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Silica-supported tripod triarylphosphines that have a Ph3P-
type core tripodally immobilized on a silica surface enabled the
Pd-catalyzed borylation of chloroarenes with bis(pinacolato)di-
boron under mild conditions. The immobilization in tripod was
crucial for the excellent performance of the Ph3P-based ligands.

Arylboronic acids and their derivatives are versatile inter-
mediates in organic synthesis because of their applicability
and broad functional group compatibility in many reactions,
less toxicity, and air- and moisture stability.1 The Pd-catalyzed
borylation of aryl halides with boron reagents (Miyaura
borylation) offers a method for synthesizing arylboronates with
excellent functional group compatibility.28 Recently, we re-
ported that a heterogeneous Pd catalyst system based on a silica-
supported monodentate trialkylphosphine ligand Silica-SMAP
shows an excellent performance for this catalytic reaction
allowing the use of a broad range of chloroarenes as substrates.9

We proposed that this catalytic performance of the Pd-
Silica-SMAP system originated from the novel characteristic of
the Silica-SMAP monodentate phosphine to favor monoligation
to the Pd atom and that this is due to the immobilization of the
phosphine molecule with restricted mobility and with a high
degree of directionality.10 In addition, we introduced other
immobilized phosphine ligands Silica-TRIP,10 Silica-3p-TPP,11

and PS-Ph3P,12 which are based on a common design concept
but have a triarylphosphine core in contrast to the Silica-SMAP
trialkylphosphine, and demonstrated these immobilized triaryl-
phosphines to be useful for the Pd-catalyzed SuzukiMiyaura
coupling,1113 the BuchwaldHartwig amination,12 or Ir (Rh)-
catalyzed directed sp3-CH borylation reactions.10h,10j

Herein, we report that silica-supported tripod triarylphos-
phine ligands such as Silica-3p-TPP enabled Pd-catalyzed
borylation of chloroarenes under mild conditions. The hetero-
geneous Pd system based on Silica-3p-TPP was applicable to
one-pot biaryl synthesis via the Miyaura borylationSuzuki
Miyaura coupling sequence.

Various immobilized phosphines were evaluated for the
ligand performance in the Pd-catalyzed borylation of p-chloro-
toluene (1a, 0.5mmol) with bis(pinacolato)diboron (2,
0.55mmol) at 25 °C for 10 h in the presence of KOAc
(1.5mmol) as a base. Pd catalysts were prepared in situ from
[PdCl(η3-cinnamyl)]2 (0.5mol% Pd) and the phosphine ligands
(Pd/P 1:2). The results are summarized in Figure 1. Notably,
4,4¤-dimethylbiphenyl, a potential by-product due to the cou-
pling between 1a and borylation product 3a, was not formed
under the conditions using the mild base KOAc. Interestingly,
the triptycene-type ligand Silica-TRIP was more effective than
Silica-SMAP inspite of its lower electron-donating ability as
a triarylphosphine (98% yield).14 Among the silica-supported
tripod triarylphosphines with different backbone structures

(Silica-3p-TPP, Silica-3m-TPP,15 and Silica-3p-TBP15), Silica-
3p-TPP was the most efficient, causing a high conversion of 1a
into 3a.16,17 The mono-P-ligating features of the silica-supported
ligands would assist oxidative addition of the CCl bond to the
Pd0P species. The enhanced ligand performances of the Silica-
TRIP and Silica-3p-TPP triarylphosphines over the Silica-
SMAP trialkylphosphine suggest the importance of transmeta-
lation and reductive elimination steps in these catalytic systems.
Silica-3p-TPP is advantageous over Silica-TRIP in terms of the
ease in preparation.

The heterogeneous catalysts were easily separated from the
products by filtration, and inductively coupled plasma atomic
emission spectroscopy (ICP-AES) analysis of the filtrate
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Figure 1. Ligand effects in Pd-catalyzed borylation of 1a with
2. Conditions: 1a (0.5mmol), 2 (0.55mmol), [PdCl(η3-cin-
namyl)]2 (0.00125mmol, 0.5mol% Pd), ligand ([P] 0.07
0.11mmol g¹1, 0.005mmol, 1mol% P), KOAc (1.5mmol),
benzene (1mL), 25 °C, 10 h. Yields were determined by
1HNMR analysis. The isolated yield is given in parenthesis.
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indicated that the Pd leaching was below the detection limit
(0.02% of the loaded Pd). Unfortunately, attempts to reuse the
catalyst were unsuccessful.

The bipod and monopod phosphines (Silica-2p-TPP,11

Silica-1p-TPP,11 and Silica-1-EtTPP11) were also effective, but
were significantly less efficient than the tripod phosphines,
affording 3a in only 70%, 48%, and 16% yields, respectively
(Figure 1). No reaction occurred with the soluble phosphine
ligands such as 3p-TPP11 and Ph3P or under the phosphine-free
conditions.

The borylation protocol using the Pd-Silica-3p-TPP catalyst
system was applied to the reaction of various chloroarenes.
Results are summarized in Table 1. p-Chloroanisole (1b), which
has an electron-donating MeO substituent, was somewhat less
reactive than the electronically unbiased substrate 1a, but the
borylation of 1b with 1mol% catalyst loading proceeded
smoothly at 25 °C to afford 3b in 91% yield (Entry 1). The
chloroarenes with electron-withdrawing para-substituents such
as CF3 (1c), MeCO (1d), and MeO2C (1e) groups were

quantitatively borylated at 25 °C with 0.5mol% catalyst loading
(Entries 24). Pd catalysis (1mol% Pd, 60 °C) was applicable to
the borylation of heteroaryl chlorides 1f and 1g to afford the
corresponding heteroaryl boronates 3f and 3g in good to high
yields (Entries 5 and 6). o-Chlorotoluene (1h) reacted at 60 °C
to give 3h in quantitative yield (Entry 7). The Pd-Silica-3p-
TPP system was capable of converting the more challenging
substrates 2,6-dimethylchlorobenzene (1i) and 2,4,6-triethyl-
chlorobenzene (1j) into sterically congested arylboronates 3i and
3j, respectively, under relatively mild conditions with reason-
able catalyst loading (Entries 8 and 9). However, the reaction of
these sterically demanding substrates proceeded under milder
conditions with the more compact Silica-SMAP ligand.9

The efficacy of the tripod phosphine-based catalyst systems
for the Miyaura borylation and the SuzukiMiyaura coupling
with chloroarenes allows the one-pot synthesis of an unsym-
metrical biaryl from two different chloroarenes as shown in
Scheme 1. The substrates for the borylation reaction 1a and 2
were mixed together in benzene with KOAc (1a/2/KOAc 1:1:3)
in the presence of the Pd-Silica-3p-TPP catalyst (1mol% Pd,
Pd/P 1:2), and the mixture was stirred at 25 °C for conversion to
3a (10 h). To this mixture, chloroarene 1d (1 equiv) dissolved in
benzene and aq. K3PO4 (3 equiv) were added, and the mixture
was stirred at 60 °C for 10 h. After removal of solids, silica gel
chromatography afforded the unsymmetrical biaryl 4 in 74%
yield.

In summary, a silica-supported tripod triarylphosphine
(Silica-3p-TPP) having a Ph3P-type core tripodally immobilized
on silica gel enabled the Pd-catalyzed borylation of chloroarenes
under mild conditions inspite of the moderate electron-donating
and steric properties. Various chloroarenes substituted with
electron-donating and electron-withdrawing groups were suc-
cessfully converted into the corresponding arylboronates in high
yields. The heterogeneous Pd catalyst system is applicable to
one-pot biaryl synthesis from a pair of chloroarenes through
the Miyaura borylationSuzukiMiyaura coupling sequence.
Further catalytic application of silica-supported tripod triaryl-
phosphines as a ligand is currently under investigation.
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