Tetrahedron 69 (2013) 7936-7942

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

One-pot synthesis of 2-sulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles via cyclization of 1-isothiocyanato-2-[sulfinyl(or sulfonyl)methyl] benzenes with sodium hydride

Kazuhiro Kobayashi*, Akihiro Kobayashi, Kosuke Ezaki

Division of Applied Chemistry, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

ARTICLE INFO

Article history: Received 13 May 2013 Received in revised form 3 July 2013 Accepted 5 July 2013 Available online 12 July 2013

Keywords: 2-Sulfanyl-3-sulfinylindoles 2-Sulfanyl-3-sulfonylindoles Isothiocyanate Sodium hydride Alkylation

ABSTRACT

An efficient one-pot method for the synthesis of 2-sulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles from 1isothiocyanato-2-[sulfinyl(or sulfonyl)methyl]benzenes, derived from N-[2-(chloromethyl)phenyl]formamide by an easy four-step sequence, has been developed. The products are formed via cyclization of the precursor isothiocyanates using 2 equiv of sodium hydride followed by S- and/or N-alkylation of the resulting 1-sodio-2-sodiosulfanyl-1*H*-indole intermediates.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

2-Sulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles are of potentially biological importance¹ and some of them have been found in nature.² However, their general synthesis has been relatively unexplored so far,³ although quite a number of methods for the preparation of 1H-indole derivatives have been reported.⁴ 1-Methyl-2-methylsulfanyl-3-methylsulfinyl-1H-indole has been prepared by the acid-catalyzed reaction of 1-methyl-1*H*-indole with 4-(methylsulfanyl)morpholine followed by oxidation of the resulting 1-methyl-2,3-bis(methylsulfanyl)-1H-indole.³ In this paper, we wish to describe the results of our investigation, which provide a convenient method to prepare 3-sulfinyl(or sulfonyl)-1Hindoles carrying a 2-alkylsulfanyl substituent 7 and those carrying 2-alkylsulfanyl and 1-alkyl substituents 8 and 9 utilizing cyclization of 1-isothiocyanato-2-[sulfinyl(or sulfonyl)methyl]benzenes 5 using 2 equiv of sodium hydride followed by S- and/or N-alkylation of the resulting 1-sodio-2-sodiosulfanyl-3-sulfinyl(or sulfonyl)-1Hindole intermediates 6 under mild reaction conditions. In addition, we present an application of this procedure to the synthesis of tricyclic compounds including the 3-sulfinyl(or sulfonyl)-1H-indole moiety 10.

2. Results and discussion

We initiated our investigation by preparing 2-(sulfinyl(or sulfonyl)methyl)phenyl isothiocyanates 5. the key precursors for our synthesis. The synthesis of these compounds was readily accomplished from N-[2-(chloromethyl)phenyl]formamide (1) according to the process illustrated in Scheme 1. Substitution of the chloro group with sodium thiolates in DMF provided N-[2-(sulfanyl methyl)phenyl]formamides 2 in excellent yields, which were then oxidized with 1 or 2 equiv of sodium metaperiodate in aqueous methanol to furnish N-[2-(sulfinyl(or sulfonyl)methyl)phenyl] formamides 3 in good yields. These sulfinyl or sulfonyl formamides **3** were dehydrated with phosphorous oxychloride in the presence of triethylamine in THF to afford 1-isocyano-2-[sulfinyl(or sulfinyl) methyl]benzene 4 in good yields. Finally, these isocyano sulfoxides or sulfones were converted into the corresponding isothiocyanates 5 on treatment with sulfur in the presence of a catalytic amount of selenium and excess triethylamine under Fujiwara's conditions.⁵

First, we tried to prepare 2-methylsulfanyl-3-phenylsulfinyl-1*H*indole (**7a**) from 1-isothiocyanato-2-[(phenylsulfinyl)methyl]benzene (**5a**) and iodomethane. Thus, compound **5a** was treated with 1 equiv of sodium hydride in THF/DMSO (2:1, v/v) at 0 °C. Vigorous evolution of hydrogen gas revealed the deprotonation from the benzyl hydrogen of **5a**, and TLC analyses on silica gel after 5 min showed complete consumption of the starting materials. However, after addition of iodomethane and the subsequent usual aqueous

^{*} Corresponding author. Tel./fax: +81 857 31 5263; e-mail address: kkoba@ chem.tottori-u.ac.jp (K. Kobayashi).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.07.011

workup, a rather complicated mixture, which proved to contain a small amount of **7a** on the basis of its ¹H NMR spectrum. So, as shown in Scheme 2, compound **5a** was treated with 2 equiv of sodium hydride to form 3-phenylsulfinyl-1-sodio-2-sodiosulfanyl-

1*H*-indole **6a** (n=1, $R^1=Ph$), then an equivalent of iodomethane was added. The reaction proceeded immediately at 0 °C and the desired product **7a** was obtained in 78% yield. Using four isothiocyanato sulfoxides and sulfones including **5a**, and three haloalkanes including iodomethane, the other five 2-alkylsulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles **7b**-**f** could be obtained under the same reaction conditions in comparable yields to that of **7a**, as summarized in Table 1. The use of DMSO as a co-solvent had a detrimental effect upon the smooth progress of the cyclization forming a pyrrole ring and the subsequent alkylation. The reactions without DMSO both of the cyclization and the alkylation proceeded sluggishly and uncleanly to result in the formation of considerably complex mixtures of products, from which only low yields (<10%) of the desired products were isolated.

able 1	
reparation of 2-sulfanyl-3-sulfinyl(or sulfonyl)-1H-indoles 7	

Entry	5	R ² X	7	Yield ^a /%
1	5a (<i>n</i> =1, R ¹ =Ph)	MeI	7a	78
2	5a	EtI	7b	75
3	5a	BnBr	7c	71
4	5b $(n=1, R^1=4-ClC_6H_4)$	MeI	7d	71
5	5c $(n=2, R^1=Ph)$	MeI	7e	73
6	5d $(n=2, R^1=Et)$	EtI	7f	83

^a Isolated yields.

When 2 M amounts of haloalkanes were added after generation of 1-sodio-2-sodiosulfanyl-1*H*-indole intermediates **6**, 1-alkyl-2-alkylsulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles **8** were obtained in good yields in general, as summarized in Table 2. However, after addition of haloalkanes, the reaction temperature was raised to room temperature, because N-alkylation did proceed very sluggishly at 0 °C. It is important to note that only iodomethane was usable in the reactions using **6c** and **6d** (*n*=2). For example, the reaction of only S-ethylated product **7f**. This result implies that the reactivity of 2-ethylsulfanyl-3-ethylsulfonyl-1-sodio-1*H*-indole intermediate is not enough efficient to achieve ethylation with iodoethane.

 Table 2

 Preparation of 1-alkyl-2-sulfanyl-3-sulfinyl(or sulfonyl)-1H-indoles 8

Entry	5	R ² X	8	Yield/% ^a
1	5a (<i>n</i> =1, R ¹ =Ph)	MeI	8a	86
2	5a	EtI	8b	80
3	5a	BnBr	8c	68
4	5b $(n=1, R^1=4-ClC_6H_4)$	MeI	8d	74
5	5b	CH ₂ =CHCH ₂ Br	8e	77
6	5c $(n=2, R^1=Ph)$	MeI	8f	66
7	5d (<i>n</i> =2, R ¹ =Et)	MeI	8g	78

^a Isolated yields.

Different haloalkanes proved to be usable in S-alkylation and Nalkylation of **6a** and **6b** (n=1). The reaction of these dianionic intermediates with an equivalent each of the first haloalkane followed by second electrophile afforded 1-alkyl-2-alkylsulfanyl-3sulfinyl-1*H*-indoles **9** in fair yields, as summarized in Table 3. For example, after intermediate **6a** was first treated with iodomethane at 0 °C, (bromomethyl)benzene was added at the same temperature and temperature was raised to room temperature to provide 2methylsulfanyl-1-phenylmethyl-3-phenylsulfinyl-1*H*-indole (**9a**) (entry 1). The second electrophile was not limited to only haloalkanes, as benzoyl chloride worked equally well. Unfortunately,

Table 3

Decomposition of	1 autoatitutead	2 aulfamul	2	111 indalaa O
Preparation of	r-substituted	z-sunanvi-	-3-SUIIIIIVI-	TH-Indoles 9

Entry	5	R ² X	R ³ X	9	Yield ^a /%
1	5a $(n=1, R^1=Ph)$	Mel	BnBr	9a	57
2	5a	BnBr	MeI	9b	76
3	5a	MeI	BzCl	9c	57
4	5b $(n=1, R^1=4-ClC_6H_4)$	MeI	BnBr	9d	64
5	5b	CH ₂ =CHCH ₂ Br	MeI	9e	63

^a Isolated yields.

however, similar attempts via **6c** and **6d** (n=2) all resulted in failure; the second alkylation at the 1-position did not occur at all.

In order to demonstrate the utility of the present procedure by preparing tricyclic compounds with the 3-sulfinyl(or sulfonyl)-1*H*-indole moiety **10**, 1-sodium-2-sodiosulfanyl-1*H*-indole intermediates **6** were reacted with 1,3-dibromopropane and 1,2-dibromoethane. Not only S-alkylation but also N-alkylation of **6a** and **6b** with these dibromides smoothly occurred at 0 °C to afford the corresponding tricyclic compounds **10a**–**c** as illustrated in Scheme 3. The yields of these products were good as can be seen from Table 4, entries 1–3. The reactions of **6c** and **6d** with 1,3-dibromopropane also proceeded under the same conditions to afford **10d** and **10e**, respectively, but in somewhat lower yields (entries 4 and 5) than those of **10a–c**.

Table 4

Preparation of tricyclic 1H-indole derivatives 10

Entry	5	т	10	Yield/% ^a
1	5a (<i>n</i> =1, R ¹ =Ph)	1	10a	83
2	5b $(n=1, R^1=4-ClC_6H_4)$	1	10b	72
3	5b	0	10c	75
4	5c ($n=2$, $R^1=Ph$)	1	10d	50
5	5d ($n=2$, $R^1=Et$)	1	10e	64

^a Isolated yields.

In conclusion, we have demonstrated that 1-isocyanato-2sulfinyl(or sulfonyl)methylbenzenes can serve as versatile precursors for the preparation of 2-sulfanyl-3-sulfinyl(or sulfonyl)-1*H*indoles, which are hard to obtain by previous methods. Since the method employs readily available starting materials and is operationally simple, it may be of value in organic synthesis.

3. Experimental

3.1. General

All melting points were obtained on a Laboratory Devices MEL-TEMP II melting apparatus and are uncorrected. IR spectra were recorded with a Perkin–Elmer Spectrum65 FTIR spectrophotometer. ¹H NMR spectra were recorded using TMS as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 500 MHz or JEOL LA400FTNMR spectrometer operating at 400 MHz. ¹³C NMR spectra were recorded using TMS as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 125 MHz or JEOL LA400FTNMR spectrometer operating at 100 MHz. Low-resolution MS spectra (EI, 70 eV) were measured by a JEOL JMS AX505 HA spectrometer. High-resolution MS spectra (DART, positive) were measured by a Thermo Scientific Exactive spectrometer. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. Column chromatography was performed using WAKO GEL C-200E. All of the organic solvents used in this study were dried over appropriate drying agents and distilled prior to use.

3.2. Starting materials

N-[2-(Chloromethyl)phenyl]formamide (**1**) was prepared accor ding to the reported method.⁶ All other chemicals used in this study were commercially available.

3.2.1. N-[2-(Sulfanylmethyl)phenyl]formamides **2**. These compounds were prepared by treating **1** with sodium thiolates, generated from thiols and NaH, in DMF at 0 °C.⁷

3.2.1.1. *N*-[2-(*Phenylsulfanylmethyl*)*phenyl*]*formamide* (**2a**). A colorless oil; *R*_f 0.16 (AcOEt/hexane 1:3); IR (neat) 3275, 1681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.08 and 4.10 (2s, combined 2H), 7.02–7.31 (m, 9H), 7.82–8.54 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 36.62, 36.81, 121.84, 124.24, 125.43, 126.08, 127.45, 127.57, 128.59, 128.89, 129.03, 129.06, 130.68, 131.13, 131.25, 131.60, 134.88, 135.32, 159.20, 162.73. Anal. Calcd for C₁₄H₁₃NOS: C, 69.11; H, 5.39; N, 5.76. Found: C, 69.03; H, 5.45; N, 5.71.

3.2.1.2. $N-\{2-[(4-Chlorophenyl)sulfanylmethyl]phenyl\}$ formamide (**2b**). A white solid; mp 92–93 °C (hexane/CH₂Cl₂); IR (KBr) 3292, 1693, 1661 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.05 and 4.06 (2s, combined 2H), 7.00–7.13 (m, 2H), 7.18–7.32 (m, 6H), 7.83–8.56 (m, 2H). Anal. Calcd for C₁₄H₁₂ClNOS: C, 60.54; H, 4.35; N, 5.04. Found: C, 60.31; H, 4.35; N, 4.75.

3.2.1.3. *N*-[2-(Ethylsulfanylmethyl)phenyl]formamide (**2c**). A pale-yellow oil; R_f 0.32 (AcOEt/hexane 1:2); IR (neat) 3307, 1688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.23 and 1.24 (2t, *J*=7.4 Hz each, combined 3H), 2.41 and 2.43 (2q, *J*=7.4 Hz each, combined 2H), 3.75 and 3.76 (2s, combined 2H), 7.08–7.33 (m, 4H), 8.00–8.69 (m, 2H). Anal. Calcd for C₁₀H₁₃NOS: C, 61.50; H, 5.71; N, 7.17. Found: C, 61.49; H, 5.82; N, 7.06.

3.2.2. N-[2-(Sulfinylmethyl)phenyl]formamides **3a** and **3b**. These compounds were prepared by treating **2a** and **2b** with an equimolar amount of NaIO₄ in aqueous MeOH at room temperature.⁸

3.2.2.1. *N*-[2-(Phenylsulfinylmethyl)phenyl]formamide (**3a**). A pale-yellow oil; R_f 0.40 (1:4 THF/hexane); IR (neat) 3256, 1684, 1020 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.86 and 3.90 (2d, *J*=17.5 Hz each, combined 1H), 4.34 and 4.40 (2d, *J*=17.5 Hz each, combined 1H), 6.58–7.29 (m, 4H), 7.44–7.51 (m, 5H), 7.86–9.81 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 56.51, 59.07, 120.96, 124.09, 125.29, 125.37, 126.38, 126.45, 129.22, 130.22, 131.51, 131.65, 131.77, 132.27, 133.72, 136.04, 140.61, 145.09, 159.70, 163.11. Anal. Calcd for C₁₄H₁₃NO₂S: C, 64.84; H, 5.05; N, 5.40. Found: C, 64.66; H, 5.08; N, 5.31.

3.2.2.2. *N*-{2-[(4-Chlorophenyl)sulfinylmethyl]phenyl]formamide (**3b**). A reddish-white solid; mp 119–121 °C (hexane/Et₂O); IR (KBr) 3260, 1690, 1030 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.82 and 3.85 (2d, *J*=13.7 Hz each, combined 1H), 4.40 and 4.42 (2d, *J*=13.7 Hz, each, combined 1H), 6.56 and 6.67 (2dd, *J*=7.8, 1.5 Hz each, combined 1H), 6.96 and 7.06 (2ddd, *J*=7.8, 7.3, 1.5 Hz each, combined 1H), 7.21–7.39 (m, 4H), 7.45 (d, *J*=8.3 Hz, 2H), 7.86–9.71 (m, 2H). Anal. Calcd for C₁₄H₁₂ClNO₂S: C, 57.24; H, 4.12; N, 4.77. Found: C, 57.03; H, 4.16; N, 4.75.

3.2.3. *N-[2-(Sulfonylmethyl)phenyl]formamides* **3c** and **3d**. These compounds were prepared by treating **2a** and **2c** with two equimolar amounts of NaIO₄ in aqueous MeOH at room temperature.⁸

3.2.3.1. *N*-[2-(Phenylsulfonylmethyl)phenyl]formamide (**3c**). A white solid; mp 119–121 °C (hexane/Et₂O); IR (KBr) 3333, 1673, 1304 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.38 and 4.40 (2s, combined 2H), 6.67–7.85 (m, 9H), 8.41–8.69 (m, 2H). Anal. Calcd for C₁₄H₁₃NO₃S: C, 61.07; H, 4.76; N, 5.09. Found: C, 60.92; H, 4.52; N, 5.01.

3.2.3.2. *N*-[2-(*Ethylsulfonylmethyl*)*phenyl*]*formamide* (**3d**). A reddish-white solid; mp 91–93 °C (hexane/Et₂O); IR (KBr) 3341, 1692, 1299 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.42 and 1.44 (2t, *J*=7.8 Hz each, combined 3H), 3.02 and 3.06 (2q, *J*=7.8 Hz each, combined 2H), 4.315 and 4.324 (2s, combined 2H), 7.23–7.46 (m, 4H), 7.86–8.71 (m, 2H). Anal. Calcd for C₁₀H₁₃NO₃S: C, 52.85; H, 5.77; N, 6.16. Found: C, 52.62; H, 5.82; N, 6.02.

3.2.4. 1-Isocyano-2-(sulfinyl(or sulfonyl)methyl)benzene **4**. These compounds were prepared by treating **3** with POCl₃/Et₃N in THF at 0 $^{\circ}$ C.⁹

3.2.4.1. 1-Isocyano-2-(phenylsulfinylmethyl)benzene (**4a**). A beige solid; mp 94–96 °C (hexane); IR (KBr) 2124, 1032 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.14 (d, *J*=12.8 Hz, 1H), 4.24 (d, *J*=12.8 Hz, 1H), 7.32–7.41 (m, 4H), 7.47–7.52 (m, 5H). Anal. Calcd for C₁₄H₁₁NOS: C, 69.68; H, 4.59; N, 5.80. Found: C, 69.50; H, 4.68; N, 5.51.

3.2.4.2. 1-[(4-Chlorophenyl)sulfinylmethyl]]-2-isocyanobenzene (**4b**). A yellow solid; mp 93–94 °C (hexane); IR (KBr) 2121, 1052 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.14 (d, *J*=13.2 Hz, 1H), 4.23 (d, *J*=13.2 Hz, 1H), 7.34–7.46 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 59.13, 125.71, 126.09, 126.94, 129.38, 129.47, 129.57, 132.01, 135.16, 137.89, 141.66, 156.61. Anal. Calcd for C₁₄H₁₀ClNOS: C, 60.98; H, 3.66; N, 5.08. Found: C, 60.88; H, 3.85; N, 5.08.

3.2.4.3. 1-Isocyano-2-(phenylsulfonylmethyl)benzene (4c). A pale-orange solid; mp 135–137 °C (hexane); IR (KBr) 2124, 1310 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.51 (s, 2H), 7.27 (d, *J*=7.8 Hz, 1H), 7.39 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 7.45 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 7.51 (dd, *J*=7.8, 7.3 Hz, 2H), 7.57 (dd, *J*=7.8, 1.4 Hz, 1H), 7.66 (tt, *J*=7.3, 1.4 Hz, 1H), 7.70 (dd, *J*=7.8, 1.4 Hz, 2H). Anal. Calcd for C₁₄H₁₁NO₂S: C, 65.35; H, 4.31; N, 5.44. Found: C, 65.24; H, 4.39; N, 5.29.

3.2.4.4. 1-(*Ethylsulfonylmethyl*)-2-*isocyanobenzene* (**4d**). A reddish-white solid; mp 77–78 °C (hexane/CH₂Cl₂); IR (KBr) 2124, 1316 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (t, *J*=7.3 Hz, 3H), 3.00 (q, *J*=7.3 Hz, 2H), 4.43 (s, 2H), 7.44–7.51 (m, 3H), 7.65 (d, *J*=8.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 6.27, 54.46, 56.83, 126.47, 127.42, 130.04, 132.08, 132.41, 133.19, 164.42. Anal. Calcd for C₁₀H₁₁NO₂S: C, 57.39; H, 5.30; N, 6.69. Found: C, 57.10; H, 5.29; N, 6.68.

3.2.5. 1-Isothiocyanato-2-(sulfinyl(or sulfinyl)methyl)benzene 5. These compounds were prepared by treating 4 with S_8 in the presence of a catalytic amount of Se in THF containing excess Et_3N at room temperature.⁵

3.2.5.1. 1-Isothiocyanato-2-(phenylsulfinylmethyl)benzene (**5a**). A pale-orange solid; mp 100–102 °C (hexane/CH₂Cl₂); IR (KBr) 2189, 2133, 1040 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.11 (d, *J*=13.2 Hz, 1H), 4.15 (d, *J*=13.2 Hz, 1H), 7.17 (d, *J*=8.3 Hz, 1H), 7.21–7.26 (m, 2H), 7.31 (ddd, *J*=8.3, 7.3, 2.9 Hz, 1H), 7.44–7.50 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 59.25, 124.17, 125.59, 126.98, 127.17, 128.97 (2C),

129.62, 131.57, 132.28 (2C), 142.26. Anal. Calcd for $C_{14}H_{11}NOS_2$: C, 61.51; H, 4.06; N, 5.12. Found: C, 61.36; H, 4.11; N, 5.02.

3.2.5.2. 1-[(4-Chlorophenyl)sulfinylmethyl]]-2-isothiocyanatoben zene (**5b**). A yellow solid; mp 64–66 °C (hexane/CH₂Cl₂); IR (KBr) 2188, 2097, 1051 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.11 (d, J=12.6 Hz, 1H), 4.13 (d, J=12.6 Hz, 1H), 7.19 (d, J=7.4 Hz, 1H), 7.23 (t, J=7.4 Hz, 1H), 7.26 (d, J=7.4 Hz, 1H), 7.33 (td, J=7.4, 1.7 Hz, 1H), 7.36 (d, J=8.6 Hz, 2H), 7.44 (d, J=8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 59.16, 125.03, 125.64, 127.11, 127.23, 129.31, 129.83, 131.23, 132.35, 134.07, 137.86, 140.79. Anal. Calcd for C₁₄H₁₀ClNOS₂: C, 54.63; H, 3.27; N, 4.55. Found: C, 54.56; H, 3.32; N, 4.41.

3.2.5.3. 1-Isothiocyanato-2-(phenylsulfonylmethyl)benzene (**5c**). An orange solid; mp 119–120 °C (hexane/CH₂Cl₂); IR (KBr) 2189, 2116, 1319 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.43 (s, 2H), 7.13 (dd, *J*=8.0, 1.1 Hz, 1H), 7.28 (ddd, *J*=8.0, 7.4, 1.1 Hz, 1H), 7.33 (ddd, *J*=8.0, 7.4, 1.1 Hz, 1H), 7.45 (dd, *J*=8.0, 1.1 Hz, 1H), 7.50 (t, *J*=8.0 Hz, 2H), 7.64 (t, *J*=8.0 Hz, 1H), 7.68 (d, *J*=8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 58.49, 124.00, 127.33, 127.44, 128.56, 129.05, 130.28 (2C), 132.54, 134.27, 134.78, 138.83. Anal. Calcd for C₁₄H₁₁NO₂S₂: C, 58.11; H, 3.83; N, 4.84. Found: C, 58.00; H, 3.84; N, 4.72.

3.2.5.4. 1-(Ethylsulfonylmethyl)-2-isothiocyanatobenzene (**5d**). A pale-yellow solid; mp 108–110 °C (hexane/CH₂Cl₂); IR (KBr) 2192, 2134, 1312 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (t, *J*=7.3 Hz, 3H), 2.98 (q, *J*=7.3 Hz, 2H), 4.35 (s, 2H), 7.30–7.43 (m, 3H), 7.53 (dd, *J*=7.8, 1.5 Hz, 1H). Anal. Calcd for C₁₀H₁₁NO₂S₂: C, 49.77; H, 4.59; N, 5.80. Found: C, 49.81; H, 4.38; N, 5.59.

3.3. Typical procedure for the preparation of 2-alkylsulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles 7

3.3.1. 2-Methylsulfanyl-3-phenylsulfinyl-1H-indole (7a). To a stirred solution of 5a (0.15 mg, 0.55 mmol) in THF/DMSO (3 mL, 2:1 v/v) at 0 °C was added NaH (60% in mineral oil; 48 mg, 1.2 mmol) in several portions. After 5 min, MeI (78 mg, 0.55 mmol) was added and stirring was continued for an additional 10 min at the same temperature before saturated aqueous NH₄Cl (10 mL) was added. The mixture was extracted with AcOEt (3×10 mL) and the combined extracts were washed with water (4×10 mL) and brine (10 mL), dried (Na₂SO₄), and concentrated by evaporation. The residue was purified by column chromatography on silica gel (AcOEt/hexane 1:1) to give **7a** (0.12 g, 78%); a white solid; mp 101–102 °C (decomp.) (hexane/CH₂Cl₂); IR (KBr) 3152, 983 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.41 (s, 3H), 6.92 (dd, J=8.0, 7.4 Hz, 1H), 7.08 (ddd, J=8.0, 7.4, 1.1 Hz, 1H), 7.22 (d, J=8.0 Hz, 1H), 7.29 (d, J=8.0 Hz, 1H), 7.41 (t, *J*=7.4 Hz, 1H), 7.47 (dd, *J*=8.0, 7.4 Hz, 2H), 7.71 (d, *J*=8.0 Hz, 2H), 9.94 (br s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 17.56, 111.73, 116.51, 118.32, 120.83, 122.77, 123.96, 124.18, 129.04, 129.87, 137.26, 137.93, 144.73; MS *m*/*z* 287 (M⁺, 14), 239 (100). Anal. Calcd for C₁₅H₁₃NOS₂: C, 62.69; H, 4.56; N, 4.87. Found: C, 62.58; H, 4.59; N, 5.50.

3.3.2. 2-Ethylsulfanyl-3-phenylsulfinyl-1H-indole (**7b**). A white solid; mp 90–93 °C (decomp.) (hexane/CH₂Cl₂); IR (KBr) 3139, 1007 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.27 (t, *J*=7.3 Hz, 3H), 3.11–3.16 (m, 2H), 6.90 (dd, *J*=7.8, 7.3 Hz, 1H), 7.08–7.14 (m, 2H), 7.38 (d, *J*=8.3 Hz, 1H), 7.44 (t, *J*=7.3 Hz, 1H), 7.52 (dd, *J*=7.8, 7.3 Hz, 2H), 7.59 (d, *J*=7.8 Hz, 2H), 11.08 (br, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 14.99, 29.34, 111.87, 118.51, 119.06, 120.82, 123.09, 123.82, 124.22, 129.06, 129.89, 135.51, 137.33, 144.77; MS *m*/*z* 301 (M⁺, 33), 253 (100). Anal. Calcd for C₁₆H₁₅NOS₂: C, 63.75; H, 5.02; N, 4.65. Found: C, 63.68; H, 5.08; N, 4.60.

3.3.3. 2-(Phenylmethyl)sulfanyl-3-phenylsulfinyl-1H-indole (7c). A white solid; mp 94–96 °C (decomp.) (hexane/CH₂Cl₂); IR (KBr)

3141, 1008 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 4.36 (d, *J*=12.7 Hz, 1H), 4.45 (d, 12.7 Hz, 1H), 6.85 (dd, *J*=7.8, 7.3 Hz, 1H), 6.99 (d, *J*=8.3 Hz, 1H), 7.11 (t, *J*=7.3 Hz, 1H), 7.15–7.18 (m, 2H), 7.27 (s, 5H), 7.38–7.41 (m, 4H), 11.09 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 39.05, 111.94, 118.66, 119.65, 120.87, 123.33, 123.66, 124.17, 127.50, 128.67, 128.83, 128.94, 129.78, 134.92, 137.40, 137.54, 144.53; MS *m/z* 363 (M⁺, 58), 315 (100). Anal. Calcd for C₂₁H₁₇NOS₂: C, 69.39; H, 4.71; N, 3.85. Found: C, 69.24; H, 4.85; N, 3.64.

3.3.4. 3-[(4-Chlorophenyl)sulfinyl]-2-methylsulfanyl-1H-indole (**7d**). A yellow solid; mp 124–125 °C (hexane/CH₂Cl₂); IR (KBr) 3141, 1007 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.41 (s, 3H), 6.95 (dd, *J*=8.0, 7.4 Hz, 1H), 7.10 (dd, *J*=8.0, 7.4 Hz, 1H), 7.22 (d, *J*=8.0 Hz, 1H), 7.28 (dd, *J*=8.0 Hz, 1H), 7.44 (d, *J*=8.6 Hz, 2H), 7.63 (d, *J*=8.6 Hz, 2H), 9.91 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.82, 109.71, 111.59, 119.05, 121.79, 123.68, 124.29, 126.28, 129.17, 136.18, 137.09, 138.22, 142.30. HRMS calcd for C₁₅H₁₃ClNOS₂: M+H, 322.0127. Found: *m/z* 322.0128. Anal. Calcd for C₁₅H₁₂ClNOS₂: C, 55.98; H, 3.76; N, 4.35. Found: C, 55.74; H, 3.87; N, 4.10.

3.3.5. 2-Methylsulfanyl-3-phenylsulfonyl-1H-indole (**7e**). An orange solid; mp 172–173 °C (hexane/CH₂Cl₂); IR (KBr) 3318, 1143 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.56 (s, 3H), 7.17 (t, *J*=7.4 Hz, 1H), 7.22 (t, *J*=7.4 Hz, 1H), 7.33 (d, *J*=7.4 Hz, 1H), 7.44 (t, *J*=7.4 Hz, 2H), 7.49 (t, *J*=7.4 Hz, 1H), 8.05 (d, *J*=7.4 Hz, 1H), 8.07 (d, *J*=7.4 Hz, 2H), 8.99 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.29, 110.98, 113.48, 119.04, 122.59, 123.29, 125.92, 126.34, 128.90, 132.66, 135.58, 139.39, 143.35. HRMS calcd for C₁₅H₁₄NO₂S₂: M+H, 304.0466. Found: *m/z* 304.0459. Anal. Calcd for C₁₅H₁₃NO₂S₂: C, 59.38; H, 4.32; N, 4.62. Found: C, 59.22; H, 4.57; N, 4.40.

3.3.6. 2-Ethylsulfanyl-3-ethylsulfonyl-1H-indole (**7f**). A pale-yellow solid; mp 106–107 °C (hexane/CH₂Cl₂); IR (KBr) 3272, 1125 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.25 (t, *J*=7.4 Hz, 3H), 1.31 (t, *J*=7.4 Hz, 3H), 3.08 (q, *J*=7.4 Hz, 2H), 3.30 (q, *J*=7.4 Hz, 2H), 7.20–7.24 (m, 2H), 7.44 (dd, *J*=9.2, 2.3 Hz, 1H), 7.99 (dd, *J*=9.2, 2.8 Hz, 1H), 9.45 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 7.44, 14.51, 28.96, 51.00, 111.24, 112.20, 119.26, 122.45, 123.56, 126.47, 135.62, 137.48. HRMS calcd for C₁₂H₁₆NO₂S₂: M+H, 270.0622. Found: *m/z* 270.0617. Anal. Calcd for C₁₂H₁₅NO₂S₂: C, 53.50; H, 5.61; N, 5.20. Found: C, 53.33; H, 5.80; N, 5.17.

3.4. Typical procedure for the preparation of 1-alkyl-2-alkyl sulfanyl-3-sulfinyl(or sulfonyl)-1*H*-indoles 8

3.4.1. 1-Methyl-2-methylsulfanyl-3-phenylsulfinyl-1H-indole (8a). To a stirred solution of 5a (0.15 mg, 0.55 mmol) in THF/DMSO (3 mL, 2:1 v/v) at 0 °C was added NaH (60% in mineral oil; 48 mg, 1.2 mmol) in several portions. After 5 min, MeI (0.20 g, 1.4 mmol) was added and the temperature was raised to room temperature. Stirring was continued for 1 h before saturated aqueous NH₄Cl (10 mL) was added. The mixture was worked up in a manner similar to that described for 7a. The residual solid was purified by recrystallization to give 8a (0.14 g, 86%). A pale-yellow solid; mp 116–118 °C (decomp.) (hexane/CH₂Cl₂); IR (KBr) 1450, 1032 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.51 (s, 3H), 3.91 (s, 3H), 7.02 (t, J=8.0, 7.4 Hz, 1H), 7.24 (ddd, J=8.0, 7.4, 1.1 Hz, 1H), 7.32 (d, J=8.0 Hz, 1H), 7.38–7.42 (m, 2H), 7.45 (dd, J=8.0, 7.4 Hz, 2H), 7.72 (d, J=8.0 Hz, 2H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) δ 20.86, 30.34, 110.26, 120.07, 121.50, 121.78, 123.69, 123.99, 124.77, 128.81, 129.79, 137.73, 138.32, 144.63. HRMS calcd for C₁₆H₁₆NOS₂: M+H, 302.0673. Found: *m*/*z* 302.0665. Anal. Calcd for C₁₆H₁₅NOS₂: C, 63.75; H, 5.02; N, 4.65. Found: C, 63.74; H, 5.09; N, 4.49.

3.4.2. 1-Ethyl-2-ethylsulfanyl-3-phenylsulfinyl-1H-indole (**8b**). A pale-yellow solid; mp 97–98 °C (hexane/CH₂Cl₂); IR (KBr) 1436,

1036 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.37 (t, *J*=7.3 Hz, 3H), 1.41 (t, *J*=7.3 Hz, 3H), 2.97–3.06 (m, 2H), 4.40–4.50 (m, 2H), 6.98 (t, *J*=7.8 Hz, 1H), 7.21 (td, *J*=7.8, 1.0 Hz, 1H), 7.32 (d, *J*=7.8 Hz, 1H), 7.34 (d, *J*=7.8 Hz, 1H), 7.40 (t, *J*=7.3 Hz, 1H), 7.45 (dd, *J*=7.8, 7.3 Hz, 2H), 7.70 (d, *J*=7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.93, 15.28, 32.76, 38.99, 110.41, 120.17, 121.60, 122.27, 123.82, 123.99, 124.86, 128.80, 129.74, 135.96, 137.23, 144.53; MS *m*/*z* 329 (M⁺, 67), 281 (100). Anal. Calcd for C₁₈H₁₉NOS₂: C, 65.62; H, 5.81; N, 4.25. Found: C, 65.52; H, 5.79; N, 4.23.

3.4.3. 1-Phenylmethyl-2-(phenylmethyl)sulfanyl-3-phenylsulfinyl-1H-indole (**8c**). A pale-yellow oil; R_f 0.40 (AcOEt/hexane 1:2); IR (neat) 1444, 1036 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.99 (s, 2H), 5.24 (d, *J*=16.6 Hz, 1H), 5.33 (d, *J*=16.6 Hz, 1H), 6.96–7.00 (m, 3H), 7.10–7.16 (m, 4H), 7.21–7.33 (m, 7H), 7.41–7.48 (m, 3H), 7.63 (dd, *J*=8.3, 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 43.10, 47.15, 111.08, 120.22, 121.90, 123.55, 123.95, 124.29, 124.87 (2C), 126.26, 127.69, 127.79, 128.70, 128.85, 129.01, 129.85, 135.96, 136.42, 136.68, 138.03, 144.31; MS *m*/*z* 453 (M⁺, 58), 405 (100). Anal. Calcd for C₂₈H₂₃NOS₂: C, 74.14; H, 5.11; N, 3.09. Found: C, 73.91; H, 5.15; N, 3.07.

3.4.4. 3-[(4-Chlorophenyl)sulfinyl]-1-methyl-2-methylsulfanyl-1Hindole (**8d**). A pale-yellow solid; mp 111–112 °C (hexane/CH₂Cl₂); IR (KBr) 1453, 1037 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.52 (s, 3H), 3.92 (s, 3H), 7.05 (dd, *J*=8.0, 6.9 Hz, 1H), 7.26 (dd, *J*=8.0, 6.9 Hz, 1H), 7.34 (d, *J*=8.0 Hz, 1H), 7.39 (d, *J*=8.0 Hz, 1H), 7.42 (d, *J*=8.6 Hz, 2H), 7.64 (d, *J*=8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 20.91, 30.41, 110.40, 119.90, 121.00, 122.00, 123.54, 124.17, 126.22, 129.08, 136.05, 137.88, 138.27, 143.39. HRMS calcd for C₁₆H₁₅ClNOS₂: M+H, 336.0283. Found: *m*/*z* 336.0282. Anal. Calcd for C₁₆H₁₄ClNOS₂: C, 57.22; H, 4.20; N, 4.17. Found: C, 57.09; H, 4.28; N, 4.17.

3.4.5. 3-[(4-Chlorophenyl)sulfinyl]-1-(prop-2-enyl)-2-(prop-2-enyl) sulfanyl-1H-indole (**8e**). A pale-yellow solid; mp 71–72 °C (hexane/ CH₂Cl₂); IR (KBr) 1637, 1446, 1039 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.53–3.61 (m, 2H), 4.94–5.11 (m, 5H), 5.23 (d, *J*=10.3 Hz, 1H), 5.83–6.01 (m, 2H), 7.04 (dd, *J*=8.0, 7.4 Hz, 1H), 7.22 (dd, *J*=8.0, 7.4 Hz, 1H), 7.30 (d, *J*=8.0 Hz, 1H), 7.38 (d, *J*=8.0 Hz, 1H), 7.43 (d, *J*=8.6 Hz, 2H), 7.65 (d, *J*=8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 41.06, 46.36, 111.11, 117.37, 119.40, 120.02, 121.99, 122.92, 123.60, 124.26, 126.29 (2C), 129.08, 132.47, 135.18, 135.99, 137.89, 143.22. HRMS calcd for C₂₀H₁₉ClNOS₂: M+H, 388.0596. Found: *m*/*z* 388.0597. Anal. Calcd for C₂₀H₁₈ClNOS₂: C, 61.92; H, 4.68; N, 3.61. Found: C, 61.82; H, 4.66; N, 3.50.

3.4.6. 1-Methyl-2-methylsulfanyl-3-phenylsulfonyl-1H-indole (**8***f*). An orange solid; mp 179–180 °C (hexane/CH₂Cl₂); IR (KBr) 1447, 1149 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 3.87 (s, 3H), 7.30–7.36 (m, 3H), 7.42 (t, *J*=7.4 Hz, 2H), 7.48 (tt, *J*=7.4, 1.1 Hz, 1H), 8.10 (dd, *J*=7.4, 1.1 Hz, 2H), 8.36 (dd, *J*=8.6, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 20.56, 30.33, 110.29, 119.24, 120.77, 122.79, 124.27, 125.14, 126.82, 128.69, 132.44, 136.84, 136.97, 143.78. HRMS calcd for C₁₆H₁₆NO₂S₂: M+H, 318.0622. Found: *m/z* 318.0635. Anal. Calcd for C₁₆H₁₅NO₂S₂: C, 60.54; H, 4.76; N, 4.41. Found: C, 60.26; H, 4.80; N, 4.39.

3.4.7. 3-Ethylsulfonyl-1-methyl-2-methylsulfanyl-1H-indole (**8g**). A white solid; mp 82–83 °C (hexane/CH₂Cl₂); IR (KBr) 1451, 1144 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.29 (t, *J*=7.3 Hz, 3H), 2.52 (s, 3H), 3.35 (q, *J*=7.3 Hz, 2H), 3.97 (s, 3H), 7.29 (dd, *J*=8.3, 7.3, 1.0 Hz, 1H), 7.35–7.40 (m, 2H), 8.20 (dd, *J*=8.3, 1.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 7.46, 21.14, 30.42, 51.21, 110.27, 116.51, 120.78, 122.73, 124.32, 125.84, 136.79, 136.81. HRMS calcd for C₁₂H₁₆NO₂S₂: M+H, 270.0622. Found: *m/z* 270.0619. Anal. Calcd

for $C_{12}H_{15}NO_2S_2;$ C, 53.50; H, 5.61; N, 5.20. Found: C, 53.45; H, 5.77; N, 5.13.

3.5. Typical procedure for the preparation of 1-alkyl-2-alkyl sulfanyl-3-sulfinyl-1*H*-indoles 9

3.5.1. 2-Methylsulfanyl-1-phenylmethyl-3-phenylsulfinyl-1H-indole (**9a**). Compound **5a** (0.18 g. 0.66 mmol) was treated with NaH (60% in mineral oil; 58 mg, 1.5 mmol) as described for the preparation of 8a. After 5 min, MeI (93 mg, 0.66 mmol) was added and the temperature was raised to room temperature. Then, BnBr (0.11 g, 0.66 mmol) was added and stirring was continued for 1 h before the same workup as described for the preparation of 8a. The crude product was purified by column chromatography on silica gel (AcOEt/hexane 1:1) to give 9a (0.14 g, 57%). A white solid; mp 122–123 °C (hexane/CH₂Cl₂); IR (KBr) 1445, 1035 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.36 (s, 3H), 5.58 (d, *J*=16.6 Hz, 1H), 5.67 (d, J=16.6 Hz, 1H), 7.01 (t, J=7.4 Hz, 1H), 7.06 (d, J=7.4 Hz, 2H), 7.16 (dd, J=8.0, 7.4 Hz, 1H), 7.22 (d, J=8.0 Hz, 1H), 7.27-7.31 (m, 3H), 7.40–7.44 (m, 2H), 7.48 (t, *J*=7.4 Hz, 2H), 7.74 (d, *J*=7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.35, 47.42, 111.01, 120.17, 121.91, 122.32, 123.94, 124.26, 124.75, 126.17, 127.67, 128.87 (2C), 129.87, 136.61, 137.81, 137.99, 144.50. HRMS calcd for C₂₂H₂₀NOS₂: M+H, 378.0986. Found: *m*/*z* 378.0981. Anal. Calcd for C₂₂H₁₉NOS₂: C, 69.99; H, 5.07; N, 3.71. Found: C, 69.97; H, 5.28; N, 3.70.

3.5.2. 1-Methyl-2-(phenylmethyl)sulfanyl-3-phenylsulfinyl-1H-indole (**9b**). A pale-yellow solid; mp 114–115 °C (hexane/CH₂Cl₂); IR (KBr) 1454, 1033 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.41 (s, 3H), 4.06 (d, *J*=12.6 Hz, 1H), 4.16 (d, *J*=12.6 Hz, 1H), 6.99 (ddd, *J*=8.0, 7.4, 1.1 Hz, 1H), 7.12 (dd, *J*=8.0, 1.1 Hz, 2H), 7.18–7.24 (m, 5H), 7.29 (dd, *J*=8.0, 1.1 Hz, 1H), 7.38–7.45 (m, 3H), 7.64 (dd, *J*=8.0, 1.1 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 30.00, 43.05, 110.34, 120.02, 121.73, 122.68, 123.69, 123.96, 123.83, 124.83, 127.68, 128.66, 128.77, 129.79, 135.71, 136.88, 138.20, 144.39. HRMS calcd for C₂₂H₂₀NOS₂: C, 69.99; H, 5.07; N, 3.71. Found: C, 69.91; H, 5.03; N, 3.43.

3.5.3. [2-(*Methylsulfanyl*)-3-(*phenylsulfinyl*)-1*H*-*indol*-1-*yl*](*phenyl*) *methanone* (**9c**). A yellow viscous oil; R_f 0.80 (THF/hexane 1:1); IR (neat) 1703, 1439, 1042 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.56 (s, 3H), 7.07–7.15 (m, 3H), 7.45 (t, *J*=7.4 Hz, 1H), 7.51 (dd, *J*=7.8, 7.4 Hz, 4H), 7.65 (dd, *J*=7.4, 1.7 Hz, 1H), 7.68 (t, *J*=7.4 Hz, 1H), 7.73 (d, *J*=7.8 Hz, 2H), 7.79 (d, *J*=7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.78, 113.59, 120.37, 123.46, 124.25, 124.64, 125.04, 128.30, 129.00, 129.14, 130.36, 130.42, 133.86, 134.31, 136.88, 137.97, 143.91, 158.91; MS *m*/*z* 391 (M⁺, 19), 270 (47), 105 (100). Anal. Calcd for C₂₂H₁₇NO₂S₂: C, 67.49; H, 4.38; N, 3.58. Found: C, 67.20; H, 4.46; N, 3.38.

3.5.4. 3-[(4-Chlorophenyl)sulfinyl]-2-methylsulfanyl-1-(phenylmethyl)-1H-indole (**9d**). A pale-purple solid; mp 118–120 °C (hexane/CH₂Cl₂); IR (KBr) IR 1446, 1039 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.35 (s, 3H), 5.58 (d, *J*=16.6 Hz, 1H), 5.67 (d, *J*=16.6 Hz, 1H), 7.03–7.06 (m, 3H), 7.17–7.31 (m, 6H), 7.44 (d, *J*=8.0 Hz, 2H), 7.67 (d, *J*=8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 21.39, 47.48, 111.16, 120.00, 121.78, 122.13, 123.78, 124.45, 126.17, 126.20, 127.75, 128.93, 129.17, 136.09, 136.48, 137.94, 138.03, 143.12. HRMS calcd for C₂₂H₁₉CINOS₂: M+H, 412.0596. Found: *m/z* 412.0598. Anal. Calcd for C₂₂H₁₈CINOS₂: C, 64.14; H, 4.40; N, 3.40. Found: C, 63.87; H, 4.61; N, 3.31.

3.5.5. 3-[(4-Chlorophenyl)sulfinyl]-1-methyl-2-[(prop-2-enyl)sulfanyl]-1H-indole (**9e**). A yellow solid; mp 113–115 °C (hexane/CH₂Cl₂); IR (KBr) 1634, 1451, 1037 cm⁻¹; ¹H NMR (500 MHz, CDCl₃)

δ 3.53 (dd, *J*=13.2, 6.9 Hz, 1H), 3.59 (dd, *J*=13.2, 7.4 Hz, 1H), 3.90 (s, 3H), 5.03 (dd, *J*=16.6, 1.1 Hz, 1H), 5.06 (d, *J*=9.7 Hz, 1H), 5.88–5.97 (m, 1H), 7.05 (dd, *J*=8.0, 7.4 Hz, 1H), 7.26 (ddd, *J*=8.0, 7.4, 1.1 Hz, 1H), 7.33 (d, *J*=8.0 Hz, 1H), 7.36 (d, *J*=8.0 Hz, 1H), 7.42 (d, *J*=8.6 Hz, 2H), 7.65 (d, *J*=8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 30.70, 41.01, 110.45, 119.25, 119.91, 121.95, 122.38, 123.46, 124.17, 126.30, 129.04, 132.49, 135.60, 135.95, 138.40, 143.27. HRMS calcd for C₁₈H₁₇ClNOS₂: M+H, 362.0440. Found: *m*/*z* 362.0441. Anal. Calcd for C₁₈H₁₆ClNOS₂: C, 59.74; H, 4.46; N, 3.87. Found: C, 59.61; H, 4.52; N, 3.80.

3.6. General procedure for the preparation of tricyclic indole derivatives 10

3.6.1. 10-(Phenylsulfinyl)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole (10a). Compound 5a (0.18 g, 0.64 mmol) was treated with NaH (60% in mineral oil; 52 mg, 1.3 mmol) as described for the preparation of 8a. After 5 min, Br(CH₂)₃Br (0.13 g, 0.64 mmol) was added and the temperature was raised to room temperature. Stirring was continued for 10 min before the same workup as described for the preparation of 8a. The residual crude product was purified by recrystallization from hexane/CH₂Cl₂ to give 10a (0.17 g, 83%). A pale-yellow solid; mp 118-120 °C; IR (KBr) 1434, 1031 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.42–2.48 (m, 2H), 3.13 (t, *I*=5.7 Hz, 2H), 4.06–4.11 (m, 1H), 4.15–4.20 (m, 1H), 6.99 (ddd, *J*=8.0, 7.4, 1.1 Hz, 1H), 7.10 (ddd, *J*=8.0, 7.4, 1.1 Hz, 1H), 7.18 (d, *J*=8.0 Hz, 1H), 7.28 (d, *J*=8.0 Hz, 1H), 7.39 (tt, *J*=7.4, 1.1 Hz, 1H), 7.44 (dd, *J*=8.0, 7.4 Hz, 2H), 7.70 (dd, *J*=8.0, 1.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.42, 24.97, 41.98, 108.36, 111.16, 118.41, 121.81, 121.89, 124.30, 124.83, 128.73, 129.67, 136.63, 138.26, 144.26. HRMS calcd for C₁₇H₁₆NOS₂: M+H, 314.0673. Found: *m*/*z* 314.0673. Anal. Calcd for C17H15NOS2: C, 65.14; H, 4.82; N, 4.47. Found: C, 65.13; H, 5.02; N, 4.42.

3.6.2. 10-[(4-Chlorophenyl)sulfinyl]-3,4-dihydro-2H-[1,3]thiazino [3,2-a]indole (**10b**). A yellow solid; mp 134–135 °C (hexane/ CH₂Cl₂); IR (KBr) 1433, 1032 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.45–2.48 (m, 2H), 3.14 (t, *J*=5.7 Hz, 2H), 4.08–4.13 (m, 1H), 4.17–4.22 (m, 1H), 7.03 (dd, *J*=8.0, 7.4 Hz, 1H), 7.13 (dd, *J*=8.0, 7.4 Hz, 1H), 7.20 (d, *J*=8.0 Hz, 1H), 7.27 (d, *J*=8.0 Hz, 1H), 7.42 (d, *J*=8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 2.3.38, 24.97, 42.00, 108.49, 110.60, 118.24, 122.00, 122.10, 124.15, 126.30, 128.99, 135.85, 136.92, 138.26, 142.85. HRMS calcd for C₁₇H₁₅ClNOS₂: M+H, 348.0283. Found: *m*/*z* 348.0280. Anal. Calcd for C₁₇H₁₄ClNOS₂: C, 58.69; H, 4.06; N, 4.03. Found: C, 58.70; H, 4.12; N, 3.93.

3.6.3. 9-[(4-Chlorophenyl)sulfinyl]-2,3-dihydrothiazolo[3,2-a]indole (**10c**). A white solid; mp 133–134 °C (hexane/CH₂Cl₂); IR (KBr) 1452, 1036 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.79–3.87 (m, 2H), 4.26–4.29 (m, 2H), 7.05 (t, *J*=7.4 Hz, 1H), 7.11–7.16 (m, 2H), 7.35 (d, *J*=7.4 Hz, 1H), 7.43 (d, *J*=8.6 Hz, 2H), 7.64 (d, *J*=8.6 Hz, 2H): ¹³C NMR (125 MHz, CDCl₃) δ 35.87, 45.51, 107.68, 109.68, 118.48, 121.66, 122.30, 126.31, 129.12, 129.56, 134.61, 136.20, 142.66, 145.93. HRMS calcd for C₁₆H₁₃ClNOS₂: M+H, 334.0127. Found: *m/z* 334.0126. Anal. Calcd for C₁₆H₁₂ClNOS₂: C, 57.56; H, 3.62; N, 4.20. Found: C, 57.47; H, 3.35; N, 3.96.

3.6.4. 10-(Phenylsulfonyl)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole (**10d**). A white solid; mp 218–219 °C (hexane/CH₂Cl₂); IR (KBr) 1426, 1151 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.40–2.45 (m, 2H), 3.08 (t, *J*=5.7 Hz, 2H), 4.13 (t, *J*=5.7 Hz, 2H), 7.18–7.25 (m, 3H), 7.43 (dd, *J*=8.0, 7.4 Hz, 2H), 7.48 (t, *J*=7.4 Hz, 1H), 8.02 (d, *J*=8.0 Hz, 1H), 8.06 (d, *J*=8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 22.66, 24.63, 42.14, 108.34, 109.33, 118.23, 122.07, 122.64, 124.87, 126.12, 128.78, 132.34, 137.40, 137.54, 143.73. HRMS calcd for C₁₇H₁₆NO₂S₂: M+H,

330.0632. Found: *m*/*z* 330.0619. Anal. Calcd for C₁₇H₁₅NO₂S₂: C, 61.98; H, 4.59; N, 4.25. Found: C, 61.95; H, 4.73; N, 4.20.

3.6.5. 10-(*Ethylsulfonyl*)-3,4-*dihydro*-2*H*-[1,3]*thiazino*[3,2-*a*]*indole* (**10e**). A white solid; mp 144–146 °C (hexane/CH₂Cl₂); IR (KBr) 1432, 1144 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.30 (t, *J*=7.4 Hz, 3H), 2.43–2.47 (m, 2H), 3.09 (t, *J*=5.7 Hz, 2H), 3.18 (q, *J*=7.4 Hz, 2H), 4.18 (dd, *J*=6.3, 5.7 Hz, 2H), 7.18–7.24 (m, 3H), 7.89 (dd, *J*=6.3, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 7.53, 22.80, 24.63, 42.21, 50.74, 106.44, 108.34, 118.25, 122.05, 122.58, 125.56, 137.29, 137.82. HRMS calcd for C₁₃H₁₆NO₂S₂: M+H, 282.0622. Found: *m/z* 282.0619. Anal. Calcd for C₁₃H₁₅NO₂S₂: C, 55.49; H, 5.37; N, 4.98. Found: C, 55.49; H, 5.54; N, 4.97.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (C) 22550035 from Japan Society for the Promotion of Science. We would like to acknowledge Mrs. Miyuki Tanmatsu of our University for recording mass spectra and performing combustion analyses.

References and notes

- 1. Greenhouse, R. J.; Muchowski, J. M. U.S. Patent 4,654,360, 1987; Chem. Abstr. 1987, 107, 23236.
- (a) Tanaka, J.; Higa, T.; Bernardinelli, G.; Jefford, C. W. *Tetrahedron Lett.* **1988**, *29*, 6091–6094;
 (b) Tanaka, J.; Higa, T.; Bernardinelli, G.; Jefford, C. W. *Tetrahedron* **1989**, *45*, 7301–7310.
- Gilow, H. M.; Brown, C. S.; Copeland, J. N.; Kelly, K. E. J. Heterocycl. Chem. 1991, 28, 1025–1034.
- 4. For a recent excellent review on the synthesis of 1*H*-indoles: (a) Humphrey, G. R.; Kuethe, J. T. *Chem. Rev.* **2006**, *106*, 2875–2911; For recent reports: (b) Wei; Y.; Deb, I.; Yoshikai, N. J. Am. Chem. Soc. **2012**, *134*, 9098–9101; (c) Gore, S.; Baskaran, S.; König, B. Org. Lett. **2012**, *14*, 4568–4571; (d) Gao, D.; Back, T. G. *Chem. —Eur. J.* **2012**, *18*, 14828–14840; (e) Kobayashi, K.; Yamane, K.; Fukamachi, S. Helv. Chim. Acta **2013**, *96*, 93–98; (f) Zhan, F.; Liang, G. Angew. Chem., Int. Ed. **2013**, *52*, 1266–1269; (g) Xiao, T.; Dong, X.; Zhou, L. Org. Biomol. Chem. **2013**, *11*, 1490–1497; (h) Jadhay, J.; Gaikwad, V.; Kurane, R.; Salunkhe, R.; Rashinkar, G. Synlett **2013**, 2511–2515; See also pertinent references cited in these papers.
- 5. Fujiwara, S.; Shin-Ike, T.; Sonoda, N.; Aoki, M.; Okada, K.; Miyoshi, N.; Kambe, N. *Tetrahedron Lett.* **1991**, *32*, 3503–3506.
- Michelin, R. A.; Facchin, G.; Braga, D.; Sabatino, P. Organometallics 1986, 5, 2265–2274.
- 7. Kobayashi, K.; Enmi, Y.; Kanbe, Y.; Konishi, H. *Heterocycles* **2011**, *83*, 2127–2135.
- Kobayashi, K.; Hashimoto, H.; Suzuki, T.; Konishi, H. Helv. Chim. Acta 2011, 94, 2002–2009.
- 9. Ito, Y.; Kobayashi, K.; Seko, N.; Saegusa, T. Bull. Chem. Soc. Jpn. 1984, 57, 73-84.