the absence of GA₃ and for the synergistic activity with GA_3 in the presence of GA_3 were almost the same.

As to R_1 in the 4-methylthio-s-triazine-2,6-(1H,3H)-dione series (compounds $1 \sim 21$, $R_2 =$ H, $R_3 = CH_3$), high GA_3 -synergist activity was obtained when R_1 was an isopropyl group (4) or an appropriately substituted phenyl group. Derivatives having a methyl (1), an ethyl (2) or a phenyl (7) group were weakly active, while those having a *n*-propyl (3), a *n*-butyl (5)

or a cyclohexyl (6) group had no activity. The substitution with a chlorine atom (10) or a methyl group (17) at the 4-position of the benzene ring markedly increased the biological activity. The substitution at the 2- or 3-position of the ring with a chlorine atom (8 and 9) or a methyl group (15 and 16) caused

FIG. 3a

FIG. 3. Plant Growth-promoting Activities of Mercaptotriazinone Derivatives.

\bigcirc , without GA₃; \bullet — \bullet , with GA₃ (10 mg/liter).

Each point represents the average of three to four replications; the standard errors were smaller than the symbols.

FIG. 3t

20, R1 :	C2H5 21, R1 :- 0-nQH	722, R1 : - O-CH3	23, R1:- O-CH3	24,R1:
R ₂ : H	R ₂ :H	R ₂ :H	R ₂ : H	R ₂ : H
R3: CH3	R3:CH3	R3: C2H5	R3:nC3H7	R3:-CH2-CH=CH2
8 - mp 247	-248 - mp 255-257	/ - mp 223-226	- mp 270-271	- mp 236-237
" 1	4	- i		1 1

FIG. 3c

Growth-promoting Activities of Mercaptotriazinones

loss of activity. Of the di- or tri-substituted compounds, 2,4-dichloro (11), 2,4-dimethyl (18) and 4-chloro-2-methyl (19) phenyl derivatives were active, but other changes in the ring abolished the biological activity. As the number of carbon atoms in an alkyl group at the 4-position of the ring increased (17, 20 and 21), the activity decreased. When a npropyl group (21) was introduced the activity completely disappeared.

eliminated the activity, while the unsubstituted corresponding compounds 4 and 17 demonstrated the high activity. Other two derivatives possessing a methyl group as R_2 (27 and 29) were also inactive.

2165

As to R_3 the size of the substituent was critical in a series of derivatives possessing a 4-methylphenyl as R_1 and a hydrogen atom as R₂. The activity decreased with increase in chain length of R_3 . The high activity in this series of derivatives was demonstrated by a methyl (17) or an ethyl (22) group. The former was slightly more active than the latter.

A hydrogen atom as R_2 appeared to be a critical requirement for the activity. The introduction of a methyl group (26 and 28) nearly

TABLE I. PLANT GROWTH-PROMOTING ACTIVITY OF ALKOXYTRIAZINONE AND MERCAPTOTRIAZINONE DERIVATIVES IN EXPANDING RADISH LEAF DISKS

Compounds			Cana	Activity		
Rı	R_2	R ₃	X	- Conc. (mg/liter)	Increase in fresh wt.of 15 disks (mg)	(Treated) minus (Control) (mg)
4-Methylphenyl	Η	Methyl	0	1 10 100	35 41 48	1 7 14
4-Methylphenyl	Η	Ethyl	0	1 10 100	38 44 48	4 10 14
4-Methylphenyl	H	<i>n</i> -Propyl	0	1 10 100	38 44 40	4 10 6
4-Methylphenyl	Η	<i>n</i> -Butyl	0	10 100	38 32	4 2
4-Methylphenyl	Methyl	Ethyl	0	10 100	37 38	3 4
Isopropyl	H	Methyl	S	1 10 100	33 32 32	-1 -2 2
4-Methylphenyl	Η	Methyl	S	1 10 100	32 32 31	$-1 \\ -1 \\ -3$
4-Methylphenyl	Η	Ethyl	S	1 10 100	31 32 25	$-3 \\ -2 \\ -9$
4-Methylphenyl	Η	<i>n</i> -Propyl	S	1 10 100	34 30 28	0 -4 -6
4-Methylphenyl	Methyl	Methyl	S	1 10 100	30 30 31	4 4 3
GA ₈				1	51	17
Kinetin				10	47	13
Control					34	0

General formula,

R₁-1

 R_2

Each value represents the average of three replications. Initial fresh wt. of 15 disks before incubation was 63.0 mg.

M. OGAWA, T. MATSUI, J. TOBITSUKA and H. KITAMURA

Other three substituents, *n*-propyl (23), allyl (24) and benzyl (25) groups destroyed the activity. It was impossible to synthesize a compound possessing a hydrogen atom as R_3 , although the magnitude of its activity was particularly interesting.

2166

The results demonstrate that for high biological activity, a 4- or 2,4-substituted phenyl group or an isopropyl group as R₁, a hydrogen atom as R_2 and a methyl or an ethyl group as R_3 were required in the mercaptotriazinone molecule. It is clear from our present and previous results⁴) that the structure-activity relationships for mercaptotriazinone derivatives are correlated well with those of alkoxytriazinones in the rice seedling test. Several mercaptotriazinone derivatives were assayed for another growth-promoting activity using the radish leaf disk test (Table I). Five derivatives examined, however, were inactive. It is noted that among the corresponding alkoxytriazinones, three derivatives showing high activity in the rice seedling test,⁴⁾ obviously promoted the expansion of radish leaf disks in the concentrations of 10 and 100 mg/ liter. GA_3 and kinetin were active in this test, as previously reported by Kuraishi.⁷

The alkoxytriazinone derivatives showing

FIG. 4. Effect of 4-Methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione (MT) on Growth of Rice Seedlings in the Presence or Absence of GA₃.

Twenty-five germinated seeds were planted on 35 ml of 0.5% agar medium containing test compound(s) in a Petri dish (5.5 cm in diameter). Rice seedlings were incubated under the same conditions as those described in MATERIALS AND METHODS.

the promotive effect on the expansion of radish leaf disks, however, did not exhibit any synergistic activity with GA₃ or kinetin (data not shown).

The results suggest the response patterns of a series of alkoxytriazinone derivatives in both the rice seedling and radish leaf disk tests were the same, while mercaptotriazinone derivatives whose response pattern was applied well to that of alkoxytriazinones in the rice seedling test, were quite inactive in the radish leaf disk test. The replacement of an $-OR_3$ group by an $-SR_3$ group at the 4-position of a triazinone skeleton completely diminished the activity in promoting expansion of radish leaf disks.

Effect of 4-methylthio-1-(p-tolyl)-s-triazine-2,6-

A, coleoptiles; B, first leaves; C, second leaves. $\bigcirc -\bigcirc$, control; $\Box -\Box$, MT 50 mg/liter; $\bullet -\bullet$, GA₃ 10 mg/liter; $\blacksquare -\blacksquare$, MT 50 mg/liter plus GA₃ 10 mg/ liter. Each point represents the average of three replications. Standard errors were given as vertical bars; where no bars appear, the standard errors were smaller than the symbols.

(17), which was highly active in the rice seedling test, was investigated in more detail with regard to the growth of rice seedlings. The growth for a six-day period in the presence of a mercaptotriazinone and GA_3 is shown in Fig. 4. A mercaptotriazinone alone slightly increased the growth of coleoptiles, first leaves and second leaves as compared to that of the control. GA_3 also increased the growth of first and second leaves, and the elongation of

Growth-promoting Activities of Mercaptotriazinones

50 mg/liter. GA_3 did not induce the growth of coleoptiles, but in combination with a mercaptotriazinone slightly increased the growth. From the present and previous works,⁴) the ability of 4-methylthio-1-(*p*-tolyl)-*s*-triazine-2,6(1H, 3H)-dione to synergistically enhance the action of GA_3 was found to be slightly less than that of the corresponding alkoxytriazinone, 4-methoxy-1-(*p*-tolyl)-*s*-triazine-2,6(1H, 3H)-dione.

FIG. 5. Effect of 4-Methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione (MT) on GA₃-induced Elongation of Rice Seedlings.

A, coleoptiles; B, first leaves; C, second leaves. $\bigcirc -\bigcirc$, control; $\bigcirc -\bigcirc$, MT 25 mg/liter; $\triangle -\triangle$, MT 50 mg/liter.

Rice seedlings were grown for 4 days in the presence or absence of MT together with various concentrations of GA_3 under the same conditions as those described in the legend of Fig. 4. Each value represents the average \pm standard error of three replications as in Fig. 4.

GA₃ showed a distinct synergistic effect on

Further studies on the syntheses of the derivatives as well as the examination of their physiological properties will bring about new potent GA_3 -synergists which are useful tools for practical purposes and for studies of the mechanism of GA_3 action.

Acknowledgments. We wish to thank Mr. Eisuke Matsunaga for giving us helpful suggestions on the radish leaf disk test, and Miss Kayoko Isobe for her technical assistance. We also gratefully acknowledge Dr. Mitsuo Ishida for critically reviewing the manuscript.

REFERENCES

M. Ogawa, E. Matsunaga, Y. Yamazaki, K. Oyamada, T. Matsui and J. Tobitsuka, *Plant Cell Physiol.*, 17, 743 (1976).

each part of rice seedlings. Especially the dramatic synergism was observed in the first and second leaves from 3 to 6 days after planting.

The effects of various concentrations of GA, in the presence or absence of a mercaptotriazinone on the growth of rice seedlings are shown in Fig. 5. The GA₃-induced elongation of first and second leaves was synergistically increased by a mercaptotriazinone at 25 and

- 2) M. Ogawa, K. Oyamada, T. Matsui, J. Tobitsuka and Y. Yamazaki, *Phytochemistry*, **15**, 1829 (1976).
- 3) M. Ogawa, T. Matsui, K. Oyamada and J. Tobitsuka, *Plant Cell Physiol.*, **18**, 841 (1977).
- 4) M. Ogawa, T. Matsui and J. Tobitsuka, *Phyto-chemistry*, 17, 343 (1978).
- 5) M. Ogawa, H. Miyake and E. Maeda, J. Exp. Bot., 31, 533 (1979).
- 6) M. Ogawa, Plant Cell Physiol, 21, (1980) in pres.
- 7) S. Kuraishi, Sci. Rept. Coll. Gen. Educ. Univ. of Tokyo, 9, 67 (1959).
- 8) R. E. Doran, J. Chem. Soc., 69, 331 (1896).