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Abstract: A straightforward route for the synthesisoft'-disubstituted
dihydropyrans and tetrahydrooxepines has been developed involving

Vo
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Pd- and Ru-catalyzed reactions. —_— —_— Z
MeO,C~ "H 85% 98%
MeO.C™ "OH MeO,C* ~07 “OMe
2,6-Disubstituted dihydropyrank and2 (n = 1) occur frequently in 5 6 7
nature as a structural unit in a wide range of natural produicts.
addition, these compounds could serve as useful building blocks for the ¢ l 74%

synthesis of biologically active saturated oxygen heterocyeias

functionalization of the double bond. Examples include (poly)cyclic = <d_or = - =
ethers® but also modified carbohydrates and 2-carboxyl-substituted Z

) . . iy Me0,c” N0 R eorf |y
tetrahydropyrans with antibacterial activity such as Kb®ore o2 R e0:C 9 MeG,C™ 0" "OMe
specifically, dihydropyran@ (R! = OMe) have recently been used as
. ) ; . o ) 10 R = allyl 65% 9 8
intermediates in the synthesis of mevinolin and comp&&inn 11 R = C=N 42%

conjunction with previous work in our group on vinylsilane-terminated 12 R = CH,C(O)Ph 59%

formation- of dlhydmp_yranSI_Ia OXycarbemum |0n§,.we set out to Reagents and conditions: (a) allyltrimethylsilane (2.0 equiv.), BF3-OEt, (2
explore a noyel entry into this compounql classZ which would enaple USaquiv.), CHoClp, 0 °C — t; (b) Pd(OAG), (5 mol%), dppp (5 mol%),
to vary the side chains and would also give facile access to enantiopur 4-methoxy-1,2-propadiene (5.0 equiv.), Et3N (1.5 equiv.), MeCN, reflux, 3
heterocycles. Moreover, the methodology outlined in this paper is noth; (c) Cla(PCys);RUCHPh (5 mol%), CH,Cly, tt, 4 h; (d) allyltrimethylsilane
restricted to six-membered ring formation, but can also be applied tc(2.0 equiv.), BF3-OEt; (2.0 equiv.), CHyCly, 0 °C — r; (e) trimethylsilyl
form the corresponding seven-membered rings. Especially the latte cyanide (2.0 equiv), BF3-OEt; (2.0 equiv), CHyCly, 0 °C — t; (f)
aspect provides a significant benefit compared to previously establishe: -Pheny!-1-(trimethylsilyloxy)ethylene (2.0 equiv.), BFy-OEt, (2.0 equiv.),
methods for forming such ringsa hetero Diels-Alder reactiors’ A CHClp, 0°C > 1t

short retrosynthetic outline of our route is shown in Scheme 1. Scheme 2
(™ : Z : further optimization (Pd(OAg)(cat.), PBP(CH,)sPPh, (dppp), excess
: . - f 1-meth 1,2 di MeCN, 80 °C i led tube) led
R N7 VR R N0 ™ OMe R NoH of 1-methoxy-1,2-propadiene, &, MeCN, in a sealed tube) le

to a virtually quantitative yield of the desired acefal® Not
Zi?igﬁigﬂgn 3 4 surprisingly, 7 was obtained as &a. 1:1 mixture of diastereoisomers,
n=1,2 which could not be separated by column chromatography. The diolefin
7 then cyclized smoothly under standard ring-closing metathesis
conditions (5 mol% of Ru-benzylidene catalyst, 0.1 M solution in
CH,Cl,, rt), providing the dihydropyra@in a satisfactory yield of 74%
The target compoundsand2 should be accessibléa the allylic acetal ~ (cig/trans 1:1). This mixture of isomers was then treated with a Lewis
3, which contains (i) a terminal olefin function that can be used as acid (BR-OEt) to generate the allylic oxycarbenium intermedigte
handle for ring-closing metathe%isand (i) an acetal function to enable which in the presence of different nucleophiles (allyltrimethylsilane,
later modification of the systexia oxycarbenium ion chemistry. trimethylsilyl cyanide andx-(trimethylsilyloxy)styrene reacted to the

The first sequence (Scheme 2) commenced with anhydrous methgPrresponding 1,2-adduct0-12in reasonable to good yields and
glyoxylate 6),10 which upon treatment with RFOEt and excellent transselectivity. This selectivity probably arises from
allyltrimethylsilane led to methyl 2-hydroxy-4-pentenodg (nitially, stereoelectronically preferregseudeaxial attack of the incoming
attempts were made to convérinto the desired allylic acetal under Nucleophilé* and is more generally found in similar unsaturated
acid-catalyzed conditions with acrolein derivatives, but without muchsystems:>10

success. Therefore, we turned our attention to other strategies, involvidgn analogous sequence was developed to arrive at enantiopure six- and
the use of 1-methoxy-1,2-propadielewhich upon electrophilic seven-membered ring ethers as depicted in Scheme 3. Starting material
activation and subsequent reaction with the secondary alcohol mightas the readily available benzyl-protect&j-glycidol 13, which was

give rise to the desired product. Several methods have been publishedg-opened with complete regioselectivity using vinyl- or
describing activation of allenes towards coupling with oxygenallyilmagnesium bromide in the presence of ,Bleand a catalytic
nucleophiles (includingN-bromosuccinimide, Hg@),1l but these amount of Cul to give the corresponding secondary alcdicdsdl5,

routes are not attractive in view of the stoichiometric use of the reagent®spectively. A similar strategy as in the previous scheme, namely
At this point, a publication of Alper and coworkers appeafedho oxypalladation of 1-methoxy-1,2-propadiene (in both cassesl:l
obtained a similar acetal as a byproduct in Pd(ll)-catalyzed annulatiomixture of isomers were formed) and subsequent ring-closing
reactions with substituted allenes. Application of their conditions andnetathesis provided the oxygen heterocyt®and19 (cistrans1:1) in

Scheme 1
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satisfactory yields. In the six-membered ring series, the oxycarbenium
ion-mediated coupling reactions with allyltrimethylsilane and
trimethylsilyl cyanide proceeded considerably better than in the este:
substituted cases leading to the desired dihydrop2C and21 in good
yields. Again, coupling took place selectively at the 2-position, with
complete trans-selectivity!>1€ Although the addition to the seven-
membered ring oxycarbenium ion did not proceed in high yield, a single
diastereoisomer22) was obtained whose stereochemistry in analogy

with the six-membered rings was tentatively assignerans.1® 10)
11)
|_| PdOAcL, N
ROH -“—\Pd(OAc)gLX — j _ 12)
~ OMe RO” “OMe RO” “OMe
13)
23 24 25
Scheme 4
14)

The proposed mechanism of the Pd-catalyzed oxypalladation of
methoxyallene is shown in Scheme 4, where coordination of the Pd(ll)-
species with the more electron-rich oxygen-substituted double bonl5)
(viz. 23) renders the allene sufficiently electrophilic to be attacked by
the secondary alcohd! Protonolysis of the resulting vinyl-palladium
species24 then leads to the desired ace25 and regeneration of the
Pd(Il)-catalyst.

In conclusion, we have developed an efficient route to various 2,6-
trans-disubstituted oxygen heterocycles, which can also be appplied 1£6)
form the corresponding seven-membered rings. The pathway involves
(i) a novel Pd(ll)-mediated coupling of 1-methoxy-1,2-propadiene with
secondary alcohols and (ii) a Ru-catalyzed ring-closing process as the
key transformations. One could envision that the use of similar allylic
acetals is not only restricted to ring-closing metathesis, but that they
could also be applied in many other types of ring-closing processes. At
present, we are exploring such possibilities including applications in
natural product synthesis, which will be presented in the near future.
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Data for selected compounds:

11: colorless oil;R; = 0.46 (silica, 70% ether in petroleum ether);
IR (film) vyay 2956, 2240, 1745, 1186, 1096 ¢; tH NMR (400
MHz, CDCly) & 6.10-6.15 (m, 1H), 5.74-5.79 (m, 1H), 5.18 (Jd,
= 1.7, 3.5 Hz, 1H), 4.50 (dJ = 5.5, 8.8 Hz, 1H), 3.81 (s, 3H),
2.42-2.46 (m, 2H)}C NMR (100 MHz, CDGy) & 173.0, 127.7,
121.0, 116.1, 69.8, 62.6, 52.4, 26.7;, HRMS (EIl), calcd for
CgHgNO5 (M¥): 167.0582, found 167.0594.

21: colorless oil;R; = 0.65 (silica, 70% ether in petroleum ether);
[a]p?? -57.4 ¢ 0.5, CH,CL); IR (film) via, 3031, 2868, 2234,
1104, 904, 739, 698 ¢ *H NMR (400 MHz, CDC}) & 7.26-
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7.38 (m, 5H), 6.08-6.13 (m, 1H), 5.70-5.74 (m, 1H), 5.04-5.06 (m,
1H), 4.60 (s, 2H), 4.07-4.13 (m, 1H), 3.59 (d= 4.5 Hz, 1H),
2.26-2.34 (m, 1H), 2.01-2.08 (m, 2H}3C NMR (100 MHz,
CDCly) 5 137.8, 128.9, 128.3, 127.7, 127.6, 120.9, 116.9, 73.3,
71.5, 70.7, 62.9, 26.2; HRMS (El), calcd fof,8,5NO, (M™):
229.1103, found 229.1107.

22 colorless oil;R = 0.74 (silica, 70% ether in petroleum ether);
[0]p?2-0.5 € 1, CHCLY); IR (film) v, 3020, 2927, 2859, 1093, 17)
743, 697 crit; IH NMR (400 MHz, CDC}) 8 7.26-7.35 (m, 5H),
5.83-5.93 (m, 1H), 5.70-5.76 (m, 1H), 5.49 (ddl¢, 1.8, 3.8, 11.1
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Hz, 1H), 5.04-5.12 (m, 2H), 4.56 (s, 2H), 4.44-4.49 (m, 1H), 4.07
(dt,J=5.1, 10.7 Hz, 1H), 3.57 (dd= 6.1, 9.9 Hz, 1H), 3.45 (dd,
J=5.0, 9.9 Hz, 1H), 2.21-2.40 (m, 4H), 1.81-1.96 (m, 283
NMR (100 MHz, CDC}) & 138.3, 135.3, 132.5, 130.7, 128.2,
127.5, 127.4, 116.6, 75.4, 73.2, 72.4, 71.0, 40.3, 29.9, 26.4;
HRMS (FAB), calcd for GH,40, (M+HY): 259.1698, found
259.1682.

For an excellent summary of Pd-chemistry, see: Tsuji, J.
Palladium Reagents and Catalys¥iley: New York, 1995.
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