A NEW PATH TO THE TRICYCLO (5.4.0.0^{2,8} JUNDECANE SKELETON.

Rolf Gleiter^[*], Georg Müller, Ursula Huber-Patz, Hans Rodewald and Hermann Irngartinger.

Institut für Organische Chemie der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg (W. Germany).

Summary: Starting from 7-methoxybenzosuberone the tricyclo $[5.4.0.0^{2,8}]$ undecane ring system is obtained by a highly regio- and stereoselective ring closure.

The easy access to the tricyclo[5.4.0.0^{2,8}]undecane system (<u>1</u>) is of considerable interest for several reasons: 1) π -systems derived from <u>1</u> (C₁₁H₁₁) are of interest with regard to the question of conjugation between two

perpendicular π -systems separated by a four membered ring^[1], and 2) <u>1</u> represents the skeleton of longipinene and its derivatives^[2] and is so far only accessible in a light-induced ring closure of cyclodeca-1,5-diene derivatives^[2b] and subsequent ring enlargement. In our efforts to synthesize tricyclo alkanes and alkenes of type <u>2</u>^[3] we found a relatively simple and general route to the skeleton of <u>1</u>. Our approach to <u>1</u> is summarized in Scheme 1. From the readily available 7-methoxybenzosuberone (<u>3</u>)^[4] the bicyclic ring systems <u>4-6</u> can be obtained in good yields using known procedures^[5]. The pivot point of the synthesis is the highly stereo- and regioselective formation of <u>7</u> when 6 is treated with NBS and a nucleophile (e.g. methanol or Na-acetate). Subsequent treatment of $\underline{7}$ with a strong base ^[6] produces $\underline{8}$, a tricyclo[5.4.0.0^{2,8}]undecane derivative functionalized in both bridges.

Scheme 1. Synthesis of $\underline{8}$ a) Ru on Al₂O₃,5%, H₂, 100 atm, $\underline{80^{\circ}C}$; b) Alisopropoxide, acetone, toluene, 48 h, $\underline{90^{\circ}C^{\circ}c}$) $pCH_3-C_6H_4-SO_2NHNH_2$ in EtOH, 3h reflux, 12 h r.t.; d) THF, BuLi, $0-5^{\circ}C$; e) Me₃SiCl, NaI, pyridine in CH₃CN, r.t. 14 h; f) DMSO, (COCl)₂ in CH₂Cl₂, NEt₃ -60^oC; g) <u>7a</u>: NBS in CH₃OH, r.t. 24 h; <u>7b</u>: NBS, NaOAc, Ac₂O in CH₃COOH, 24 h r.t.; h) NaH in DMSO, 1 h, $70^{\circ}C$.

The structural assignments of $\underline{3}-\underline{8}$ are based on their spectroscopic data. The most important data of the key-compounds are listed in Table 1.

Figure 1. Bond lengths of $\underline{\&c}$ as determined by X-ray structure analysis^[7]. Standard deviations 0.002 - 0.003 Å. The stereochemistry of $\underline{8}$ has been determined by an X-ray study of $\underline{8c}(Y=OH)$. The bond lengths of $\underline{8c}$ are shown in Fig. 1^[7]. The configuration on C(3) of $\underline{8c}$ is R and the spiro system has M configuration or vice versa for the enantiomer. The high degree of regio- and stereoselectivity exhibited during the formation of $\underline{6}$ is ascribed to the conformation of $\underline{6}$. Molecular models and force field calculations on $\underline{6}$ suggest that conformation $\underline{6a}$ represents a local energy minimum. The attack of an electrophile (e.g. Br^+) at the double bond takes place preferentially from the exo-side for steric reasons, as indicated by an arrow in $\underline{6a}$. The second step, the attack of $\underline{9}$ by a nucleophile must occur from the endo-side, again for steric reasons, at the position α to the CH, group.

This research was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft, Ludwigshafen. We thank Dr. H.-J. Opferkuch, DKFZ, Heidelberg, for recording the 2D-COSY ¹H-NMR spectra.

Table 1. Selected Spectroscopic Data of <u>7a</u> and <u>8a</u>.

 $\frac{7a}{1H-NMR} (90MHz, CDCl_3, TMS) 6: 4.35 (1H,m); 3.4 (3H,s); 2.9-1.4 (14H,m); \frac{13}{C-1} MR (20.0 MHz), CDCl_3, TMS) 6: 210.37(s); 85.15 (d); 60.07 (d); 57.20 (q); 48.62 (t); 46.90 (d); 40.52 (t); 36.37 (d); 30.16 (t); 29.24 (t); 28.88 (t); 20.91 t); <u>IR(film): 2920(vs); 2820(s); 1705(vs,C=0); 1050(vs, OCH_3) cm⁻¹</u>.$ $<u>8a</u> <math>\frac{1}{H-NMR}$ (300 MHz, CDCl_3, TMS) 6: 3.56 (1H,m); 3.29(3H,s); 2.88(1H,d); 2.62 (2H,m); 2.39 (1H,t); 2.29 (1H,m); 2.21 (1H,m); 2.1-2.0 (2H,m); 1.95-1.7 (6H,m); $\frac{13}{C-NMR}$ (75.46 MHz, CDCl_3, TMS) 6: 212.5(s); 79.1(d); 55.6(q); 51.05(d); 43.9 (d); 41.7(d); 36.8(d); 31.8(t); 30.0 (t); 29.3(t); 25.2(t); 19.4(t); <u>IR(film): 2920 (s), 1710 (s,C=0); 1080(s,OCH_3) cm⁻¹</u>.

REFERENCES

- [1] P. Bischof, R. Gleiter, R. Haider, J. Am. Chem. Soc. <u>100</u>, 1036 (1978).
- [2]a] L.V. Roman, R.E. del Rio, J.D. Hernandez, C.M. Cerda, D. Cervantes, R. Cataneda, P. Joseph-Nathan, J. Org. Chem. <u>50</u>, 3965 (1985); F. Bohlmann, L.N. Dutta, W. Dorner, R.M. King, H. Robinson, Phytochem. <u>18</u>, 673 (1979); I. Ognyanov, M. Todorova, V. Dimitrov, J. Ladd, H. Irngartinger E. Kurda, H. Rodewald, Phytochem. <u>22</u>, 1775 (1983); b) M. Miyashita, A. Yoshikoski, J.Am.Chem.Soc. <u>96</u>, 1997 (1974).
- [3] R. Gleiter, W. Sander, H. Irngartinger, A. Lenz, Tetrahedron Lett. 23, 2647 (1982); R. Gleiter, H. Zimmermann, W. Sander Angew. Chem. 98, 893 (1986); Angew. Chem. Int. Ed. Engl., 26, 906 (1986); R. Gleiter, W. Sander, I. Butler-Ransohoff, Helv. Chim. Acta 69, 1872 (1986).
- [4] M.G. Hicks, G. Jones, H. Seickh, J. Chem. Soc. Perkin Trans. I, <u>1984</u>, 2297.
- [5]a] D. Ginsburg, W.J. Rosenfelder, Tetrahedron <u>1</u>, 3 (1957); C. Djerassi, Org. React. <u>6</u>, 207 (1951); b) R.H. Shapiro Org. React. <u>23</u>, 405 (1976);
 c) K. Omura, D. Swern, Tetrahedron <u>34</u>, 1651 (1978); d) G.A. Olah, S.C. Narrang, G.B. Gupta, R.Malhotra, J. Org. Chem. <u>44</u>,1247 (1979).
- [6] C.H. Heathcock, R.A. Badger, J.W. Patterson Jr., J. Am. Chem. Soc. <u>89</u>, 4133 (1967).
- [7] Crystallographic data of <u>8c</u>: <u>a</u>= 11.799(2), <u>b</u>= 7.832(2), <u>c</u>=10.047(2)A; Pca2₁; Z=4; D_c= 1.29 g/cm³; 1181 independent reflections, 1053 observed reflections (I>2.5 σ(I) 1; R=0.032. Complete structural data have been submitted to the Cambridge Crystallographic Data Centre. (Received in Germany 23 February 1987)