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Omphadiol (1) is a sesquiterpene isolated from the basidio-
mycete omphalotus illudens and the edible fungus clavicorona
pyxidata (Scheme 1).[1] As a member of the africanane family

of sesquiterpenes, which all possess a 5-7-3 tricyclic core,
omphadiol contains six contiguous stereogenic centers, which
makes it a challenging synthetic target. Comparison with
structurally similar terpenoids, including pyxidatol (2) and
africanol (not shown),[2] reveals a large family of sesquiter-
penes and diterpenes that share a common tetrasubstituted
cyclopentane ring (highlighted in red). Notably, many of these
natural products display potent biological activities. For
example, rossinone B (3) shows anti-inflammatory, antiviral,
and antiproliferative activities[3] while chinesin (4) possesses
antimicrobial and antiviral activity.[4] Tomoeone F (5) displays
significant cytotoxicity against KB cells.[5] While synthetic
studies toward members of this family including a recent
biomimetic synthesis of (� )-rossinone B have appeared,[6] no
further biological studies have been described. Full biological
evaluation of omphadiol was precluded owing to insufficient
quantities isolated from natural sources.[1a] As part of a
program to demonstrate the utility of b-lactones as synthetic
intermediates, we set out to develop a scaleable route to the
common cyclopentane core (highlighted in red) found in
these terpenoids as a prelude to biological studies and

investigations into their likely biosynthetic interconnectivity.
Herein we report a three-step synthesis of a versatile,
carvone-derived bicyclic b-lactone, which constitutes the
key intermediate for the described ten-step synthesis of (+)-
omphadiol. This total synthesis also features several efficient
C�C bond-forming reactions, novel single-pot, sequential and
tandem processes, and the highly stereocontrolled introduc-
tion of all six stereogenic centers.

Our synthetic strategy was premised on a late-stage
facially selective cyclopropanation of the C2�C4 double
bond governed by the topology of the [5.3.0] bicycle 6
(Scheme 2). The cycloheptenone would in turn be constructed

by ring-closing metathesis (RCM) of diene 7, which could be
derived from bromide 8 by a sequential one-pot intra-/
intermolecular dialkylation. The key intermediate for the
synthesis of omphadiol and related terpenes was identified as
the bicyclic b-lactone 9. We anticipated that this versatile
intermediate could be constructed by the reorganization of
the carbon skeleton of (R)-carvone through a nucleophile-
promoted aldol lactonization process of a derived keto acid.

The synthesis of (+)-omphadiol commenced with a
[MnIII(dpm)3]-catalyzed (dpm = dipivaloylmethanato)
formal hydration of the enone moiety of (R)-carvone to
afford the hydroxy ketone 11 in a chemo- and regioselective
manner and as an inconsequential mixture of diastereomers
(d.r. 2:1; Scheme 3).[7] Subsequent oxidative cleavage of the
a-hydroxyketone by periodic acid delivered ketoacid 12.
Upon activation of the carboxylic acid with tosyl chloride, and
the addition of 4-PPY (4-pyrrolidinopyridine) as a nucleo-
philic promoter, ketoacid 12 underwent an aldol lactoniza-
tion[8] to give the desired bicyclic b-lactone 9 with high
diastereoselectivity (55%, d.r.> 19:1, as determined by
1H NMR spectroscopy) after 24 hours, thus setting the first
C�C bond (highlighted in red). Optimization studies revealed

Scheme 1. (+)-Omphadiol and structurally related terpenes.

Scheme 2. Retrosynthetic analysis of (+)-omphadiol from (R)-carvone via
the versatile bicyclic-b-lactone 9.
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that powdered anhydrous K2CO3, in combination with
iPr2NEt as a shuttle base,[9] led to a high yield (83%) of b-
lactone 9 in 2 hours on a scale greater than 10 g. The high
diastereoselectivity is rationalized by the chairlike transition
state 13, wherein the isopropenyl moiety adopts a pseudo-
equatorial position to avoid 1,3-allylic strain with the
ammonium enolate (E/Z geometry undefined) substituent
and developing 1,3-diaxial interaction (bonds highlighted in
red).

The next stage of the synthesis required a four-carbon
homologation at C7, including the introduction of the C6-
gem-dimethyl moiety. Reduction of the b-lactone 9 gave the
corresponding diol that was converted into the corresponding
C7-bromide (Scheme 3). After numerous failed attempts to
form the C6�C7 bond using intermolecular alkylations with
various nucleophiles, we considered intramolecular variants.
Ultimately, a highly efficient process for construction of the
C6�C7 bond was identified, which involved a one-pot
tosylation/bromination sequence and a subsequent acylation
to provide ester 8. Treatment of this ester with KHMDS
(3 equiv) in THF at �78 8C, followed by quenching with
excess MeI, furnished the bicyclic d-lactone 14 bearing the
requisite C6 gem-dimethyl moiety. Thus, two required C�C
bonds were formed in one operation. Notably, a dramatic and
unusual counterion effect was observed in this transforma-
tion, since LHMDS and NaHMDS gave only O-alkylation
products in the initial intramolecular alkylation.[10]

With ester 14 in hand, a two-step sequence involving the
reduction to the lactol and vinyl Grignard addition was
envisioned to introduce the remaining two carbon atoms
required for the ring-closing metathesis (RCM) to form
cycloheptene 17 (Scheme 4). While the degree of diastereo-
selectivity, if any, for the Grignard addition step was
uncertain, ester 14 was reduced to lactol 15 by DIBAl-H,

and to our surprise the subsequent addition of vinyl magne-
sium bromide gave diene 16 with high diastereoselectivity
(d.r.> 19:1, as determined by 1H NMR spectroscopy) even at
0 8C. The stereochemical outcome of this addition was
confirmed following conversion into 5-epi-omphadiol (18)
and by X-ray crystallographic analysis of ester 19. One
rationalization for this rare example of 1,5-stereoinduction[11]

invokes chelation control between an in situ generated C9-
magnesium alkoxide and the C5-aldehyde, thus leading to an
eight-membered metallocycle that imparts substantial facial
bias during nucleophilic addition. RCM of diene 16 using
Grubbs second generation catalyst[12] yielded the desired
trans-fused [5.3.0] bicyclic core in nearly quantative yield. A
Simmons–Smith cyclopropanation of allylic alcohol 17 gave
cyclopropane 18 with high diastereoselectivity (> 19:1).
However, comparison with NMR data reported for the
natural product suggested that a diastereomer had been
produced. X-ray crystallographic analysis of the bis(p-bro-
mophenylester) derivative 19 unambiguously determined that
diol 18 was actually a C5 epimer of omphadiol. The high
diastereoselectivity obtained during the vinyl Grignard addi-
tion unfortunately led to the unnatural C5 diastereomer but
revealed an interesting example of 1,5-stereoinduction.

We recognized that one solution to the C5-stereochemical
issue would involve a facially selective reduction of enone 6,
which can be derived from the RCM of a dienone (cf. 7,
Scheme 2). The seemingly straightforward conversion of the
sterically hindered lactone 14 into enone 7 by the mono-
addition of a vinylmetal species (e.g. vinyllithium, vinyl-
magnesium bromide, and divinylzinc), proved challenging. In
contrast to the facile partial reduction to lactol 15 by DIBAl-
H (Scheme 4) and numerous reported successful monoaddi-
tions of vinylmetal reagents to d-lactones, the monoaddition

Scheme 3. Conversion of (R)-carvone into the versatile bicyclic-b-lac-
tone 9 and bicyclic d-lactone 14. DIPEA =diisopropylethylamine,
DIBAl-H= diisobutylaluminium hydride, DMAP= 4-dimethylaminopyri-
dine, dpm = dipivaloylmethanato, HMDS= hexamethyldisilazide,
PPY= 4-pyrrolidinopyridine, Ts = p-toluenesulfonyl.

Scheme 4. Synthesis of 5-epi-omphadiol (inset: ORTEP representation
of the X-ray crystallographic structure of derivative 19 ; aryl groups
removed for clarity; thermal ellipsoids are shown at 50 % probabil-
ity).[22] THF = tetrahydrofuran.
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reaction with the sterically congested d-lactone 14 was
unsuccessful. The major by-product was derived from the
subsequent 1,4-conjugate addition to the initially formed a,b-
enone 7.[13] Ultimately, this problem was circumvented by
addition of allyllithium, derived from allyltriphenyltin[14] by
transmetalation, to d-lactone 14 to give the b,g-enone 20
(Scheme 5). Use of the latter intermediate was premised on a
designed tandem isomerization/RCM process guided by the
known reluctance of RCM to provide eight-membered
rings[15] and the ability of the ruthenium–hydride species
generated from the Grubbs catalyst to promote olefin
isomerization.[16] As predicted, upon heating diene 20 with
the second generation Grubbs catalyst in toluene, the desired
cycloheptenone was formed in 95 % yield, thus indicating that
olefin isomerization was faster than RCM, a situation which
would have led to a cyclooctenone.

At this juncture, what remained to reach omphadiol was
the regio- and stereoselective reduction of the enone and a
facially selective cyclopropanation. After studying several
reaction conditions, enone 6 was reduced smoothly to give the
desired allylic alcohol 21 by treating with a DIBAl-H/tBuLi
complex at �78 8C in toluene (d.r. 14:1).[17] Finally, the
cyclopropanation of allylic alcohol 21 under Simmons–Smith
conditions gave (+)-omphadiol with high facial selectivity
(d.r.> 19:1). Despite the well-known directing effect of allylic
alcohols in seven-membered rings under Simmons–Smith
conditions,[18] this was not observed. This avoided the need for
protection of the C5-hydroxy group. The unique conforma-
tional constraint of allylic alcohol 21, imposed by the bicyclic
structure, places the secondary hydroxy group in a pseudo-
equatorial position (in plane with the p bond). This rigid
conformation is likely responsible for the unexpected, non-
hydroxy directed but desired facial selectivity.[19 ] Both DFT
calculations[20] and NMR studies (JH4,H5 = 0 Hz) of alcohol 21
support the conformation shown in Scheme 5. Synthetic (+)-
omphadiol correlated well spectroscopically with the natural
product, including the optical rotation.

In summary, the first total synthesis of (+)-omphadiol has
been achieved in ten steps from (R)-carvone in an 18%
overall yield. This synthesis features the highly stereocon-
trolled introduction of the six contiguous stereogenic centers
exclusively by using substrate control from the single
stereocenter in (R)-carvone. The concise nature of the
synthesis derives from a high ratio of C�C bond-forming
steps (five of the ten steps) that proceed in a highly efficient
manner, the design and implementation of novel single-pot
sequential processes, and the absence of protecting groups.[21]

This total synthesis paves the way for further biological
studies of omphadiol and its congeners. Furthermore, syn-
thetic strategies are now readily envisioned toward other
members of this class of terpenes by employing the versatile
bicyclic b-lactone 9, which can be readily prepared on a
multigram scale.
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