

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 16 (2008) 4872–4882

Synthesis and cytotoxic activity of γ -aryl substituted α -alkylidene- γ -lactones and α -alkylidene- γ -lactams

Anna Albrecht,^a Jacek F. Koszuk,^a Jakub Modranka,^a Marek Różalski,^b Urszula Krajewska,^b Anna Janecka,^c Kazimierz Studzian^c and Tomasz Janecki^{a,*}

^aInstitute of Organic Chemistry, Technical University of Łódź, Zeromskiego 116, 90-924 Łódź, Poland ^bDepartment of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland

^cLaboratory of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland

Received 6 February 2008; revised 4 March 2008; accepted 14 March 2008 Available online 17 March 2008

Abstract—A series of 5-aryl-3-alkylidenedihydrofuran-2(3*H*)-ones **6a**–g" and **11a**,**b** as well as 5-aryl-3-methylidenepyrrolidin-2-ones **10a**–c and **12** were synthesized starting from 4-aryl-2-diethoxyphosphoryl-4-oxobutanoates **3a**–g. Reaction sequence includes reduction or reductive amination of the carbonyl group, lactonization or lactamization step and finally the Horner–Wadsworth–Emmons olefination of aldehydes using thus obtained 5-aryl-3-diethoxyphosphoryl-3,4-dihydrofuran-2(5*H*)-ones **5a**–g" or 5-aryl-3-diethoxyphosphorylpyrrolidin-2-ones **9a–c**. Furanones **6** and **11**, as well as pyrrolidinones **10** and **12**, were evaluated in vitro against mouse leukemia cell line L-1210 and two human leukemia cell lines HL-60 and NALM-6. Several of the obtained furanones proved to be very potent against all three cell lines with IC₅₀ values lower than 6 μ M. Structure–activity relationships of these compounds, as well as 5-alkyl or 5-arylmethyl-3-methylidenedihydrofuran-2(3*H*)-ones **13a–e**, previously obtained in our laboratory, are discussed. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

 α -Alkylidene- γ -lactone skeleton 1 is the active constituent of many natural and synthetic compounds exhibiting pronounced biological properties, such as antimicrobial, cardiovascular, antifungal, anti-inflammatory and, in particular, cytotoxic activity.^{1–5} It was demonstrated, that compounds containing this moiety can act as the Michael-type acceptors in the reaction with mercapto groups of bionucleophiles, especially those present in the cysteine residue.^{1,6} More recently it was shown that α -methylidene- γ -lactones 1 have an interesting photoreactivity potential and can form intramolecular photoadducts with psoralens⁷ and intra or intermolecular photoadducts with thymine.^{8–10} The biological activity of these compounds is not restricted to the highly functionalized sesquiterpene lactones. Many simple natural or synthetic lactones of this structure, including tulipaline A, were found to have significant pharmacological activities.^{1,11,12} Also, the α -alkylidene- γ -lactam moiety **2** is present in natural^{13,14} and synthetic compounds which exhibit moderate cytotoxic activity.^{15,16}

 α -Alkylidene- γ -lactones and lactams are also valuable synthetic intermediates wildly employed in organic synthesis. Apart from being excellent Michael acceptors^{17,18} they can act as dipolarophiles in 1,3-dipolar cycloadditions,¹⁹ be partners in cross methathesis reactions²⁰ and be utilized in the synthesis of many kinds of natural products and biologically important substances.^{21,22} Not surprisingly, a variety of methodologies for their synthesis have been reported in the literature and the number of publications dedicated to this subject is steadily increasing. The most common methodology is the reaction of allyl derivatives, mainly metal derivatives

Keywords: α-Alkylidene- γ -lactones; α-Alkylidene- γ -lactams; Horner– Wadsworth–Emmons olefination; ¹H, ¹³C ³¹P NMR; Cytotoxic activity.

^{*} Corresponding author. Tel.: +48 42 6313220; fax: +48 42 6365530 email: tjanecki@p.lodz.pl

^{0968-0896/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2008.03.035

of 2-alkoxycarbonylallyl, with carbonyl compounds followed by intramolecular cyclization.^{23–26} An interesting variant of this method is the intramolecular Hosomi-Sukurai reaction of 2-(ethoxycarbonyl)allylsilanes and related functionalized allylsilanes with aldehydes.²⁷ Another elegant approach is the Pd-catalyzed, homogeneous intramolecular alkoxy-carbonylation of propargyl or homopropargyl alcohols.²⁸ Alkenylalumination of oxiranes ²⁹ and other methods were also developed.^{1,30–32} Several approaches to α -methylidene- γ -lactams were also reported.^{33,34}

Quite recently, yet another methodology, which employs the Wittig or Horner–Wadsworth–Emmons olefination for the introduction of the alkylidene moiety onto γ -lactone or γ -lactam ring has emerged as a very versatile and promising tool.³⁵ Using this approach we synthesized a variety of 3-alkylidenedihydrofuran-2(3*H*)-ones,^{36,37} 3methylidenepyrrolidin-2-ones^{16,38} as well as 4-methylideneisoxazolidin-5-ones.³⁹

Herein, we demonstrate further application of this methodology, this time in the synthesis of a series of 5-aryl-3alkylidenedihydrofuran-2(3H)-ones **6a**-g", **11a**,**b** as well as 5-aryl-3-methylidenepyrrolidi-2-nones 10a-c, 12. Furthermore, all target compounds were evaluated for their cytotoxic activity against the mouse leukemia cell line L-1210 and two human leukemia cell lines NALM-6 and HL-60. Synthesis of 5-aryl substituted 3-methylidenefuran-2-ones was particularly attractive in view of the cytotoxicity evaluations of 5-alkyl and 5-arylmethyl substituted 3-methylidenefuran-2-ones, performed recently in our laboratory.¹⁶ According to these evaluations 5-arylmethyl substituted methylidenefuranones had remarkably higher cytotoxicities against NALM-6 cell line than their 5-alkyl analogs. Current investigations open up the opportunity to check whether the presence of an aryl group connected directly to the lactone ring would also enhance cytotoxicity. Therefore, structure-activity relationships of the newly obtained compounds, in comparison with 5-alkyl and 5-arylmethyl-3-methylidenedihydrofuran-2(3H)-ones, previously obtained in our laboratory, will be discussed.

2. Chemistry

Target furanones 6a-g'' and pyrrolidinones 10a-c were synthesized starting from the corresponding 4-aryl-2-diethoxyphosphoryl-4-oxobutanoates 3a-g. These substrates can be efficiently prepared from 1-aryl-2-bromoalkan-1-ones and ethyl diethoxyphosphorylacetate, applying the methodology which has been recently worked out in our laboratory.⁴⁰ Oxobutanoates 3e-g($R^1 = Me$) were used as mixtures of diastereomers in close to 60:40 ratio.

Reduction of the carbonyl group in oxobutanoates 3a-g followed by spontaneous lactonization of the initially formed 5-aryl-2-diethoxyphosphoryl-4-hydroxybutanoates 4a-g, gave, after standard work up, crude 5-aryl-3-diethoxyphosphoryl-3,4-dihydrofuran-2(5*H*)-ones 5a-g, as mixtures of two diastereomers, in the ratios shown in Table 1 (Scheme 1). These compounds were then purified and dihydrofuranones 5e-g also separated into single diastereomers by column chromatography. Yields are given in Table 1. Analysis of IR, ¹H, ¹³C and ³¹P NMR spectra of dihydrofuranones 5a-g confirmed their structures unambiguously.

It is worth to stress that dihydrofuranones 5e-g were formed as mixtures of only two, out of four possible diastereomers. Reasonable explanation of this observation was epimerization on the C3 carbon atom in the strongly basic conditions of the reaction and the formation of more stable diastereomers with trans alignment of phosphoryl and methyl groups. Careful analysis of the well resolved signals of these stereoisomers in ¹H and ¹³C NMR spectra confirmed this supposition and also allowed us to propose their relative configuration. Particularly characteristic were the chemical shifts of the protons of the methyl group and protons H5, as well as coupling constants ${}^{3}J(P-CH_{3})$, ${}^{3}J(P-C5)$, ${}^{3}J(H3-H4)$ and ${}^{3}J(H4-H5)$. These values are given in Table 2. Protons of the methyl groups of the minor diastereomers adsorbed at the unexpectedly low frequency, for example, in 5f the methyl protons of the major and minor diastereomer had chemical shift 1.28 ppm and 0.76 ppm,

Table 1. Synthesis of 3,4-dihydrofuran-2(5*H*)-ones 5a–g", methylidenedihydrofuran-2-ones 6a–g", pyrrolidin-2-ones 9a–c and methylidenepyrrolidin-2-ones 10a–c

	Ar	\mathbb{R}^1	5		6		9		10
			Yield ^a (%)	Diastereomers ratio ^b	Yield ^a (%)	6/7 ratio	Yield ^a (%)	Diastereomers ratio ^c	Yield ^a (%)
a	Ph	Н	86	60:40	55	>99:1	77	70:30	79
b	$4-BrC_6H_4$	Н	86	60:40	45	>99:1	92	60:40	65
c	4-MeOC ₆ H ₄	Н	73	60:40	61 ^d	60:40	58	60:40	59
d	1-Naphthyl	Н	90	60:40	30	>99:1			
\mathbf{e}'	Ph	Me	55	65:35	66	>99:1			
e ″			30		65	>99:1			
\mathbf{f}'	$4-BrC_6H_4$	Me	40	55:45	52	>99:1			
f′			50		51	>99:1			
\mathbf{g}'	4-MeOC ₆ H ₄	Me	47	55:45	61	>99:1			
\mathbf{g}''			38		66	>99:1			

^a Yield of isolated, pure product based on **3**, **5** or **9**, respectively.

^b Taken from ³¹P NMR of the crude product.

^c Taken from ¹H NMR of the crude product.

^d Overall yield for **6c** and **7c**.

Scheme 1.

Table 2. Selected chemical shifts and coupling constants for (r-3,t-4,t-5)-5e'-g' and (r-3,t-4,c-5)-5e''-g''

	δ (¹ H) H5 (ppm)	δ (¹ H) CH ₃ (ppm)	$^{3}J(P-CH_{3})$ (Hz)	${}^{3}J(P-C5)$ (Hz)	³ <i>J</i> (H3–H4) (Hz)	³ J(H4–H5) (Hz)
(<i>r</i> -3, <i>t</i> -4, <i>c</i> -5)- 5e ′	4.86	1.28	1.2	13.9 (150, 160°)	11.0 (150, 160°)	6.6 (160, 170°)
(<i>r</i> -3, <i>t</i> -4, <i>t</i> -5)- 5 e''	5.86	0.74	0	3.7	3.9	6.6
			(110–120°)	(130–140°)	(120–130°)	(10–20°)
(<i>r</i> -3, <i>t</i> -4, <i>c</i> -5)- 5f '	4.82	1.28	0	14.5	11.0	9.0
(r-3,t-4,t-5)- 5f "	5.82	0.76	0	3.7	3.5	6.3
(<i>r</i> -3, <i>t</i> -4, <i>c</i> -5)- 5 g'	4.86	1.25	0	14.5	11.4	9.2
(<i>r</i> -3, <i>t</i> -4, <i>t</i> -5)- 5 g''	5.84	0.78	0	4.3	3.5	6.6

respectively. This anomaly can be rationalized by assuming the cis arrangement of the methyl and aromatic groups in the minor diastereomers. In this arrangement the methyl protons are placed in the shielding area of the benzene ring. Furthermore, chemical shifts of the H5 protons in the spectra of the minor diastereomers were surprisingly high, for example, in 5f these shifts were 5.82 and 4.82 ppm for the minor and major diastereoisomers, respectively. This, in turn can be explained by the deshielding effect of the diethoxyphosphoryl group exerted on the cis-oriented proton H5. These observations allowed us to assign the r-3,t-4,c-5 and r-3,t-4,t-5 configurations for the major and minor diastereomers of 5e-g, respectively. Also, coupling constants ${}^{3}J(P-CH_{3})$, ${}^{3}J(P-C5)$, ${}^{3}J(H3-H4)$ and ³J(H4–H5) validated this assignment. Dihedral angles estimated from these coupling constants, using Karplus equation,^{41,42} had values given in parentheses in Table 2 and were in good agreement with the dihedral angles taken from the corresponding cochranes orbit size molecular models of (r-3,t-4,c-5)-5e'-g' and (r-3,t-4,t-5)-5e''-g' \mathbf{g}'' , in which the diethoxyphosphoryl and aryl groups were assumed to occupy pseudo-equatorial positions.

Correctness of the above configurational assignments was unambiguously confirmed by the NOE experiments performed on both diastereoisomers of **5f**. Obtained results are shown in Figure 1. Data from the ¹H and ¹³C NMR spectra of the diastereomeric mixtures of dihydrofuranones **5a–d** were less useful for the configurational assignments. However, based on the correlation described above, mainly deshielding effect of the diethoxyphosphoryl group, the *trans* configuration was assigned to the major diastereomers in which proton H5 had higher chemical shift, for example, for **5a** these shifts were 5.71 ppm and 5.44 ppm for the major and minor diastereomers, respectively.

Dihydrofuranones 5a-g" were next used in the Horner-Wadsworth-Emmons olefination of formaldehyde. Reaction of these compounds with paraformaldehyde in the presence of *t*-BuOK as a base gave, after standard work-up, crude 5-aryl-3-methylidene-4,5-dihydrofuran-2-ones 6a-g", which were purified by column chromatography (Scheme 1 and Table 1). Only the reaction of furanone 5c gave the mixture of methylidenefuranone 6c and its rearrangement product 7c. Our efforts to separate this mixture were unsuccessful. Reason for the facile rearrangement of 6c are not fully understood. Structures of all synthesized compounds were unequivocally confirmed by their IR, ¹H, and ¹³C spectra. As expected, methylidenedihydrofuranones 6e'-g'' were obtained as single diastereomers with preserved trans or cis configuration of the starting dihydrofuranones 5e'-g'', for example, ¹H NMR spectra of all *cis*-6e''-g''revealed characteristic low-frequency absorption of the

(*r*-3,*t*-4,*t*-5)-**5f'** (*r*-3,*t*-4,*c*-5)-**5f''**

1.3%

Figure 1. NOE experiments performed on diastereomeric dihydrofuranones 5f' and 5f''.

methyl group (0.79-0.88 ppm) caused by the shielding effect of the *cis*-oriented aryl group.

On the other hand, reductive amination of oxobutanoates 3a-c using methylamine along with titanium (IV) isopropoxide, followed by addition of sodium borohydride, standard work up and purification by column chromatography, furnished pure 5-aryl-3-diethoxyphosphoryl-1-methylpyrrolidin-2-ones 9a-c in good to excellent yields (Scheme 1 and Table 1). Disappointingly, oxobutanoate 3d treated the same way gave only 20% yield of the pyrolidinone 9d along with substrate and other products which were difficult to separate. Also oxobutanoates 3e-g did not give expected pyrrolidinones but only difficult to analyze mixtures of products. Pyrrolidinones 9a-c were obtained as mixtures of diastereomers in the ratios given in Table 1. IR, ¹H, ¹³C and ³¹P NMR spectra of **9a-c** confirmed their structures but were not conclusive enough to attribute the relative configurations to the major and minor diastereomers. Olefination of formaldehyde using pyrrolidinones 9a-c and NaH as a base gave, after work up and column chromatography, expected 5-aryl-3-methylidenepyrrolidin-2-ones 10a-c in good yields (Table 1).

Dihydrofuranone **5a** and pyrrolidinone **9a** were also used in the olefination of isobutyraldehyde or benzaldehyde (Scheme 2). Applying standard procedure (NaH, THF) and work up, followed by purification by column chromatography, 3-alkylidene-5-phenyldihydrofuran-2ones **11a,b** and 3-(2-methylpropylidene)-5-phenylpyrrolidin-2-one **12** were obtained in good yields as a mixture of E and Z diastereoisomers or as single isomers (Table 3). Configurational assignments were made using

Scheme 2.

2.1%

Table 3. Synthesis of furanones 11a,b and pyrrolidinone 12

Compound	Х	\mathbf{R}^2	Yield ^a (%)	E/Z^{b}
11a 11b	0	<i>i</i> -Pr	88 50	15:85
110	NMe	<i>i</i> -Pr	59	<1:99

^a Yield of isolated, pure product based on **5a** or **9a**, respectively. ^b Taken from ¹H NMR of the crude product. the diagnostic deshielding effect of the carbonyl group exerted on the *cis*-oriented vinyl proton.^{41,43} Opposite E/Z stereochemistry observed for **11a** and **11b** (15:85 and >99:1, respectively), although surprising at first, can be rationalized taking into account conjugating ability of the phenyl group. Inspection of the corresponding molecular models revealed that in (*Z*)-**11b** thermodynamically preferred coplanar arrangement of phenyl and α , β -unsaturated lactone moieties causes severe steric repulsions between phenyl and carbonyl groups. Therefore, more stable (*E*) stereoisomer is formed exclusively. In (*Z*)-**11a** the isopropyl group can adopt conformation lacking significant steric interactions, due to free rotation about the bond connecting this group to the unsaturated system.

3. Pharmacological results

All target compounds **6a,b,d–g**["], **10a–c**, **11a,b**, **12** were evaluated in vitro against mouse leukemia cell line L-1210 and two human leukemia cell lines HL-60 and NALM-6. Cytotoxic activity of these compounds is expressed as the concentration (μ M) required to inhibit tumor cell proliferation by 50% after a 48 h exposure of the cells to a tested compound (IC₅₀ values). Results are given in Table 4. Cytotoxicities of 5-alkyl and 5-arylmethyl-3-methylidene-dihydrofuran-2(3*H*)-ones **13a–e** prepared recently in our laboratory are also given for comparison. Carboplatin was used as a reference compound.⁴⁴

Presented results are very encouraging because four of the obtained furanones, **6d**, **6e**", **6f**' and **6g**' showed IC₅₀ values against all three tested cell lines lower than 8.09 μ M and can be considered highly potent according to the *Kupchan's* classification (IC₅₀ \leq 15 μ M).⁴⁵

Several conclusions, which can be drawn from the data given in Table 4 confirm the observations described in our recent paper¹⁶ where cytotoxicities of 5-alkyl or 5-arylmethylfuranones 13a-e and other 5-alkyl or 5-arylmethylfuran-2-ones and pyrrolidin-2-ones were tested. These conclusions can be summarized as follows: (i) the cytotoxicities of methylidenefuranones 6a-g'' are much higher than methylidenefuranone 6d and methylidenepyrrolidin-2-ones 10a-c, (ii) the activities of methylidenefuranone 6d and methylidenepyrrolidin-2-one 10a are evidently higher than the activities of alkylidenefuranones 11a,b and isopro-

Table 4. Cytotoxic Activity of compounds 6a,b,d-g", 10a-c, 11a,b, 12 and 13a-e

Compound	Cytotoxicity IC ₅₀ ^a (µM)			
	L-1210	HL-60	NALM-6	
6a	1.4 ± 0.12	36.9 ± 13.6	9.13 ± 0.34	
6b	1.3 ± 0.10	20.3 ± 2.6	85.3 ± 8.0	
6d	4.3 ± 0.24	4.42 ± 0.52	3.86 ± 0.49	
6e'	28.0 ± 1.92	8.97 ± 0.36	7.91 ± 0.37	
6e″	4.0 ± 0.21	8.09 ± 0.6	5.42 ± 0.44	
6f′	1.55 ± 0.05	5.05 ± 0.28	4.02 ± 0.24	
6f″	7.5 ± 0.33	41.8 ± 7.3	43.9 ± 6.8	
6g′	3.65 ± 0.35	5.69 ± 0.1	5.23 ± 0.46	
6g″	14.2 ± 2.12	37.9 ± 6.7	38.6 ± 6.6	
10a	>50	988.7± 19.3	552.9 ± 46.9	
10b	>50	220.1 ± 27.9	141.4 ± 26.9	
10c	>50	611.3 ± 18.2	522.6 ± 21.0	
11a	>50	158.9 ± 44.6	482.9 ± 42.3	
11b	>50	>1000	497 ± 38.6	
12	>50	81.3 ± 6.8	351.1 ± 31.8	
13a ^b	32.5 ± 4.8	77.4 ± 6.5	41.0 ± 1.8	
13b ^b	6.0 ± 1.6	39.5 ± 17.3	51.6 ± 24.0	
13c ^b	20.0 ± 3.2	99.4 ± 31.5	23.6 ± 12.9	
13d ^b	15.5 ± 2.9	42.7 ± 11.1	5.4 ± 0.3	
13e ^b	4.3 ± 0.8	46.3 ± 1.8	6.0 ± 1.4	
Carboplatin 14	9.7 ± 1.2	2.9 ± 0.1	0.7 ± 0.3	

^a IC₅₀, 50% inhibitory concentration represents the mean from dose– response curves of at least three experiments.

^b Data taken from Ref. 16.

pylidenepyrrolidinone 12, respectively, (iii) cytotoxicities of methylidenefuranones 6a,b,d-g'', against L-1210 cell line are generally higher than against HL-60 or NALM-6 cell lines.

Our studies also show that 5-aryl or 5-arylmethyl substituted furanones are more potent antiproliferative agents than 5-alkyl analogs, for example, activities of 6a and 13d, which differ only by the methylene group (phenyl and methylphenyl substituents, respectively), against HL-60 and NALM-6 cell lines are very similar and much higher than activities of 13a (methyl substituent) against the same cell lines. This observation indicates that the presence of an aryl substituent in position 5, whether attached directly to the furanone ring or through the methylene tether, is very important for the activity. However, cytotoxicities of 5-aryl substituted furanones 6a-g" against HL-60 cell lines are generally considerably higher than the cytotoxicities of 5-arylmethylfuranones 13d,e. The highest cytotoxicity against both, HL-60 and NALM-6 cell lines was found for 6d having a bulk naphthyl ring in position 5. Comparison of the cytotoxicities of the diastereomeric 4-methyl-5aryl substituted furanones 6f' and 6f" as well as 6g' and **6g**" shows another, very interesting relationship: *trans*-furanones $\mathbf{6f}', \mathbf{g}'$ are significantly more potent than the cis stereoisomers 6f'',g''. Evidently, the spatial arrangement of the substituents plays an important role in the interaction with the bionucleophiles.

4. Conclusions

Simple and effective synthesis of biologically important 3-alkylidene-5-aryldihydrofuran-2-ones 6a-g'', 11a,b

and 3-alkylidene-5-arylpyrrolidin-2-ones 10a-c, 12 was achieved starting from easily available intermediates-4-aryl-2-diethoxyphosphoryl-4-oxobutanoates 3a-g. Furthermore, 3-methyl substituted furanones 6e'-g''were obtained as pure trans and cis stereoisomers. Relative configurations of all diastereomers were assigned using ¹H and ¹³C NMR analysis, including NOE experiments. Several of the target 5-arylfuranones 6d,e'',f',g'proved to be highly potent against L-1210, HL-60 and NALM-6 cell lines with the activity comparable to or higher than 5-arylmethylfuranones **13d**, e previously prepared in our laboratory and much higher than the activity of 5-alkylfuranones 13a-c. Moreover, significant differences in the cytotoxicities of trans-6f',g' and cis-6f",g" were found, with *trans* isomers being eight times more active than *cis* isomers.

5. Experimental

5.1. Chemistry

Organic solvents and reagents were purified by the appropriate standard procedures. Column chromatography was performed on FLUKA[®] silica gel 60 (230– 400 mesh). IR spectra were recorded on Specord M 80 spectrometer. ¹H NMR (250 MHz), ¹³C NMR (62.9 MHz), and ³¹P NMR (101 MHz) spectra were recorded on a Bruker DPX-250 spectrometer with TMS as an internal standard for ¹H NMR and ¹³C NMR, and 85% H₃PO₄ as an external standard for ³¹P NMR. ³¹P NMR spectra were recorded using broad-band proton decoupling. NOE experiments were performed on Bruker Avance II Plus (700 MHz) spectrometer.

5.1.1. General procedure for the preparation of 5-aryl-3diethoxyphosphoryl-2-furanones (5a–g). To a stirred solution of 2-dietoxyphosphoryl-4-oxoalkanoates (3a– g) (5.0 mmol) in methanol (20 mL) potasium borohydride (0.405 g, 7.5 mmol) was added at 0 °C. Stirring was continued for appropriate period of time. The resulting mixture was acidified to pH 1.5 with concentrated HCl, then the water (15 mL) was added and methanol was evaporated under reduced pressure. The residue was extracted with chloroform (4× 20 mL). The combined organic layers were washed with water (20 mL) and dried (MgSO₄). Evaporation of the solvent under reduced pressure afforded a crude product which was purified by column chromatography (CHCl₃/acetone, 98:2) affording pure product.

5.1.1.1 3-Diethoxyphosphoryl-5-phenyl-dihydrofuran-2(3H)-one (5a). Oil, yield = 86%; IR (film, cm⁻¹): 1772, 1516, 1168, 1024; ¹H NMR (250 MHz, CDCl₃): δ = 1.13–1.41 (m, 6H major and minor, (CH₃CH₂O)₂ P(O)), 2.35–2.70 (m, 1H major and minor, *H*-3), 2.80–3.20 (m, 1H major and minor, *H*-4), 3.20–3.49 (m, 1H major and minor, *H*-4), 3.80–4.27 (m, 4H major and minor, (CH₃CH₂O)₂P(O)), 5.44 (dd, ³J_{HH} = 6.5 Hz, ³J_{HH} = 9.7 Hz, 1H minor, *H*-5), 5.71 (dd, ³J_{HH} = 7.0 Hz, ³J_{HH} = 8.9 Hz, 1H major, *H*-5), 7.34–7.37 (m, 5H major and minor, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 16.05 (d, ³J_{PC} = 5.9 Hz, CH₃CH₂O), CH₃CH₂O),

4877

32.98 (d, ${}^{2}J_{PC}$ = 3.1 Hz, C-4), 33.04 (d, ${}^{2}J_{PC}$ = 4.4 Hz, C-4), 39.83 (d, ${}^{1}J_{PC}$ = 152.1 Hz, C-3), 39.94 (d, ${}^{1}J_{PC}$ = 138.7 Hz, C-3), 62.65 (d, ${}^{2}J_{PC}$ = 6.2 Hz, CH₃CH₂O), 62.77 (d, ${}^{2}J_{PC}$ = 6.9 Hz, CH₃CH₂O), 63.13 (d, ${}^{2}J_{PC}$ = 6.9 Hz, CH₃CH₂O), 63.41 (d, ${}^{2}J_{PC}$ = 6.9 Hz, CH₃CH₂O), 79.97 (d, ${}^{3}J_{PC}$ = 12.0 Hz, C-5), 80.16 (d, ${}^{3}J_{PC}$ = 3.1 Hz, C-5), 125.07 (s, 2× C-Ar), 125.44 (s, 2× C-Ar), 128.34 (s, C-Ar, C-Ar), 128.43 (s, 2× C-Ar), 128.49 (s, 2× C-Ar), 138.10 (s, C-Ar), 138.32 (s, C-Ar), 170.98 (d, ${}^{2}J_{PC}$ = 2.3 Hz, C-2), 171.16 (d, ${}^{2}J_{PC}$ = 4.4 Hz, C-2); 31 P NMR (101 MHz, CDCl₃): δ = 20.84 minor, 21.08 major; (40:60); Anal. Calcd for C₁₄H₁₉O₅P: C, 56.37; H, 6.42. Found: C, 56.41; H, 6.36.

5.1.1.2. 5-(4-Bromophenyl)-3-diethoxyphosphoryldihydrofuran-2(3H)-one (5b). Oil, yield = 86%; IR (film, cm⁻¹): 1770, 1512, 1168, 1020; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.12 - 1.50$ (m, 6H major and minor, (CH₃CH₂O)₂P(O)), 2.25–2.60 (m, 1H major and minor, H-3), 2.82-3.10 (m, 1H major and minor, H-4), 3.10-3.44 (m, 1H major and minor, H-4), 4.05-4.45 (m, 4H major and minor (CH₃CH₂O)₂P(O)), 5.40 (dd, ${}^{3}J_{HH} = 7.5 \text{ Hz}, \; {}^{3}J_{HH} = 10.0 \text{ Hz}, \; 1\text{H} \text{ minor}, \; H\text{-}5), \; 5.66$ (t, ${}^{3}J_{HH} = 7.5 \text{ Hz}, \; {}^{3}J_{HH} = 10.0 \text{ Hz}, \; 1\text{H} \text{ major}, \; H\text{-}5),$ (c, $J_{HH} = 7.5$ Hz, $J_{HH} = 10.0$ Hz, H1 Haljor, H-5), 7.20–7.23 (m, 2H major and minor, H-Ar), 7.51–7.60 (m, 2H major and minor, H-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 16.14$ (d, ${}^{3}J_{PC} = 6.7$ Hz, CH₃CH₂O, CH₃CH₂O), 32.89 (d, ${}^{2}J_{PC} = 3.1$ Hz, C-4), 33.11 (d, ${}^{2}J_{PC} = 3.1$ Hz, C-4), 39.88 (d, ${}^{1}J_{PC} = 153.97$ Hz, C-3), 40.00 (d, ${}^{1}J_{PC} = 138.12$ Hz, C-3), 62.68 (d, ${}^{2}J_{PC} = 6.9 \text{ Hz}$, CH₃CH₂O), 62.93 (d, ${}^{2}J_{PC} = 6.2 \text{ Hz}$, CH₃CH₂O), 63.36 (d, ${}^{2}J_{PC} = 6.2 \text{ Hz}$, CH₃CH₂O), 63.61 (d, ${}^{2}J_{PC} = 6.2$ Hz, CH₃CH₂O), 79.24 (d, ${}^{3}J_{PC} = 11.9$ Hz, C-5), 79.55 (d, ${}^{3}J_{PC} = 2.5$ Hz, C-5), 122.37 (s, C-Ar), 122.50 (s, C-Ar), 126.90 (s, 2× C-Ar, 2× C-Ar), 127.24 (s, C-Ar), 131.73 (s, 2× C-Ar), 137.32 (s, C-Ar), 137.48 (s, C-Ar, C-Ar), 170.82 (d, ${}^{2}J_{PC} = 2.3 \text{ Hz}, C-2$), 171.00 (d, ${}^{2}J_{PC} = 4.4 \text{ Hz}, C-2$); ${}^{31}P$ NMR (101 MHz, CDCl₃): $\delta = 20.44$ minor, 20.46 major; (40:60); Anal. Calcd for C₁₄H₁₈BrO₅P: C, 44.58; H, 4.81. Found: C, 44.54; H, 4.79.

5.1.1.3. 3-Diethoxyphosphoryl-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one (5c). Oil, yield = 73%; IR (film, cm⁻¹): 1768, 1512, 1168, 1028; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.20 - 1.45$ (m, 6H major and minor, (CH₃CH₂O)₂P(O)), 2.25–2.60 (m, 1H major and minor, H-3), 2.75–3.10 (m, 1H major and minor, H-4), 3.20– 3.40 (m, 1H major and minor, H-4), 3.81 (s, CH₃O), 4.10-4.32 (m, 4H major and minor, (CH₃CH₂O)₂P(O)), 5.37 (dd, ${}^{3}J_{HH} = 6.3$ Hz, ${}^{3}J_{HH} = 10.1$ Hz, 1H minor, *H*-5), 5.66 (t, ${}^{3}J_{HH} = 6.3$ Hz, ${}^{3}J_{HH} = 9.0$ Hz, 1H major, *H*-5), 6.81-7.01 (m, 2H major and minor, H-Ar), 7.18-7.33 5), 6.81–7.01 (m, 2H major and minor, *H*-Ar), 7.18–7.35 (m, 2H major and minor, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 16.03$ (d, ³J_{PC} = 5.6 Hz, CH₃CH₂O, CH₃CH₂O), 32.94 (d, ²J_{PC} = 3.9 Hz, C-4, C-4), 40.03 (d, ¹J_{PC} = 151.58 Hz, C-3), 40.14 (d, ¹J_{PC} = 137.75 Hz, C-3), 54.94 (s, CH₃O), 62.45 (d, ²J_{PC} = 6.2 Hz, CH O) (2.70 (d) ²L = 6.0 Hz, CH O) (2.12 CH₃CH₂O), 62.70 (d, ${}^{2}J_{PC}$ = 6.9 Hz, CH₃CH₂O), 63.12 (d, ${}^{2}J_{PC} = 6.2$ Hz, CH₃CH₂O), 63.36 (d, ${}^{2}J_{PC} = 6.9$ Hz, CH_3CH_2O), 80.07 (d, ${}^3J_{PC} = 12.6$ Hz, C-5), 80.30 (d, ${}^{3}J_{PC} = 2.5$ Hz, C-5), 113.78 (s, 2× C-Ar), 113.83 (s, 2× C-Ar), 126.83 (s, 2× C-Ar, 2× C-Ar), 127.21 (s, C-Ar,

C-Ar), 129.85 (s, *C*-Ar), 130.05 (s, *C*-Ar), 159.61 (s, *C*-Ar), 159.70 (s, *C*-Ar), 170.94 (d, ${}^{2}J_{PC} = 2.3$ Hz, *C*-2), 171.13 (d, ${}^{2}J_{PC} = 4.4$ Hz, *C*-2); 31 P NMR (101 MHz, CDCl₃): $\delta = 20.65$ minor, 20.85 major; (40:60); Anal. Calcd for C₁₅H₂₁O₆P: C, 54.88; H, 6.45. Found: C, 54.78; H, 6.50.

5.1.1.4. 3-Diethoxyphosphoryl-5-(1-naphtyl)-dihydrofuran-2(3*H*)-one (5d). Oil, yield = 90%; IR (film, cm^{-1}): 1776, 1512, 1392, 1368, 1260, 1164, 1028; ¹H NMR $(250 \text{ MHz}, \text{CDCl}_3): \delta = 1.30-1.45 \text{ (m, 6H major and min$ or, (CH₃CH₂O)₂P(O)), 2.42–2.70 (m, 1H major and minor, H-3), 3.05-3.50 (m, 2H major and minor, H-4), 4.10-4.45 (m, 4H major and minor, (CH₃CH₂O)₂P(O)), 6.12 (dd, ${}^{3}J_{\rm HH} = 7.0$ Hz, ${}^{3}J_{\rm HH} = 8.2$ Hz, 1H minor, H-5), 6.43 (t, ${}^{3}J_{\text{HH}} = 7.0$ Hz, 1H major, *H*-5), 7.32–7.60 (m, 4H major and minor, H-Ar), 7.70-7.95 (m, 3H major and minor, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 16.23$ (d, ${}^{3}J_{PC} = 4.9 \text{ Hz}, CH_{3}CH_{2}O, CH_{3}CH_{2}O), 32.44 \text{ (d,}$ ${}^{2}J_{PC} = 3.7$ Hz, C-4, C-4), 39.36 (d, ${}^{1}J_{PC} = 141.5$ Hz, C-3), 39.88 (d, ${}^{1}J_{PC} = 151.6$ Hz, C-3), 62.66 (d, ${}^{2}J_{PC} = 6.9$ Hz, CH₃CH₂O), 62.84 (d, ${}^{2}J_{PC}$ = 6.9 Hz, CH₃CH₂O), 63.17 (d, ${}^{2}J_{PC} = 6.2$ Hz, CH₃CH₂O), 63.53 (d, ${}^{2}J_{PC} = 6.2$ Hz, CH₃CH₂O), 77.60 (d, ${}^{3}J_{PC} = 4.9$ Hz, C-5), 77.73 (d, ${}^{3}J_{PC} = 1.9$ Hz, C-5), 121.40 (s, C-Ar, C-Ar), 122.19 (s, C-Ar), 122.26 (s, C-Ar), 125.09 (s, C-Ar), 125.16 (s, C-Ar), 125.69 (s, C-Ar), 125.83 (s, C-Ar), 126.38 (s, C-Ar), 126.50 (s, C-Ar), 128.74 (s, C-Ar), 128.76 (s, C-Ar), 128.79 (s, C-Ar), 128.87 (s, C-Ar), 129.20 (s, C-Ar), 129.34 (s, C-Ar), 133.47 (s, C-Ar), 133.52 (s, C-Ar), 133.88 (s, C-Ar), 134.08 (s, C-Ar), 171.36 (d, ${}^{2}J_{PC}$ = 3.7 Hz, C-2, C-2); ³¹P NMR (101 MHz, CDCl₃): $\delta = 20.36$ minor, 20.89 major; (40:60); Anal. Calcd for C₁₈H₂₁O₅P: C, 62.07; H, 6.08. Found: C, 62.13; H, 6.00.

5.1.1.5. *r*-3-Diethoxyphosphoryl-*t*-4-methyl-*c*-5-phenyl-dihydrofuran-2(3*H*)-one (5e'). Oil, yield = 55%; IR (film, cm⁻¹): 1776, 1456, 1256, 1160, 1024; ¹H NMR (250 MHz, CDCl₃): δ = 1.28 (d, ³*J*_{HH} = 6.4 Hz, 3H, CH₃), 1.29–1.41 (m, 6H, (C*H*₃CH₂O)₂P(O)), 2.65–2.98 (m, 1H, *H*-4), 2.94 (dd, ³*J*_{HH} = 11.0 Hz, ²*J*_{HP} = 28.5 Hz, 1H, *H*-3), 4.09–4.37 (m, 4H, (CH₃CH₂O)₂P(O)), 4.86 (d, ³*J*_{HH} = 6.6 Hz, 1H, *H*-5), 7.33–7.40 (m, 5H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.93 (d, ³*J*_{PC} = 1.24 Hz, CH₃), 16.15 (d, ³*J*_{PC} = 5.0 Hz, *C*H₃CH₂O), 16.33 (d, ³*J*_{PC} = 5.0 Hz, *C*H₃CH₂O), 41.97 (d, ²*J*_{PC} = 2.5 Hz, *C*-4), 47.03 (d, ¹*J*_{PC} = 150.9 Hz, *C*-3), 62.45 (d, ²*J*_{PC} = 6.9 Hz, CH₃CH₂O), 63.37 (d, ²*J*_{PC} = 6.9 Hz, CH₃CH₂O), 87.16 (d, ³*J*_{PC} = 13.9 Hz, *C*-5), 126.23 (s, 2× *C*-Ar), 128.50 (s, 2× *C*-Ar), 128.86 (s, *C*-Ar), 136.89 (s, *C*-Ar), 170.70 (s, *C*-2); ³¹P NMR (101 MHz, CDCl₃): δ = 20.49; Anal. Calcd for C₁₅H₂₁O₅P: C, 57.69; H, 6.78. Found: C, 57.80; H, 6.79.

5.1.1.6. *r*-3-Diethoxyphosphoryl-*t*-4-methyl-*t*-5-phenyl-dihydrofuran-2(*3H*)-one (5e"). Oil, yield = 30%; IR (film, cm⁻¹): 1776, 1456, 1252, 1164, 1028; ¹H NMR (250 MHz, CDCl₃): $\delta = 0.74$ (d, ³*J*_{HH} = 7.0 Hz, 3H, C*H*₃), 1.32–1.44 (m, 6H, (C*H*₃CH₂O) ₂P(O)), 2.88 (dd, ³*J*_{HH} = 3.9 Hz, ²*J*_{HP} = 23.8 Hz, 1H, *H*-3), 3.15–3.28 (m, 1H, *H*-4), 4.08–4.27 (m, 4H (CH₃CH₂O)₂P(O)), 5.86 (d, ³*J*_{HH} = 6.6 Hz, 1H, *H*-5), 7.07–7.47 (m, 5H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 16.01$ (s, CH₃), 16.19 (s, (CH₃CH₂O)₂), 37.41 (s, *C*-4), 48.02 (d, ${}^{1}J_{PC} = 137.1$ Hz, *C*-3), 62.79 (d, ${}^{2}J_{PC} = 6.9$ Hz, CH₃CH₂OP(O)), 63.58 (d, ${}^{2}J_{PC} = 6.9$ Hz, CH₃CH₂OP(O)), 82.99 (d, ${}^{3}J_{PC} = 3.7$ Hz, *C*-5), 125.22 (s, 2× *C*-Ar), 128.04 (s, *C*-Ar), 128.35 (s, 2× *C*-Ar), 135.40 (s, *C*-Ar), 171.23 (s, *C*-2); 31 P NMR (101 MHz, CDCl₃): $\delta = 19.95$; Anal. Calcd for C₁₅H₂₁O₅P: C, 57.69; H, 6.78. Found: C, 57.78; H, 6.81.

5.1.1.7. *c*-5-(**4**-Bromophenyl)-*r*-3-diethoxyphosphoryl-*t*-**4**-methyl-dihydrofuran-2(3*H*)-one (5f'). Oil, yield = 40%; IR (film, cm⁻¹): 1780, 1252, 1160, 1024; ¹H NMR (250 MHz, CDCl₃): δ = 1.28 (d, ³J_{HH} = 6.2 Hz, 3H, CH₃), 1.27–1.41 (m, 6H, (CH₃CH₂O)₂P(O)), 2.70–2.88 (m, 1H, *H*-4), 2.89 (dd, ³J_{HH} = 11.3 Hz, ²J_{HP} = 23.4 Hz, 1H, *H*-3), 4.12–4.38 (m, 4H, (CH₃CH₂O)₂P(O)), 4.82 (d, ³J_{HH} = 9.0 Hz, 1H, *H*-5), 7.20–7.26 (m, 2H, *H*-Ar), 7.49– 7.60 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.91 (s, CH₃), 16.14 (d, ³J_{PC} = 5.6 Hz, CH₃CH₂O), 16.23 (d, ³J_{PC} = 5.6 Hz, CH₃CH₂O), 41.93 (d, ²J_{PC} = 1.9 Hz, C-4), 46.88 (d, ¹J_{PC} = 150.9 Hz, C-3), 62.46 (d, ²J_{PC} = 6.2 Hz, CH₃CH₂O), 63.49 (d, ²J_{PC} = 6.9 Hz, CH₃CH₂O), 86.32 (d, ³J_{PC} = 14.5 Hz, C-5), 122.87 (s, C-Ar), 127.88 (s, 2× C-Ar), 131.93 (s, 2× C-Ar), 136.01 (s, C-Ar), 170.48 (s, C-2); ³¹P NMR (101 MHz, CDCl₃): δ = 20.31; Anal. Calcd for C₁₅H₂₀BrO₅P: C, 46.05; H, 5.15. Found: C, 46.21; H, 5.07.

5.1.1.8. *t*-5-(4-Bromophenyl)-*r*-3-diethoxyphosphoryl-*t*-4-methyl-dihydrofuran-2(3*H*)-one (5*f*″). Oil, yield = 50%; IR (film, cm⁻¹): 1776, 1256, 1164, 1024; ¹H NMR (250 MHz, CDCl₃): $\delta = 0.76$ (d, ³*J*_{HH} = 7.2 Hz, 3H, C*H*₃), 1.32–1.49 (m, 6H, (C*H*₃CH₂O)₂P(O)), 2.86 (dd, ³*J*_{HH} = 3.4 Hz, ²*J*_{HP} = 23.8 Hz, 1H, *H*-3), 3.13–3.21 (m, 1H, *H*-4), 4.11–4.33 (m, 4H (CH₃C*H*₂O)₂P(O)), 5.82 (d, ³*J*_{HH} = 6.3 Hz, 1H, *H*-5), 7.11–7.21 (m, 2H, *H*-Ar), 7.40–7.72 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 15.85$ (s, *C*H₃), 16.19 (s, *C*H₃CH₂O), 37.22 (d, ²*J*_{PC} = 4.4 Hz, *C*-4), 48.10 (d, ¹*J*_{PC} = 137.1 Hz, *C*-3), 62.83 (d, ²*J*_{PC} = 6.9 Hz, CH₃CH₂O), 63.65 (d, ²*J*_{PC} = 6.9 Hz, CH₃CH₂O), 82.27 (d, ³*J*_{PC} = 3.7 Hz, *C*-5), 121.91 (s, *C*-Ar), 126.91 (s, 2× *C*-Ar), 131.50 (s, 2× *C*-Ar), 134.45 (s, *C*-Ar), 170.95 (s, *C*-2); ³¹P NMR (101 MHz, CDCl₃): $\delta = 19.59$; Anal. Calcd for C₁₅H₂₀BrO₅P: C, 46.05; H, 5.15. Found: C, 45.92; H, 5.12.

5.1.1.9. *r*-3-Diethoxyphosphoryl-*t*-4-methyl-*c*-5-(4-methoxyphenyl)-dihydrofuran-2(3*H*)-one (5g'). Oil, yield = 47%; IR (film, cm⁻¹): 1772, 1252, 1172, 1028; ¹H NMR (250 MHz, CDCl₃): δ = 1.25 (d, ³*J*_{HH} = 6.3 Hz, 3H, C*H*₃), 1.32–1.42 (m, 6H, (C*H*₃CH₂O)₂P(O)), 2.75–3.02 (m, 1H, *H*-4), 2.86 (dd, ³*J*_{HH} = 11.4 Hz, ²*J*_{HP} = 29.4 Hz, 1H, *H*-3), 3.82 (s, 3H, C*H*₃O), 4.11–4.40 (m, 4H (CH₃C*H*₂O)₂P(O)), 4.86 (d, ³*J*_{HH} = 9.2 Hz, 1H, *H*-5), 6.90–6.95 (m, 2H, *H*-Ar), 7.28–7.33 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.70 (s, CH₃), 16.09 (d, ³*J*_{PC} = 5.6 Hz, CH₃CH₂O), 16.18 (d, ³*J*_{PC} = 3.6 Hz, CH₃CH₂O), 41.75 (d, ²*J*_{PC} = 1.8 Hz, *C*-4), 47.03 (d, ¹*J*_{PC} = 151.0 Hz, *C*-3), 55.03 (s, CH₃O), 62.33 (d, ²*J*_{PC} = 6.2 Hz, CH₃CH₂OP(O)), 63.30 (d, ²*J*_{PC} = 6.2 Hz, CH₃CH₂OP(O)), 63.30 (d, ²*J*_{PC} = 6.2 Hz, CH₃CH₂OP(O)), 87.07 (d, ³*J*_{PC} = 14.5 Hz, *C*-5), 113.87 (s, 2× *C*-Ar), 127.84 (s, 2× *C*-Ar), 128.56 (s, *C*-Ar), 130.58 (s, *C*-Ar), 170.62 (s, *C*-2); ³¹P NMR

(101 MHz, CDCl₃): δ = 20.67; Anal. Calcd for C₁₆H₂₃O₆P: C, 56.14; H, 6.77. Found: C, 56.31; H, 6.92.

5.1.1.10. *r*-3-Diethoxyphosphoryl-*t*-4-methyl-*t*-5-(4-methoxyphenyl)-dihydrofuran-2(3*H*)-one (5g"). Oil, yield = 38%; IR (film, cm⁻¹): 1776, 1516, 1252, 1164, 1024; ¹H NMR (250 MHz, CDCl₃): δ = 0.78 (d, ³J_{HH} = 6.8 Hz, 3H, CH₃), 1.31–1.42 (m, 6H, (CH₃CH₂O)₂P(O)), 2.87 (dd, ³J_{HH} = 3.5 Hz, ²J_{HP} = 23.8 Hz, 1H, *H*-3), 3.11–3.25 (m, 1H, *H*-4), 3.80 (s, 3H, CH₃O), 4.12–4.38 (m, 4H (CH₃CH₂O)₂P(O)), 5.84 (d, ³J_{HH} = 6.6 Hz, 1H, *H*-5), 6.87–6.96 (m, 2H, *H*-Ar), 7.13–7.18 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.85 (s, CH₃), 16.05 (d, ³J_{CP} = 3.6 Hz, (CH₃CH₂O)₂), 37.39 (d, ²J_{PC} = 1.8 Hz, C-4), 47.68 (d, ¹J_{PC} = 137.8, C-3), 54.92 (s, CH₃O), 62.62 (d, ²J_{PC} = 7.5 Hz, CH₃CH₂O), 63.41 (d, ²J_{PC} = 6.2 Hz, CH₃CH₂O), 82.84 (d, ³J_{PC} = 4.3 Hz, C-5), 113.61 (s, 2× C-Ar), 126.46 (s, 2× C-Ar), 127.19 (s, C-Ar), 130.53 (s, C-Ar), 171.19 (d, ²J_{CP} = 3.14 Hz, C-2); ³¹P NMR (101 MHz, CDCl₃): δ = 20.10; Anal. Calcd for C₁₆H₂₃O₆P: C, 56.14; H, 6.77. Found: C, 56.19; H, 6.53.

5.1.2. General procedure for the preparation of 5-aryl-3methylidene-2-furanones (6a–g). A solution of 5-aryl-3diethoxyphosphoryl-2-furanones (5a–g) (1.0 mmol) in Et₂O (5 mL) was added to a suspension of *t*-BuOK (0.146 g, 1.2 mmol) in Et₂O (3 mL), and the reaction mixture was stirred at room temperature for 0.5 h. Next, the paraformaldehyde (0.150 g, 5.0 mmol) was added and the mixture was stirred for 1.5 h then the brine (5 mL) was added, layers were separated, and water layer was washed with Et₂O (2×10 mL). Combined organic extracts were dried (MgSO₄) and evaporated to give crude products which were purified by column chromatography (CHCl₃).

5.1.2.1. 3-Methylene-5-phenyl-dihydrofuran-2(3*H***)-one (6a)^{46,47}. Oil, yield = 55% (lit. yield 88\%^{49}).**

5.1.2.2. 5-(4-Bromophenyl)-3-methylene-dihydrofuran-2(3*H***)-one (6b**)⁴⁷. Oil, yield = 45%; IR (film, cm⁻¹): 1772, 1252, 1136; ¹H NMR (250 MHz, CDCl₃): δ = 2.86 (ddt, ⁴*J*_{HH} = 2.8 Hz, ³*J*_{HH} = 6.5 Hz, ²*J*_{HH} = 17.0 Hz, 1H, *H*-4), 3.40 (ddt, ⁴*J*_{HH} = 2.8 Hz, ³*J*_{HH} = 8.0 Hz, ²*J*_{HH} = 17.0 Hz, 1H, *H*-4), 5.48 (dd, ³*J*_{HH} = 6.5 Hz, ³*J*_{HH} = 8.0 Hz, 1H, *H*-4), 5.71 (t, ⁴*J*_{HH} = 2.8 Hz, 1H, *CH*₂=C), 6.32 (t, ⁴*J*_{HH} = 2.8 Hz, 1H, *CH*₂=C), 7.19–7.24 (m, 2H, *H*-Ar), 7.50–7.54 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 36.15 (s, *C*-4), 77.17 (s, *C*-5), 122.53 (s, *C*-Ar), 122.82 (s, *CH*₂=C), 127.04 (s, 2× *C*-Ar), 131.99 (s, 2× *C*-Ar), 133.71 (s, *C*-Ar), 138.84 (s, CH₂=C), 169.80 (s, *C*-2); Anal. Calcd for C₁₁H₉BrO₂: C, 52.20; H, 3.58. Found: C, 52.28; H, 3.62.

5.1.2.3. 5-(4-Methoxyphenyl)-3-methylene-dihydrofuran-2(3*H*)-one (6c) and 5-(4-methoxyphenyl)-3-methylfuran-2(5*H*)-one (7c) (60:40). Oil, yield = 61%.

5.1.2.3.1. 5-(4-Methoxyphenyl)-3-methylene-dihydrofuran-2(3*H***)-one (6c)^{46,47}.¹H NMR⁴⁸ (250 MHz, CDCl₃): \delta = 2.91 (ddt, ⁴***J***_{HH} = 2.9 Hz, ³***J***_{HH} = 6.6 Hz,** ${}^{2}J_{\text{HH}} = 17.0 \text{ Hz}, 1\text{H}, H-4$), 3.36 (ddt, ${}^{4}J_{\text{HH}} = 2.5 \text{ Hz},$ ${}^{3}J_{\text{HH}} = 7.9 \text{ Hz}, {}^{2}J_{\text{HH}} = 17.0 \text{ Hz}, 1\text{H}, H-4$), 3.81 (s, 3H, CH₃O), 5.47 (dd, ${}^{3}J_{\text{HH}} = 6.6 \text{ Hz}, {}^{3}J_{\text{HH}} = 7.9 \text{ Hz}, 1\text{H},$ H-5), 5.68 (dd, ${}^{4}J_{\text{HH}} = 2.5 \text{ Hz}, {}^{4}J_{\text{HH}} = 2.9 \text{ Hz}, 1\text{H},$ $CH_2=C$), 6.30 (dd, ${}^{4}J_{\text{HH}} = 2.5 \text{ Hz}, {}^{4}J_{\text{HH}} = 2.9 \text{ Hz}, 1\text{H},$ $CH_2=C$), 6.86–6.93 (m, 2H, H-Ar), 7.24–7.27 (m, 2H, H-Ar).

5.1.2.3.2. 5-(4-Methoxyphenyl)-3-methylfuran-2(5*H***)-one (7c).¹H NMR⁴⁸ (250 MHz, CDCl₃): \delta = 3.18 (s, 3H, CH₃), 3.82 (s, 3H CH₃O), 5.50 (d, ³J_{HH} = 1.4 Hz, 1H, H-5), 6.15 (d, ³J_{HH} = 1.4 Hz, 1H, H-4), 6.86–6.93 (m, 2H,** *H***-Ar), 7.24–7.27 (m, 2H,** *H***-Ar).**

5.1.2.4. 3-Methylene-5-(naphthalen-1-yl)-dihydrofuran-2(3*H***)-one (6d)⁴⁶. Oil, yield = 30\%; (lit. yield = 87\%^{46}).**

5.1.2.5. *t*-4-Methyl-3-methylene-*r*-5-phenyl-dihydrofuran-2(3*H*)-one (6e')⁴⁷. Oil, yield = 66%; IR (film, cm⁻¹): 1768, 1256, 1136; ¹H NMR (250 MHz, CDCl₃): δ = 1.32 (d, ³*J*_{HH} = 6.8 Hz, 3H, C*H*₃), 2.91–3.01 (m, 1H, *H*-4), 4.90 (d, ³*J*_{HH} = 7.7 Hz, 1H, *H*-5), 5.62 (d, ⁴*J*_{HH} = 3.0 Hz, 1H, C*H*₂=C), 6.31 (d, ⁴*J*_{HH} = 3.0 Hz, 1H, C*H*₂=C), 7.28–7.46 (m, 5H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 14.87 (s, CH₃), 42.39 (s, C-4), 84.90 (s, C-5), 119.93 (s, CH₂=C), 124.34 (s, 2× C-Ar), 127.76 (s, C-Ar), 127.78 (s, 2× C-Ar), 137.38 (s, CH₂=C), 139.49 (s, C-Ar), 169.02 (s, C-2); Anal. Calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43. Found: C, 76.41; H, 6.35.

5.1.2.6. *c*-**4**-Methyl-3-methylene-*r*-**5**-phenyl-dihydrofuran-2(3*H*)-one (6e")⁴⁶. Oil, yield = 65%; (lit. yield = $86\%^{46}$).

5.1.2.7. *r*-5-(4-Bromophenyl)-*t*-4-methyl-3-methylenedihydrofuran-2(3*H*)-one (6*f*')^{26,47}. Oil, yield = 52%; IR (film, cm⁻¹): 1772, 1256, 1132; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.32$ (d, ³*J*_{HH} = 6.8 Hz, 3H, *CH*₃), 2.82– 2.94 (m, 1H, *H*-4), 4.86 (d, ³*J*_{HH} = 7.8 Hz, 1H, *H*-5), 5.60 (d, ⁴*J*_{HH} = 3.0 Hz, 1H, *CH*₂=C), 6.32 (d, ⁴*J*_{HH} = 3.0 Hz, 1H, *CH*₂=C), 7.20–7.57 (m, 2H, *H*-Ar), 7.48–7.57 (m, 2H, *H*-Ar); ¹³C NMR: 15.80 (s, *CH*₃), 43.41 (s, *C*-4), 85.12 (s, *C*-5), 121.36 (s, *CH*₂=C), 122.82 (s, *C*-Ar), 127.54 (s, 2× *C*-Ar), 131.99 (s, 2× *C*-Ar), 137.46 (s, *CH*₂=C), 140.03 (s, *C*-Ar), 169.75 (s, *C*-2); Anal. Calcd for C₁₂H₁₁BrO₂: C, 53.96; H, 4.15. Found: C, 53.99; H, 4.31.

5.1.2.8. *r*-5-(4-Bromophenyl)-*c*-4-methyl-3-methylenedihydrofuran-2(3*H*)-one (6*f*″)²⁶. Oil, yield = 51%; IR (film, cm⁻¹): 1764, 1252, 1136; ¹H NMR (250 MHz, CDCl₃): $\delta = 0.88$ (d, ³*J*_{HH} = 7.1 Hz, 3H, C*H*₃), 3.35– 3.51 (m, 1H, *H*-4), 5.57 (d, ³*J*_{HH} = 8.3 Hz, 1H, *H*-5), 5.59 (d, ⁴*J*_{HH} = 2.6 Hz, 1H, C*H*₂=C), 6.34 (d, ⁴*J*_{HH} = 2.6 Hz, 1H, C*H*₂=C), 7.04–7.10 (m, 2H, *H*-Ar), 7.48–7.61 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 15.42$ (s, CH₃), 38.66 (s, C-4), 81.32 (s, C-5), 122.11 (s, CH₂=C), 122.35 (s, C-Ar), 127.60 (s, 2× C-Ar), 131.63 (s, 2× C-Ar), 135.34 (s, CH₂=C), 139.63 (s, C-Ar), 170.18 (s, C-2); Anal. Calcd for C₁₂H₁₁BrO₂: C, 53.96; H, 4.15. Found: C, 54.11; H, 4.36. **5.1.2.9.** *r*-5-(4-Methoxyphenyl)-*t*-4-methyl-3-methylene-dihydrofuran-2(3*H*)-one (6g')^{46,47}. Oil, yield = 61%; (lit. yield = $76\%^{46}$).

5.1.2.10. *r*-**5**-(**4**-Methoxyphenyl)-*c*-**4**-methyl-**3**-methylene-dihydrofuran-**2**(**3***H*)-one (**6**g'')^{26,46}. White crystal, mp 82 °C; yield = 66%; (lit. yield = 13%⁴⁶).

5.1.3. General procedure for the preparation of 5-aryl-3diethoxyphosphorylpyrrolidin-2-ones (9a-c). To a stirred solution of titanium (IV) isopropoxide (1.84 g, 6.5 mmol), 2 N solution of methyl amine in methanol (3.25 mL, 6.5 mmol) was added, then 2-dietoxyphosphoryl-4-oxoalkanoate (3a-c) (5.0 mmol) in methanol (20 mL) was added at room temperature. The reaction mixture was stirred for 3 h, then sodium borohydride (0.189 g, 5.0 mmol) was added in one portion. Stirring was continued for 24 h. The water (15 mL) was added and methanol was evaporated under reduced pressure. The residue was extracted with chloroform $(4 \times$ 20 mL). The combined organic layers were washed with water (20 mL) and dried (MgSO₄). Evaporation of the solvent under reduced pressure afforded a crude product which was purified by column chromatography (CHCl₃/ acetone, 90:10) affording pure product.

5.1.3.1. 3-Diethoxyphosphoryl-1-methyl-5-phenylpyrr**olidin-2-one (9a).** Oil, yield = 77%; IR (film, cm⁻¹): 1688, 1392,1252, 1136, 1024; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.22 - 1.67$ (m, 6H, (CH₃CH₂O)₂P(O) major and minor), 2.05-2.29 (m, 1H major and minor, H-4), 2.55-2.91 (m, 1H major and minor, H-4), 2.68 (s, 3H, CH_3N) 3.04-3.14 (m, 1H major and minor, H-3), 4.12-4.35 (m, 4H major and minor, $(CH_3CH_2O)_2P(O)$), 4.33– 4.67 (m, 1H major and minor, H-5), 7.21-7.43 (m, 5H major and minor, H-Ar); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 16.23$ (d, ${}^{3}J_{PC} = 6.9$ Hz, CH₃CH₂O), 16.33 (d, ${}^{3}J_{PC} = 6.9$ Hz, CH₃CH₂O), 28.41 (s, CH₃N), 28.55 (d, $J_{PC} = 0.9$ Hz, CH₃CH₂O), 28.41 (s, CH₃N), 28.55 (s, CH₃N), 30.10 (d, $^{2}J_{PC} = 4.4$ Hz, C-4), 30.83 (d, $^{2}J_{PC} = 4.4$ Hz, C-4), 40.47 (d, $^{1}J_{PC} = 142.8$ Hz, C-3), 40.58 (d, $^{1}J_{PC} = 150.3$ Hz, C-3), 62.02 (d, $^{2}J_{PC} = 6.2$ Hz, CH₃CH₂O), 62.12 (d, $^{2}J_{PC} = 6.9$ Hz, CH₃CH₂O), 62.96, (2.10 (2.10 (d) 2.44 (c) 5.5 CH₃CH₂O), 62.96) 63.06, 63.10, 63.14, 63.24 (C-5, CH₃CH₂OP(O)), 126.34 (s, 2× C-Ar), 126.92 (s, 2× C-Ar), 128.21 (s, C-Ar), 128.29 (s, C-Ar), 128.87 (s, 2× C-Ar), 128.97 (s, 2× C-Ar), 140.01 (s, C-Ar), 140.08 (s, C-Ar), 169.69 (d, ${}^{2}J_{PC} = 5.0$ Hz, C-2), 169.76 (d, ${}^{2}J_{PC} = 4.4$ Hz, C-2); ${}^{31}P$ NMR (101 MHz, CDCl₃): $\delta = 24.81$ minor, 25.00 major; (30:70); Anal. Calcd for C₁₅H₂₂NO₄P: C, 57.87; H, 7.12. Found: C, 57.62; H, 7.33.

5.1.3.2. 5-(4-Bromophenyl)-3-diethoxyphosphoryl-1methylpyrrolidin-2-one (9b). Oil, yield = 92%; IR (film, cm⁻¹): 1692, 1392,1256, 1132, 1024; ¹H NMR (250 MHz, CDCl₃): δ = 1.31–1.64 (m, 6H, (CH₃CH₂O)₂₋P(O) major and minor), 2.00–2.32 (m, 1H major and minor, *H*-4), 2.62 (s, 3H, CH₃N minor), 2.67 (s, 3H, CH₃N major), 2.57–2.91 (m, 1H major and minor, *H*-4), 3.01–3.20 (m, 1H, *H*-3 major and minor), 4.14–4.31 (m, 4H major and minor, (CH₃ CH₂O)₂P(O)), 4.62–4.66 (m, 1H, *H*-5 major and minor), 7.07–7.24 (m, 2H *H*-Ar major and minor); ¹³C NMR (62.9 MHz, CDCl₃): δ = 16.21 (d, ³*J*_{PC} = 6.9 Hz, *C*H₃CH₂O), 16.31 (d, ³*J*_{PC} = 6.7 Hz, *C*H₃CH₂O), 29.46 (s, *C*H₃N), 29.97 (s, *C*H₃N), 30.12 (d, ²*J*_{PC} = 3.1 Hz, *C*-4), 30.87 (d, ²*J*_{PC} = 3.4 Hz, *C*-4), 40.64 (d, ¹*J*_{PC} = 143.5 Hz, *C*-3), 40.68 (d, ¹*J*_{PC} = 149.1 Hz, *C*-3), 62.64 (d, ²*J*_{PC} = 6.2 Hz, *C*H₃ *C*H₂O), 62.82 (d, ²*J*_{PC} = 6.9 Hz, *C*H₃*C*H₂O), 62.56 (d, ³*J*_{PC} = 3.4 Hz, *C*-5), 63.36 (d, ²*J*_{PC} = 6.2 Hz, *C*H₃*C*H₂O), 63.62 (d, ²*J*_{PC} = 6.9 Hz, *C*H₃*C*H₂O), 122.38 (s, *C*-Ar), 122.51 (s, *C*-Ar), 126.92 (s, 2× *C*-Ar), 137.46 (s, *C*-Ar), 169.58 (d, ²*J*_{PC} = 4.4 Hz, *C*-2), 169.82 (d, ²*J*_{PC} = 3.4 Hz, *C*-2); ³¹P NMR (101 MHz, *CDC*l₃): δ = 24.39 major and minor; Anal. Calcd for C₁₅H₂₁BrNO₄P: C, 46.17; H, 5.42. Found: C, 46.31; H, 5.57.

5.1.3.3. 5-(4-Methoxyphenyl)-3-diethoxyphosphoryl-1methylpyrrolidin-2-one (9c). Oil, yield = 58%; IR (film, cm⁻¹): 1684, 1398,1256, 1132, 1020; ¹H NMR $(250 \text{ MHz, CDCl}_3)$; $\delta = 1.32 - 1.41 \text{ (m, 6H, (CH_3CH_2O)_2)}$ P(O) major and minor), 2.09-2.30 (m, 1H major and minor, H-4), 2.59 (s, 3H, CH₃N minor), 2.65 (s, 3H, CH₃N major), 2.67-2.89 (m, 1H major and minor, H-4), 2.99-3.19 (m, 1H, H-3 major and minor), 3.82 (s, 3H, CH₃O major and minor) 4.14-4.31 (m, 4H major and minor, (CH₃CH₂O)₂P(O)), 4.60-4.66 (m, 1H, H-5 major and minor), 6.89-6.93 (m, 2 H H-Ar major and minor), 7.10-7.14 (m, 2H, H-Ar major and minor); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 16.24$ (d, ${}^{3}J_{PC} = 6.3$ Hz, CH₃CH₂O), 16.33 (d, ${}^{3}J_{PC} = 6.4$ Hz, CH₃CH₂O), 28.25 63.00 (d, ${}^{2}J_{PC} = 6.5 \text{ Hz}$, CH₃CH₂OP(O)), 63.12 (d, $^{2}J_{PC} = 7.6$ Hz, CH₃CH₂OP(O)), 114.19 (s, 2× C-Ar), 114.29 (s, 2× C-Ar), 127.65 (s, C-Ar), 128.23 (s, C-Ar), 131.84 (s, 2× C-Ar), 131.98 (s, 2× C-Ar), 159.46 (s, C-Ar), 159.52 (s, C-Ar), 169.44 (d, ${}^{2}J_{PC}$ = 3.2 Hz, C-2), 169.56 (d, ${}^{2}J_{PC}$ = 3.8 Hz, C-2); ³¹P NMR (101 MHz, CDCl₃): $\delta = 24.67$ minor, 24.78 major; (40:60); Anal. Calcd for C₁₆H₂₄NO₅P: C, 56.30; H, 7.09. Found: C, 56.21; H, 7.22.

5.1.4. General procedure for the preparation of 5-aryl-3methylidenepyrrolidin-2-ones (10a–c). A solution of 5-aryl-3-diethoxyphosphorylpyrrolidin-2-one (9a–c) (1.0 mmol) in THF (5 mL) was added to a suspension of NaH (0.033 g, 1.1 mmol) in THF (3 mL) at 0 °C, and the reaction mixture was stirred for 0.5 h. Next, paraformaldehyde (0.330 g, 1.1 mmol) was added at 0 °C and the mixture was stirred for 1.5 h at room temperature. After cooling to 0 °C, brine (5 mL) was added, layers were separated, and water layer was washed with CH_2Cl_2 (2× 10 mL). Combined organic extracts were dried (MgSO₄) and evaporated to give crude product which was purified by column chromatography (CHCl₃).

5.1.4.1. 1-Methyl-3-methylene-5-phenylpyrrolidin-2one (10a)^{15,49}. Oil, yield = 79%; IR (film, cm⁻¹): 1692, 1432, 1284, 1080; ¹H NMR (250 MHz, CDCl₃): $\delta = 2.64$ (ddt, ⁴J_{HH} = 2.6 Hz, ³J_{HH} = 5.0 Hz, ²J_{HH} = 17.2 Hz, 1H, *H*-4), 2.78 (s, 3H, CH₃N), 3.23 (ddt, ${}^{4}J_{\rm HH} = 2.6$ Hz, ${}^{3}J_{\rm HH} = 8.5$ Hz, ${}^{2}J_{\rm HH} = 17.2$ Hz, 1H, *H*-4), 4.52 (dd, ${}^{3}J_{\rm HH} = 5.0$ Hz, ${}^{3}J_{\rm HH} = 8.5$ Hz, 1H, *H*-5), 5.36 (t, ${}^{4}J_{\rm HH} = 2.6$ Hz, 1H, *CH*₂=C), 6.08 (t, ${}^{4}J_{\rm HH} = 2.6$ Hz, 1H, *CH*₂=C), 7.18–7.22 (m, 2H, *H*-Ar), 7.33–7.43 (m, 3H, *H*-Ar); 13 C NMR (62.9 MHz, CDCl₃): $\delta = 28.53$ (s, *CH*₃N), 34.79 (s, *C*-4), 61.40 (s, *C*-5), 115.43 (s, *CH*₂=C), 126.27 (s, 2× *C*-Ar), 128.18 (s, *C*-Ar), 129.02 (s, 2× *C*-Ar), 138.75 (s, *CH*₂=C), 140.90 (s, *C*-Ar), 168.39 (s, *C*-2); Anal. Calcd for C₁₂H₁₃NO: C, 76.98; H, 7.00. Found: C, 76.75; H, 7.22.

5.1.4.2. 5-(4-Bromophenyl)-1-methyl-3-methylenepyrrolidin-2-one (10b). Oil, yield = 65%; IR (film, cm⁻¹): 1688, 1484, 1392, 1076; ¹H NMR (250 MHz, CDCl₃): δ = 2.58 (ddt, ⁴J_{HH} = 2.7 Hz, ³J_{HH} = 5.1 Hz, ²J_{HH} = 17.3 Hz, 1H, H-4), 2.75 (s, 3H, CH₃N), 3.22 (ddt, ⁴J_{HH} = 2.4 Hz, ³J_{HH} = 8.5 Hz, ²J_{HH} = 17.3 Hz, 1H, H-4), 4.47 (dd, ³J_{HH} = 5.1 Hz, ³J_{HH} = 8.5 Hz, 1H, H-5), 5.36 (dd, ⁴J_{HH} = 2.4 Hz, ⁴J_{HH} = 2.7 Hz, 1H, CH₂=C), 6.08 (dd, ⁴J_{HH} = 2.4 Hz, ⁴J_{HH} = 2.7 Hz, 1H, CH₂=C), 6.08 (dd, ⁴J_{HH} = 2.4 Hz, ⁴J_{HH} = 2.7 Hz, 1H, CH₂=C), 7.04–7.09 (m, 2H, H-Ar), 7.48–7.53 (m, 2H, H-Ar); 1³C NMR (62.9 MHz, CDCl₃): δ = 28.52 (s, CH₃N), 34.62 (s, C-4), 60.82 (s, C-5), 115.87 (s, CH₂=C), 122.05 (s, C-Ar), 127.95 (s, 2× C-Ar), 132.19 (s, 2× C-Ar), 138.20 (s, CH₂=C), 139.97 (s, C-Ar), 168.30 (s, C-2); Anal. Calcd for C₁₂H₁₂BrNO: C, 54.16; H, 4.54. Found: C, 54.00; H, 4.55.

5.1.4.3. 5-(4-Methoxyphenyl)-1-methyl-3-methylenepyrrolidin-2-one (10c). Yellow crystal, mp 95 °C, yield = 59%; IR (film, cm⁻¹): 1684, 1512, 1436, 1284, 1080; ¹H NMR (250 MHz, CDCl₃): δ = 2.60 (ddt, ⁴*J*_{HH} = 2.7 Hz, ³*J*_{HH} = 5.0 Hz, ²*J*_{HH} = 17.3 Hz, 1H, *H*-4), 2.73 (s, 3H, CH₃N), 3.19 (ddt, ⁴*J*_{HH} = 2.7 Hz, ³*J*_{HH} = 8.3 Hz, ²*J*_{HH} = 5.0 Hz, ³*J*_{HH} = 8.3 Hz, ¹²*J*_{HH} = 5.0 Hz, ³*J*_{HH} = 8.3 Hz, 1H, *H*-5), 5.34 (t, ⁴*J*_{HH} = 2.7 Hz, 1H, C*H*₂=C), 6.06 (t, ⁴*J*_{HH} = 2.7 Hz, 1H, C*H*₂=C), 6.07-6.92 (m, 2H, *H*-Ar), 7.09-7.12 (m, 2H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 28.41 (s, CH₃N), 34.93 (s, C-4), 55.27 (s, CH₃O), 60.90 (s, C-5), 114.36 (s, 2× C-Ar), 115.30 (s, C*H*₂=C), 127.56 (s, 2× C-Ar), 132.82 (s, CH₂=C), 138.96 (s, C-Ar), 159.49 (s, C-Ar), 168.30 (s, C-2); Anal. Calcd for C₁₃H₁₅NO: C, 71.87; H, 6.96. Found: C, 72.03; H, 6.90.

5.1.5. General procedure for the preparation of 3-alkylidene-5-aryl-2 furanones (11a-b). A solution of 3diethoxyphosphoryl-5-phenyl-2-furanone (5a) (0.300 g, 1.0 mmol) in THF (5 mL) was added to a suspension of NaH (0.033 g, 1.1 mmol) in THF (3 mL), and the reaction mixture was stirred at room temperature for 0.5 h. Next, appropriate aldehyde (1.1 mmol) was added and the mixture was refluxed for 1.5 h. After cooling to room temperature, brine (5 mL) was added, layers were separated, and water layer was washed with CH_2Cl_2 (2× 10 mL). Combined organic extracts were dried (MgSO₄) and evaporated to give crude product which was purified by column chromatography (CHCl₃).

5.1.5.1. (*Z*)-3-(2-Methylpropylidene)-5-phenyl-dihydrofuran-2(3*H*)-one (*Z*)-(11a). Oil, yield = 88%; IR (film, cm⁻¹): 1756, 1364, 1200; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.04$ (d, ³*J*_{HH} = 6.8 Hz, (*CH*₃)₂CH), 2.85 (ddd, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 7.8 Hz, ²*J*_{HH} = 16.0 Hz, 1H, *H*-4), 3.28 (ddd, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 7.8 Hz, ²*J*_{HH} = 16.0 Hz, 1H, *H*-4), 3.70–3.86 (m, (CH₃)₂C*H*), 5.45 (dd, ³*J*_{HH} = 7.8 Hz, ³*J*_{HH} = 7.8 Hz, 1H, *H*-5), 5.69 (dt, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 10.0 Hz, 1H, *CH*=C), 7.30–7.43 (m, 5H, *H*-Ar); ¹³C NMR (62.9 MHz, CDCl₃): δ = 22.24 (s, CH₃), 22.37 (s, CH₃), 26.31 (s, (CH₃)₂C*H*), 37.77 (s, *C*-4), 77.80 (s, *C*-5), 121.99 (s, *C*-Ar), 125.30 (s, 2× *C*-Ar), 128.25 (s, *C*-Ar) 128.62 (s, 2× *C*-Ar), 140.05 (s, CH=*C*), 150.82 (s, CH=*C*), 169.29 (s, *C*-2); Anal. Calcd for C₁₄H₁₆O₂: C, 77.75; H, 7.46. Found: C, 77.83; H, 7.55.

5.1.5.2. (*Z*) and (*E*)-3-(2-Methylpropylidene)-5-phenyldihydrofuran-2(3*H*)-one (*Z*,*E*)-(11a). Oil, ¹H NMR⁴⁸ (250 MHz, CDCl₃): $\delta = 1.04$ (d, ³*J*_{HH} = 6.8 Hz, (*CH*₃)₂CH *Z*_{isomer}), 1.05 (d, ³*J*_{HH} = 6.6 Hz, (*CH*₃)₂CH *E*_{isomer}), 2.77 (ddd, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 6.4 Hz, ²*J*_{HH} = 16.7 Hz, 1H, *H*-4 *E*_{isomer}), 2.85 (ddd, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 7.8 Hz, ²*J*_{HH} = 16.0 Hz, 1H, *H*-4 *Z*_{isomer}), 3.28 (ddd, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 7.8 Hz, ²*J*_{HH} = 16.0 Hz, 1H, *H*-4 *Z*_{isomer}), 3.28 (ddd, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 7.8 Hz, ²*J*_{HH} = 16.7 Hz, 1H, *H*-4 *Z*_{isomer}), 3.70–3.86 (m, (CH₃)₂CH *Z*_{isomer} + *E*_{isomer}), 5.45 (dd, ³*J*_{HH} = 7.8 Hz, ³*J*_{HH} = 7.8 Hz, ¹³*J*_{HH} = 7.8 Hz, ¹³*J*_{HH} = 7.8 Hz, ¹³*J*_{HH} = 7.8 Hz, ¹⁴*H* + 5 *Z*_{isomer}), 5.52 (dd, ³*J*_{HH} = 6.4 Hz, ³*J*_{HH} = 10.0 Hz, 1H, *H*-5 *E*_{isomer}), 5.69 (dt, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 10.1 Hz, 1H, *CH*=C *Z*_{isomer}), 6.03 (dt, ⁴*J*_{HH} = 3.0 Hz, ³*J*_{HH} = 10.1 Hz, 1H, *CH*=C *E*_{isomer}), 7.30–7.43 (m, 5H, *H*-Ar *Z*_{isomer} + *E*_{isomer}).

5.1.5.3. (*E*)-3-Benzylidene-5-phenyl-dihydrofuran-2(3*H*)-one (11b)⁵⁰. Oil, yield = 50%; IR (film, cm⁻¹): 1732, 1320, 1232, 1192; ¹H NMR (250 MHz, CDCl₃): $\delta = 2.96$ (ddd, ⁴*J*_{HH} = 2.7 Hz, ³*J*_{HH} = 6.0 Hz, ²*J*_{HH} = 17.5 Hz, 1H, *H*-4), 3.64 (ddd, ⁴*J*_{HH} = 2.7 Hz, ³*J*_{HH} = 8.3 Hz, ²*J*_{HH} = 17.5 Hz, 1H, *H*-4), 5.62 (dd, ³*J*_{HH} = 6.0 Hz, ³*J*_{HH} = 8.3 Hz, 1H, *H*-5), 7.32–7.63 (m, 10H, *H*-Ar), 7.67 (t, ⁴*J*_{HH} = 2.7 Hz, 1H, *CH*=C); ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 36.44$ (s, *C*-4), 78.06 (s, *C*-5), 124.02 (s, *C*-Ar), 125.28 (s, 2× *C*-Ar), 128.46 (s, CH=C) 128.80 (s, 2× *C*-Ar), 134.45 (s, *C*-Ar) 136.86 (s, *C*H=C), 140.21 (s, *C*-Ar), 171.86 (s, *C*-2); Anal. Calcd for C₁₇H₁₄O₂: C, 81.58; H, 5.64. Found: C, 81.76; H, 5.65.

5.1.6. The preparation of (E)-1-methyl-3-(2-methylpropylidene)-5-phenylpyrrolidin-2-one (12). A solution of 3-diethoxyphosphoryl-5-phenylpyrrolidin-2-one (9a)(0.311 g, 1.0 mmol) in THF (5 mL) was added to a suspension of NaH (0.033 g, 1.1 mmol) in THF (3 mL) at 0 °C, and the reaction mixture was stirred for 0.5 h at that temperature. Next, isobutyraldehyde (0.080 g, 1.1 mmol) was added and the resulting mixture was refluxed for 1.5 h. After cooling to 0 °C, brine (5 mL) was added, layers were separated, and water layer was washed with CH_2Cl_2 (2× 10 mL). Combined organic extracts were dried (MgSO₄) and evaporated to give crude product which was purified by column chromatography (CHCl₃). Oil, yield = 59%; IR (film, cm^{-1}): 1752, 1368, 1204; ¹H NMR (250 MHz, CDCl₃): $\delta = 1.01$ (d, ${}^{3}J_{HH} = 6.7$ Hz, CH_3), 1.02 (d, ${}^{3}J_{HH} = 6.7$ Hz, CH_3), 2.58 (ddd, ${}^{4}J_{HH} = 2.3$ Hz, ${}^{3}J_{HH} = 4.5$ Hz, ${}^{2}J_{HH} = 16.5$ Hz, 1H, H- 4), 2.70 (s, CH₃N), 3.13 (ddd, ${}^{4}J_{HH} = 2.3$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{2}J_{HH} = 16.5$ Hz, 1H, *H*-4), 4.04 (dq, ${}^{3}J_{HH} = 6.7$ Hz, ${}^{3}J_{HH} = 9.9$ Hz, 1H, (CH₃)₂CH), 4.44 (dd, ${}^{3}J_{HH} = 4.5$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, 1H, *H*-5), 5.65 (dt, ${}^{4}J_{HH} = 2.3$ Hz, ${}^{3}J_{HH} = 9.9$ Hz, 1H, CH=C), 7.12–7.21 (m, 2H, *H*-Ar), 7.32–7.35 (m, 2H, *H*-Ar); 13 C NMR (62.9 MHz, CDCl₃): $\delta = 21.20$ (s, (CH₃)₂CH), 23.63 (s, CH), 26.48 (s, CH₃N), 34.54 (s, C-4), 69.88 (s, C-5), 124.45 (s, CH₂=C), 124.62 (s, 2× C-Ar), 126.26 (s, CH₂=C), 127.02 (s, 2× C-Ar), 139.62 (s, C-Ar), 142.36 (s, C-Ar), 167.28 (s, C-2); Anal. Calcd for C₁₅H₁₉NO: C, 78.56; H, 8.35. Found: C, 78.73; H, 8.58.

5.2. Pharmacology

5.2.1. Cells and cytotoxicity assays. Mouse leukemia L-1210 cells were cultured in RPMI 1640 medium (Sigma, St. Louis, MO) supplement with 10% fetal calf serum (Gibco, Berlin, Germany), gentamycin (50 µg/mL) and 0.02 M Hepes buffer (Gibco). Cytostatic effects were assayed by measuring inhibitory effects on L-1210 cell proliferation. In this assay, cells were seeded in 2 mL aliquots onto a 24-well plate (NUNC, Denmark) at a concentration 1.5×10^3 cells/mL. After 24 h, drug solution was added and incubation was carried out for an additional 46 h. The cell number relative to control was determined by a tetrazolium dye method.⁵¹

Human leukemia promyelocytic HL-60 and lymphoblastic NALM-6 cell lines were used. Leukemia cells were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen, Paisley, UK) and antibiotics (100 µg/mL streptomycin and 100 U/mL penicillin). Cells were grown in 37 °C in a humidified atmosphere of 5% CO₂ in air. Cytotoxic activity was determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide, Sigma, St. Louis, USA] assay.⁵² Exponentially growing leukemia cells were seeded at 8×10^3 /well on 96-well plate (Nunc, Roskilde, Denmark). Stock solutions of the analyzed compounds were freshly prepared in DMSO and diluted with complete culture medium to obtain the concentra-tion range from 10^{-7} to 10^{-3} M. Cells were exposed to the test compounds for 46 h, then MTT reagent was added and incubation was continued for 2 h. After incubation, MTT-formazan crystals were dissolved in 20% SDS and 50% DMF at pH 4.7 and absorbance was read at 562 and 630 nm on an ELISA-plate reader (ELX 800, Bio-Tek, USA). As a control, cultured cells were grown in the absence of drugs. The values of IC₅₀ (the concentration of the tested compound required to reduce the cells survival fraction to 50% of the control) were calculated from concentration-response curves and used as a measure of cellular sensitivity to a given treatment. Data points represent means of at least 6 repeats \pm SD.

Acknowledgment

This work was financed from the government budget for science in the years 2005–2008 (Project No. 3 T09A 075 28).

References and notes

- 1. Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94.
- Baraldi, P. G.; Nunez, M. C.; Tabrizi, M. A.; De Clercq, E.; Balzarini, J.; Bermejo, J.; Estevez, F.; Romagnoli, R. J. Med. Chem. 2004, 47, 2877.
- 3. Zhang, S.; Won, Y.-K.; Ong, C.-N.; Shen, H.-M. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 239.
- Chen, Y.-L.; Lu, Ch.-M.; Lee, S.-J.; Kuo, D.-H.; Chen, I.-L.; Wang, T.-Ch.; Tzeng, Ch.-Ch. *Bioorg. Med. Chem.* 2005, 13, 5710.
- Lindenmeyer, M. T.; Hrenn, A.; Kern, C.; Castro, V.; Murillo, R.; Müller, S.; Laufer, S.; Schulte-Mönting, J.; Siedle, B.; Merfort, I. *Bioorg. Med. Chem.* 2006, 14, 2487.
- Heilmann, J.; Wasescha, M. R.; Schmidt, T. J. Bioorg. Med. Chem. 2001, 9, 2189.
- 7. Gimenez-Arnau, E.; Bussey, C.; Lepoittevin, J.-P. Photochem. Photobiol. 1997, 65, 316.
- 8. Gimenez-Arnau, E.; Mabic, S.; Lepoittevin, J.-P. Chem. Res. Toxicol. 1995, 8, 22.
- 9. Berl, V.; Lepoittevin, J.-P. Photochem. Photobiol. 1997, 65, 316.
- Patel, B. P.; Waddell, T. G.; Pagni, R. M. Fitoterapia 2001, 72, 511.
- Chen, I. S.; Lai-Yuan, I. L.; Duh, C. Y.; Tsai, I. L. Phytochemistry 1998, 49, 745.
- 12. Cateni, F.; Zilic, J.; Zacchigna, M.; Bonivento, P.; Frausin, F.; Scarcia, V. Eur. J. Med. Chem. 2006, 41, 192.
- 13. Cardellina, J. H.; Moore, R. E. *Tetrahedron Lett.* **1979**, *22*, 2007.
- 14. Natio, T.; Honda, Y.; Miyata, O.; Ninomiya, T. Chem. Pharm. Bull. 1993, 41, 217.
- Belaud, Ch.; Roussakis, Ch.; Letourneux, Y.; El Alami, N.; Villieras, J. Synth. Commun. 1985, 15, 1233–1243.
- Janecki, T.; Błaszczyk, E.; Studzian, K.; Janecka, A.; Krajewska, U.; Różalski, M. J. Med. Chem. 2005, 48, 3516.
- González, A. G.; Silva, M. H.; Padrón, J. I.; León, F.; Reyes, E.; Álvarez-Mon, M.; Pivel, J. P.; Quintana, J.; Estévez, F.; Bermejo, J. J. Med. Chem. 2002, 45, 2358, and references cited therein.
- 18. Steurer, S.; Podlech, J. Synthesis 2002, 945.
- Melsa, P.; Mazal, C. Collect. Czech. Chem. Commun. 2002, 67, 353, and references cited therein.
- Raju, R.; Allen, L. J.; Le, T.; Taylor, C. D.; Howell, A. R. Org. Lett. 2007, 9, 1699.
- 21. GowriSankar, S.; Lee, Ch. G.; Kim, J. N. *Tetrahedron Lett.* 2004, 45, 6949, and references cited therein.
- Saito, N.; Masuda, M.; Saito, H.; Takenouchi, K.; Ishizuka, S.; Namekawa, J.; Takimoto-Kamimura, M.; Kittaka, A. Synthesis 2005, 2533.
- Lee, A. S.-Y.; Chang, Y. T.; Wang, S.-H.; Chu, S.-F. Tetrahedron Lett. 2002, 43, 8489, and references cited therein.
- 24. Kabalka, G. W.; Venkataiah, B.; Chen, C. Tetrahedron Lett. 2006, 47, 4187, and references cited therein.
- 25. Ramachandran, P. V.; Pratihar, D. Org. Lett. 2007, 9, 2087.
- Elford, T. G.; Arimura, Y.; Yu, S. H.; Hall, D. G. J. Org. Chem. 2007, 72, 1276.

- 27. Kuroda, C.; Kasahara, T.; Akiyama, K.; Amemiya, T.; Kunishima, T.; Kiura, Y. *Tetrahedron* **2002**, *58*, 4493, and references cited therein.
- Consorti, C. S.; Ebeling, G.; Dupont, J. *Tetrahedron Lett.* 2002, 43, 753, and references cited therein.
- 29. Ramachandran, P. V.; Garner, G.; Pratihar, D. Org. Lett. 2007, 9, 4753.
- Petragnani, N.; Ferraz, H. M. L.; Silva, G. V. J. Synthesis 1986, 157.
- 31. Szumny, A.; Wawrzenczyk, C. Synlett 2006, 1523.
- 32. Fuchs, S.; Berl, V.; Lepoittevin, J.-P. Eur. J. Org. Chem. 2007, 1145.
- 33. Lee, K. Y.; Lee, Y. J.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 143.
- 34. Lee, K. Y.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 2007.
- Janecki, T.. In Targets in Heterocyclic Systems: Organophosphorus Reagents as a Versatile Tool in the Synthesis of α-Alkylidene-γ-Butyrolactones and α-Alkylidene-γ-Butyrolactams; Attanasi, O. A., Spinelli, D., Eds.; Italian Society of Chemistry: Rome, 2006; Vol. 10, pp 301–320.
- Janecki, T.; Błaszczyk, E.; Studzian, K.; Różalski, M.; Krajewska, U.; Janecka, A. J. Med. Chem. 2002, 45, 1142.
- 37. Błaszczyk, E.; Krawczyk, H.; Janecki, T. Synlett 2004, 2685.
- Albrech, A.; Kędzia, J.; Koszuk, J. F.; Warzycha, E.; Janecki, T. *Tetrahedron Lett.* 2006, 47, 2353.
- Janecki, T.; Wasek, T.; Różalski, M.; Krajewska, U.; Studzian, K.; Janecka, A. *Bioorg. Med. Chem. Lett.* 2006, 16, 1430.
- 40. Koszuk, J. F.; Albrecht, A.; Janecki, T. Synthesis 2007, 1671.
- Macomber, R. S. In A Complete Introduction to Modern NMR Spectroscopy; John Wiley & Sons: New York, 1998, p 76.
- Quin, L. D. In *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis*; Verkade, J. G., Quin, L. D., Eds.; VCH Publishers, Inc.: Deerfield Beach, FL, 1987; pp 391–424.
- 43. Janecki, T.; Blaszczyk, E. Synthesis 2001, 403.
- Canetta, R.; Goodlow, J.; Smaldone, L., et al. In *Carboplatin (JM-8): Current Perspectives and Future Directions*; Bunn, P. A., Canetta, R., Ozols, R. F., et al., Eds.; W.B. Saunders: Philadelphia, PA, 1990; pp 19–38.
- 45. Kupchan, S. M.; Eakin, M. A.; Thomas, A. M. J. Med. Chem. 1971, 14, 1147.
- 46. Csuk, R.; Schröder, C.; Hutter, S.; Mohr, K. Tetrahedron: Asymmetry 1997, 8, 1411.
- Reid, C. S.; Zhang, Y.; Li, C.-J. Org. Biomol. Chem. 2007, 5, 3589.
- Values for specific compound or diastereomer were taken from the spectrum of a mixture of compounds or diastereomers.
- Rigolet, S.; Melot, J. M.; Vébrel, J.; Chiaroni, A.; Riche, C. J. Chem. Soc., Perkin Trans. 1 2000, 1095.
- Liang, K. W.; Li, W. t.; Peng, S. M.; Wang, S. L.; Liu, R. S. J. Am. Chem. Soc. 1997, 119, 4404.
- Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. *Cancer Res.* **1987**, *47*, 936.
- Hansen, M. B.; Nielsen, S. E.; Berg, K. J. Immunol. Methods 1989, 119, 203.