O. G. Yarosh, T. D. Burnashova, and M. G. Voronkov

Continuing the investigation of the reactivity of ethynylfluorosilanes [1, 2], we studied the reaction of 4-substituted arylmagnesium bromides with methyl(ethynyl)difluorosilane. The reaction proceeds selectively at the equimolar ratio with the substitution of one F atom, and leads to the 4-substituted aryl(methyl)ethynylfluorosilanes

$$4\text{-}XC_6H_4MgBr+F_2Si(Me)C\equiv CH\rightarrow 4\text{-}XC_6H_4Si(Me)C\equiv CH$$

$$\downarrow F \qquad (I)$$

$$X=H\ (a),\ Me\ (b),\ Et\ (c),\ EtO\ (d)\ ,F\ (e).$$

The compounds (Ic, d), as well as 4-bromophenyl(methyl)-ethynylfluorosilane (If), were obtained by the direct synthesis from the corresponding 4-substituted aryl(methyl)difluorosilanes.

The initial 4-substituted aryl(methyl)difluorosilanes were synthesized by the reaction of the corresponding aryl magnesium bromides with methyltrichlorosilane and the subsequent reaction of the resulting aryl(methyl)dichlorosilanes with 40% HF.

$$4-XC_{6}H_{4}MgBr + MeSiCl_{3} \rightarrow 4-XC_{6}H_{4}SiMeCl_{2} \xrightarrow{HF} 4-XC_{6}H_{4}SiMeF_{2} \xrightarrow{BrMgC \equiv CH} (Ic,d,f)$$

$$X = Brff$$

TARLE 1	1	Constants	οf	the	Compounds	Synthesized
IMDIAN	<i>L</i> .	COUSTAILS	() (1.110	Compounds	OVILLIESTZEU

Com-	Yield %	bp, °C (p, mm Hg)	n_D^{20}	$\begin{array}{c c} d_{4}^{20} \end{array}$	Found/Calculated, %				
pound					С	Н	Si	F	Empirical formula
(Ia)	58	69 (12)	1,4871	1,0179	65,31 65,81	5,55 5,52	$\frac{17,11}{17,10}$	11.55 11,56	C ₉ H ₉ FSi
(Ip)	55	70(5)	1,4905	1,0318	$\frac{67,12}{67,37}$	6,51	16,08 15,75	10,18 10,66	$C_{10}H_{11}FSi$
(Ic)	54	78(6)	1,4926	1,0500	69,02 68,70	7,11 6,81	14,05 14,61	10,00 9,88	C ₁₁ H ₁₃ FSi
(Id)	57	78 (5)	1,4902	1,0051	$\frac{63,58}{63,42}$	6,26	13,97 13,44	9,43 9,12	C11H13FOSi
(le)	56	90(18)	1,4606	1,0635	58,33 59,31	4,85	15.59 15,41	20,42 20,85	C ₉ H ₈ F ₂ Si
(lf) *	59	91 (3)	1,5216	1,3361	44.11	3,72	11,98 11,55	7,43 7,81	C ₉ H ₈ BrFSi
(III d) (III d) (III f)	60 63 72 72	82(5) 78(18) 68(15) 57(3)		1,1710 1,0967 1,0797 1,4799	- .	- - -	- - -	- - -	C ₉ H ₁₂ Cl ₂ OSi C ₉ H ₁₂ F ₂ Si C ₉ H ₁₂ F ₂ OSi C ₇ H ₇ BrF ₂ Si

*Found: Br 33.15%. Calculated: Br 32.87%.

Irkutsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1115-1116, May, 1987. Original article submitted April 29, 1986.

The constants, analytical data, and yields of the compounds synthesized are presented in Table $1. \,$

EXPERIMENTAL

4-Fluorophenyl(methyl)ethnylfluorosilane (Ie). To 10.6 g of $F_2Si(Me)C\equiv CH$ in 20 ml of abs. ether was added dropwise, with stirring, the Grignard reagent (from 2.43 g of Mg and 17.5 g of 4-FC₆H₄Br in 50 ml of ether). The separated residue was filtered off and washed on the filter with ether; the ether was distilled. A yield of 9.6 g (56%) of (Ie) was obtained by the distillation of the residue in vacuo. The compounds (Ia-d) were obtained analogously (cf. Table 1).

4-Bromophenyl(methyl)ethynylfluorosilane (If). To 11.85 g of 4-BrC₆H₄SiMeF₂ in 25 ml of ether was added dropwise, with stirring, monomagnesium bromoacetylene (from 1.21 g of Mg, 5.4 g of EtBr, and HC≡CH in 50 ml of THF). The yield of 7.2 g (59.2%) of (If) was obtained analogously.

4-Ethoxyphenyl(methyl)dichlorosilane (IId). To 75 g of MeSiCl₃ in 150 ml of ether was added dropwise, with stirring, 4-ethoxyphenylmagnesium bromide (from 12.1 g of Mg and 100 g of 4-bromophenetole in 300 ml of ether). The yield of 70.5 g (60%) of (IId) was obtained analogously.

The compounds (IIc) [3] and (IIf) [4] were obtained analogously.

4-Ethoxyphenyl(methyl)difluorosilane (IIId). We added 70 g of 4-EtOC₆H₄SiMeCl₂ dropwise to 40 ml of 40% HF in a polyethylene reactor equipped with a reflux condenser and a dropping funnel, stirring the mixture with a magnetic stirrer. The lower layer was separated and distilled in vacuo. The yield of (IIId) was 43.7 g (71.5%).

The compounds (IIIc, f) were obtained analogously (cf. Table 1).

CONCLUSIONS

The reaction of 4-substituted aryl magnesium bromides with methyl(ethyl)difluorosilane, as well as the reaction of ethynyl magnesium bromide with 4-substituted phenyl(methyl)difluorosilanes, led to the synthesis of 4-substituted phenyl(methyl)-ethynylfluorosilanes.

LITERATURE CITED

- 1. O. G. Yarosh, M. G. Voronkov, and E. O. Tsemlina, Izv. Akad. Nauk SSSR, Ser. Khim., 1633 (1976).
- 2. O. G. Yarosh, Z. G. Ivanova, T. D. Burnashova, and M. G. Voronkov, Izv. Akad. Nauk SSSR, Ser. Khim., 2614 (1984).
- 3. L. Lasocki, Bull. Acad. Pol. Sci. Ser. Sci. Chem., <u>12</u>, 281 (1964); Chem. Abstrs., <u>61</u>, 13,339 (1964).
- 4. Sh. Kohama and S. Fukukawa, Nippon Kagaku Zasshi, <u>79</u>, 13,079 (1958); Chem. Abstr. <u>54</u>, 5525 (1940).