SYNTHESIS AND PRODUCTS OF HYDROLYSIS OF 2-METHYL-5-(β-ARYL-ACRYLYL)-2-OXAZOLINES

O. N. Bubel', I. G. Tishchenko, and Yu. L. Ptashnikov

UDC 547.78

The condensation of 2-methyl-5-acetyl-2-oxazolines with p-R-substituted benz-aldehydes in the presence of bases gave the corresponding 2-methyl-5-(β -aryl-acrylyl)-2-oxazolines, the hydrolysis of which with hydrochloric acid leads to hydrochlorides of alkyl-substituted 1-(p-R-styryl)-2-acetoxy-3-aminobutan-1-ones. Treatment of the latter with bases gives 1-(p-R-styryl)-2-hydroxy-3-N-acetyl-2.3-alkylbutan-1-ones.

2-Methyl-5-acetyl-2-oxazolines [1] have two methyl groups that are capable of undergoing a reaction of the aldol-crotonic type with aromatic aldehydes, viz., the methyl groups in the acetyl fragment and in the 2 position of the ring. In this connection we studied the regionselectivity of the reactions of 2,4,4-trimethyl- (I), 2,5-dimethyl- (II), and 2,4,5-trimethyl-5-acetyl-2-oxazolines (III) with aromatic aldehydes (IV-VII).

We established that in the presence of a methanol solution of alkali 2-oxazolines (I-III) react with aldehydes (IV-VII) to give the corresponding 2-methyl-5-(β -arylacrylyl)-2-oxazolines (VIII-XIV) in 80-85% yields (Table 1).

I, VIII, XV, XXI $R^1=R^2=CH_3$, $R^3=H$; II, IX—XII, XVI—XIX, XXII—XXV $R^1=R^2=H$, $R^3=CH_3$; III, XIII, XIV, XX, XXVI $R^1=R^3=CH_3$; $R^2=H$; VIII, IX, XIII, XVI, XX, XXII, XXVI $R=CH_3$; X, XVII, XXIII R=H; XI, XIV, XVIII, XXIV R=Br; XII, XIX, XXV R=CI

According to the data from thin-layer chromatography (TLC) and the PMR spectra, the reaction mixtures do not contain admixed 2-styryl-5-acetyl-2-oxazolines and products of the addition of two molecules of the aldehyde to I-III.

The VIII-XIV structure were confirmed by spectral data and the results of elementary analysis (Table 1). Thus the IR spectra contain intense bands of C=N stretching vibrations $(1650-1670~\rm cm^{-1})$ and a conjugated C=O group $(1675-1690~\rm cm^{-1})$.

As compared with starting oxazolines I-III, the PMR spectra of VIII-XIV (Table 2) do not contain the signal of an acetyl group (2.12-2.15 ppm), but signals of aromatic protons (7.2-8.1 ppm) and two doublets of an AB system of olefin protons with a spin-spin coupling constant (SSCC) of 16 Hz, which constitutes evidence for their trans orientation, appear in the spectra.

V. I. Lenin Belorussian State University, Minsk 220080. A. N. Sevchenko Scientific-Research Institute of Applied Physical Problems, Minsk 220106. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1025-1027, August, 1982. Original article submitted September 22, 1981.

TABLE 1. 2-Methyl-5-(β -arylacrylyl)-2-oxazolines (VIII-XIV), 1-(p-R-Styryl)-2-acetoxy-3-aminobutan-1-ones (XV-XX), and 1-(p-R-Styryl)-2-hydroxy-3-N-acetylbutan-1-ones (XXI-XXVI)

Com-	mp, °C	R	Rt	R ²	R ³	Found, %			Empirical	Calculated,%		
pouliu						С	Н	N	formula	С	Н	N
VIII IX X XI XIII XIII XIV XV XVII XVII	49—51 57—59 46—47 56—57 49—50 72—73 86—87 169—172 178—181 162—165 176—179 168—171 174—177 134—136 151—152 112—114 148—149 139—141 162—164	CH ₃ H Br Cl CH ₃ Br CH ₃ H Br Cl CH ₃	CH ₃ H H H H	CH ₃ H H H H H H H H H H H H H H H H H H H	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	54,3 63,2 74,3 56,9 61,4 60,0 59,4 43,1 52,7 61,8 69,9 68,3 68,1 51,5 59,5	6,4 6,3 4,4 5,1 7,5 6,4 6,2 5,4 4,8 6,7 4,9	5,2 5,4 5,9 4,5 5,4 4,6 4,7 3,5 6,4 4,5 5,3 4,2 4,8 5,0	C ₁₆ H ₁₉ NO ₂ C ₁₅ H ₁₇ NO ₂ C ₁₄ H ₁₅ NO ₂ C ₁₄ H ₁₆ NO ₂ C ₁₄ H ₁₄ BrNO ₂ C ₁₄ H ₁₄ BrNO ₂ C ₁₆ H ₁₉ NO ₂ C ₁₆ H ₁₉ NO ₃ C ₁₆ H ₂₁ NO ₃ ·HCl C ₁₅ H ₁₉ NO ₃ ·HCl C ₁₄ H ₁₆ BrNO ₃ ·HCl C ₁₄ H ₁₆ BrNO ₃ ·HCl C ₁₄ H ₁₆ CiNO ₃ ·HCl C ₁₄ H ₁₆ BrNO ₃ ·HCl C ₁₄ H ₁₆ BrNO ₃ ·HCl C ₁₄ H ₁₆ CiNO ₃ ·HCl C ₁₄ H ₁₆ DrNO ₃ ·HCl C ₁₆ H ₂₁ NO ₃ C ₁₅ H ₁₉ NO ₃ C ₁₅ H ₁₉ NO ₃ C ₁₄ H ₁₆ BrNO ₃ C ₁₄ H ₁₆ BrNO ₃ C ₁₄ H ₁₆ BrNO ₃ C ₁₄ H ₁₆ CiNO ₃ C ₁₆ H ₂₁ NO ₃	74,7 74,1 73,4 54,5 63,7 74,7 57,1 61,6 60,5 59,2 46,3 52,8 61,6 70,0 68,1 51,5 59,7 70,0	4,5 5,3 7,4 5,3 6,7 6,4 6,0 4,4 5,0 6,7 7,6 7,3 6,9	5,4 5,6 1,5 5,4 5,5 4,5 7,7 4,5 1,4 5,7 4,5 5,1 4,5 5,1 5,1 4,5 5,1 5,1 4,5 5,1 5,1 4,5 5,1 5,1 4,5 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5

TABLE 2. PMR Spectra of 2-Methyl-5-(β -arylacrylyl)-2-oxazolines (VIII-XIV), 1-(p-R-Styryl)-2-acetoxy-3-amino-butan-1-ones (XV-XX), and 1-(p-R-Styryl)-2-hydroxy-3-N-acetylbutan-1-ones (XXI-XXVI)

	-		•								
Com-		Chemical shifts, ppm (SSCC, Hz)									
pound	R	R ¹	R ²	R³	CH₃	CH=CH dd (16)	C ₆ H ₄				
IX XI XIII XIVI XVI XVIII XVIII XIXI XXXIII XXXI	2,3 s 2,3 s 2,3 s 2,3 s 2,3 s 2,3 s 2,26 s	0,90 d (3) 1,33 s 3,46 s 3,44 s 3,43 s 3,46 s 0,96 d (6) 1,36 s 3,0—3,93 s 3,2—4 m 3,0—4 m	3,94 dq (14,1;2) 3,90 dq (14,1;2)	1,32 s 1,40 s	1,95 s 1,96 t (1,2) 1,95 t (1,2) 1,90 t (1,2) 1,93 t (1,2) 1,96 d (1,2) 2,16 s 2,13 s 2,13 s 2,13 s 2,13 s 2,13 s 1,83 s 1,83 s 1,83 s 1,83 s 1,83 s 1,83 s	6,9; 7,6 6,8; 7,5 6,9; 7,5 6,9; 7,5 6,9; 7,5 6,9; 7,6 6,9; 7,6 6,9; 7,6 6,9; 7,6 6,9; 7,6 7,0; 7,6 7,0; 7,6 7,0; 7,6 7,0; 7,6 7,0; 7,6 7,0; 7,6 7,0; 7,6	6,7—7,8 m 6.7—7,8 m 6.7—7,8 m 7,4 s 6,7—7,8 m 6,7—7,8 m 6,9—7,8 m				

Oxazolines VIII-XIV are hydrolyzed to give the hydrochlorides of alkyl-substituted $1-(\beta-R-styry1)-2-acetoxy-3-aminobutan-1-ones$ in 95% yields when they are treated with concentrated hydrochloric acid (Table 1).

The structure of salts XV-XX are confirmed by spectral data and the results of elementary analysis (Table 1).

The IR spectra of XV-XX contain intense bands of stretching vibrations of C=C bonds $(1600-1610~\text{cm}^{-1})$, ester and conjugated carbonyl groups $(1735~\text{and}~1690~\text{cm}^{-1})$, and an ammonium group N-H bond at $2900-3400~\text{cm}^{-1}$.

Doublets of an AB system of olefin protons at 6.8-8.3 ppm with SSCC = 16 Hz and a multiplet of aromatic protons at 7.2-8.1 ppm are observed in the PMR spectra (Table 2) of hydrochlorides XV-XX. As compared with the starting VIII-XIV, the signal of the CH_3 group attached to the C_2 atom of the 2-oxazoline ring is shifted 0.3-0.5 ppm to weaker field. The character of the multiplicity and the geminal constant of the protons attached to the ring

 C_4 atom change, and the additional splitting of the protons attached to C_4 and the CH_3 group in the 2 position that is characteristic for IX-XIV (1.5 Hz) vanishes in the case of XVI-XX.

Treatment of salts XV-XX with base does not lead to the formation of free amines but gives the corresponding 1-(p-R-styry1)-2-hydroxy-3-N-acety1-2,3-dialkylbutan-1-ones (XXI-XXVI) in close to quantitative yields (Table 1). This rearrangement is stereospecific and hypothetically has a mechanism similar to that previously proposed in [2].

Bands of a conjugated C=O group at $1670-1675 \text{ cm}^{-1}$, amide I and II bands at $1642 \text{ and} 1536 \text{ cm}^{-1}$, respectively, and amide NH bands at $3210 \text{ and} 3345 \text{ cm}^{-1}$ are observed in the IR spectra of XXI-XXVI.

A doublet of an AB system of olefin protons at 6.8-8.3 ppm with SSCC = 16 Hz and a multiplet of aromatic protons at 7.2-8.1 ppm are observed in the PMR spectra of amides XXI-XXVI (Table 2) and in the spectra of XV-XX. In addition, a signal of an OH group at 4.0-5.0 ppm and a broad signal of an amide NH group at 6.0-7.5 ppm appear in the spectra.

EXPERIMENTAL

The PMR spectra of 10% solutions of VIII-XIV in CCl₄ and 10% solutions of XV-XXVI in d₆-acetone were recorded with a Tesla BS-467 spectrometer with hexamethyldisiloxane as the internal standard. Thin-layer chromatography was carried outon Silufol plates by elution with ether—hexane (3:1 for VIII-XIV and 9:2 for XXI-XXVI).

 $\frac{2\text{-Methyl-5-(}\beta\text{-arylacrylyl)}\text{-}2\text{-}oxazolines}{\text{(VIII-XIV)}}. A 0.5\text{-ml sample of a }15\% \text{ solution}} of KOH in methanol was added at 20°C to a solution of 0.05 mole of oxazolines I-III and 0.05 mole of benzaldehydes IV-VII in 50 ml of methanol. After 4 h, the reaction mixture was poured into 300 ml of cold water, and the precipitated crystals were removed by filtration and recrystallized from hexane.}$

 $\frac{1-(p-R-Styry1)-2-acetoxy-3-amino-2,3-alkylbutan-1-one~Hydrochlorides~(XV-XX).}{sample~of~concentrated~HCl~was~added~to~a~solution~of~0.02~mole~of~VIII-XIV~in~50~ml~of~acetone,~and~the~reaction~mixture~was~allowed~to~stand~at~20°C~for~24~h,~after~which~it~was~diluted~with~100~ml~of~ether.~The~precipitated~crystals~were~recrystallized~from~2-propanol-methyl~ethyl~ketones~(2:1).$

 $\frac{1-(p-R-Styry1)-2-hydroxy-3-N-acetyl-2,3-dialkylbutan-1-ones (XXI-XXVI).}{50 \text{ ml of CH}_2\text{Cl}_2,\text{ and the mixture was stirred until salts XV-XX dissolved completely (0.5-1.5 h). The solvent was then removed by distillation on a water bath, and the residue was recrystallized from CCl4.}$

LITERATURE CITED

- 1. I. G. Tishchenko, O. N. Bubel', and Yu. L. Ptashnikov, Dokl. Akad. Nauk Belorussk. SSR, 24, 1096 (1980).
- 2. E. E. van Tamelen, J. Am. Chem. Soc., 73, 5773 (1951).