Tetrahedron 64 (2008) 7594-7604

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A novel approach to the taxane ABC ring system through chemical conversion from C₁₉-diterpenoid alkaloid deltaline

Chun-Lan Zou, Le Cai, Hong Ji, Guang-Bo Xie, Feng-Peng Wang*, Xi-Xian Jian, Lei Song, Xiao-Yu Liu, Dong-Lin Chen, Qiao-Hong Chen*

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, PR China

ARTICLE INFO

Article history: Received 22 February 2008 Received in revised form 20 May 2008 Accepted 20 May 2008 Available online 23 May 2008

Dedicated to venerated Professor Xiao-Tian Liang on the occasion of his 85th birthday

Keywords: C₁₉-Diterpenoid alkaloid Deltaline Grob fragmentation Aldol condensation Pelletier's cleavage Taxoid

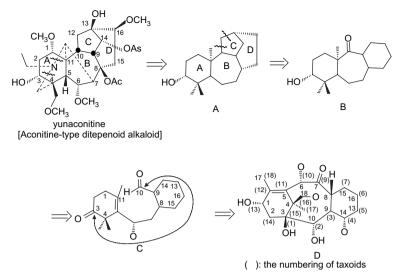
1. Introduction

In spite of some remarkable successes, including six total syntheses¹ and a plethora of ingenious synthetic designs, the convenient practical assembly of the full-functionalized taxane core structure or the synthesis of structurally simplified analogs, remains a significant challenge, and substantial excellent studies are still in progress.

Numerous methods to synthesize the ABC system of the taxoid nucleus have been published,² among which the most important is to construct simultaneously the BC ring, following the completion of A ring. However, a method to derive the taxoid core nucleus from natural products using the C₁₉-diterpenoid alkaloids as the starting material was not reported previously. On the other hand, whereas the structure–activity relationships of the taxoids, e.g., paclitaxel, are well studied,³ there is no information available for the simplified nor-taxoids without the methyl groups at C-8, C-12, and C-15, and this attracted our attention. Obviously, this study may form the basis for searching for more active taxoids with lower toxicity.

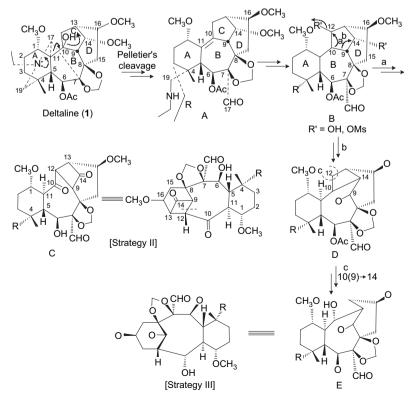
ABSTRACT

A novel approach to the highly functionalized taxane ABC ring system through chemical conversion of the C₁₉-diterpenoid alkaloid deltaline (**1**) was achieved in six steps (**1** \rightarrow **17**) in 18% overall yield mainly by Grob fragmentation, fission of the $\Delta^{9(14)}$ double bond, followed by aldol condensation, and Pelletier's cleavage process.

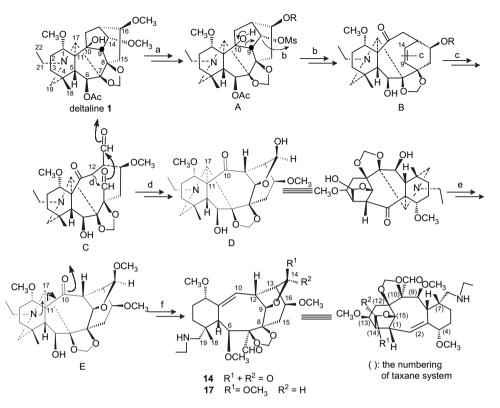

© 2008 Elsevier Ltd. All rights reserved.

The diterpenoid alkaloids are a group of highly oxygenated, complex natural products displaying a plethora of interesting chemistry.⁴ They were isolated mainly from Aconitum and Del*phinium* plants (Ranunculaceae) as rich sources.⁵ During the course of studies on the development of a novel method for the construction of the unique taxane tricyclo[9.3,1.0^{3,8}]pentadecane nucleus based on the chemical conversion of C19-diterpenoid alkaloids, as early as 1994, we initiated a decade long research program using yunaconitine, a C₁₉-diterpenoid alkaloid, as the starting material according to the strategy shown in Scheme 1.6 Though repetitive studies were conducted, substantial success was not achieved. After a long search, it became apparent that deltaline (1) could be isolated from Delphinium bonvalotii Franch. on the kilogram scale, and thus we designed two strategies to convert deltaline (1) to taxane-like compounds according to Scheme 2, but these attempts also failed.⁷ Based on these studies, we now present an alternative strategy, depicted in Scheme 3, which represents a novel construction of the unique taxane ABC system core. As shown in Scheme 3, after the O-demethylation and selective mesylation (path a), the mesylate (A) was subjected to Grob fragmentation (path b) to give the olefin B, followed by fission of the C(9)-C(14) double bond leading to the key intermediate C (path c). Subsequent aldol condensation-acetalation (path d) of C furnished hemiacetal D. Finally, protection using CH₃I-NaH (path e), followed

^{*} Corresponding authors. Tel./fax: +86 28 85501368. E-mail address: wfp@scu.edu.cn (F.-P. Wang).

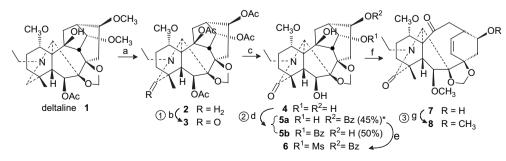

Scheme 1. Approach to the taxane-like ABC system from yunaconitine by strategy I.

by Pelletier's cleavage⁸ (path f), produced the desired taxane-like cores **14** and **17**. In this paper, we report some details of this novel and stereospecific approach to the taxane-like ABC ring system from deltaline (**1**).


2. Results and discussion

The synthesis was initiated with deltaline (1), which afforded **3** in 64% overall yield for the two steps, including the O-demethylation as modified by us⁹ and KMnO₄ oxidation to avoid the influence of the N-atom. The IR and ¹³C NMR spectra of **3** exhibited distinct signals for a lactam at 1648 cm⁻¹ and $\delta_{\rm C}$ 169.5. After considerable investigation of various alternative pathways, it was found that the

selective acylation of **4** from the hydrolysis of **3** using BzCl in the presence of Ag₂O–Kl¹⁰ (40 °C, 2 h) furnished **5a** (45%) and **5b** (50%). The latter could be recycled for the preparation of additional **5a**. Following mesylation to yield **6**, exposure to 5% NaOH methanol (reflux, 3 h) permitted Grob fragmentation to **7**, which on methylation afforded the desired product **8**, as a result of one-pot procedure, in a 70% isolated yield (Scheme 4). The molecular formula of **7**, C₂₃H₃₁NO₇, was established by the HR-ESIMS, and the ¹³C NMR spectra of **7** showed a lactam group (1683 cm⁻¹, δ_C 172.4), a ketone group (1642 cm⁻¹; δ_H 6.26 d, *J*=10.0 Hz, δ_H 5.92 dd, *J*=10.0, 6.0 Hz; δ_C 133.9 d, 127.8 d). From the HMBC correlations of C-10/H-1, H-5, and H-17, as well as H-9/C-13 and C-15, and H-14/C-8 and C-16, the ketone



Scheme 2. Approach to the taxane-like ABC system from deltaline by strategies II and III.

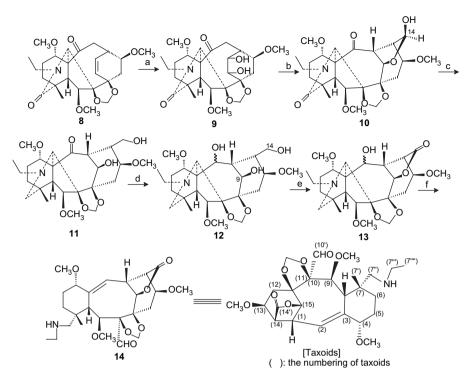
Scheme 3. Conversional synthetic strategy IV of the taxane core starting from deltaline (1).

group and the double bond in 7 were assigned to C-10 and to between C-9 and C-14, e.g., $\Delta^{9(14)}$, respectively. The structure of **7** was established based on 2D NMR spectral analysis (Table 1). After osmylation, HIO₄ oxidation of **9** provided easy access to the key intermediate **10** (70%). Compared with **9**, the ¹H and ¹³C NMR spectra of **10** (C₂₅H₃₅NO₉, HR-ESIMS) displayed an additional hemiacetal moiety ($\delta_{\rm H}$ 5.58 d, J=3.2 Hz, $\delta_{\rm C}$ 95.8 d; $\delta_{\rm H}$ 5.44 d, J=6.0 Hz, $\delta_{\rm C}$ 75.0 d), which was located by the 2D NMR spectrum between C-14 and C-9 (Table 2). The absolute configuration of C-14 in **10** was determined as *S* due to the NOESY observation between H-14 and H-15 (Table 2). Subsequent reduction using B_2H_6 (THF, reflux, 1.5 h) furnished 11 (96%). The ¹³C NMR spectrum of 11 showed the absence of the lactam group and the acetal moiety, as compared with **10**. Attempted treatment of **11** under various basic conditions to initiate Grob fragmentation-hydrolysis in order to prepare the target taxane core failed. To overcome this difficulty, an alternative approach using Pelletier's cleavage⁸ was used. Reduction using B₂H₆, followed by selective protection of the 9-, 14hydroxyl groups of **12** by the oxidation $(Ag_2CO_3, reflux, 17 h)^{11}$ to the lactone **13** (30%) was carried out. The IR and ¹³C NMR spectra of 13, as a single compound, exhibited characteristic signals at 1790 cm⁻¹ and δ_c 173.6 for a γ -lactone moiety. Finally, starting from **13**, according to Pelletier's cleavage,⁸ the desired target taxane-like core **14** was achieved in a 78% isolated yield (Scheme 5). The IR, ¹H, and ¹³C NMR spectra of 14 (C₂₅H₃₇NO₈, HR-ESIMS) showed an additional aldehyde group (1719 cm⁻¹; $\delta_{\rm H}$ 9.58 s; $\delta_{\rm C}$ 200.9 d) and a trisubstituted double bond ($\delta_{\rm H}$ 5.47 d, J=2.0 Hz; $\delta_{\rm C}$ 125.5 d, 137.9 s) as compared with those of 13. Location of the double bond was achieved according to the HMBC correlations of C-2/H-4 and H-8 or H-2/C-4, C-8, C-14, and C-15, as well as C-3/H-5 and H-9 (using the taxoid numbering) (Table 3). The structure of 14 was determined by 2D NMR spectral analysis (Table 3), and comparison with the data for 18, whose structure was established based on X-ray crystallographic analysis. However, owing to the long reaction time and the toxicity of osmylation, attention was turned to the alternative route for the taxane core shown in Scheme 6. As described in Scheme 6, starting with the olefin **8**, the acetal **15** via **10** was prepared in 70% yield through one-pot procedure via O3 oxidation followed by an aldol condensation-acetalation-methylation process. The HR-ESIMS of **15** gave the quasi-molecular ion peak at m/z 530.2335

Scheme 4. (a) 6.5% HBr-HOAC, 85 °C, 50 h, 85%; (b) KMnO₄, acetone-H₂O-glacial acetic acid, room temperature, 1 h, 75%; (c) 5% NaOH methanol, reflux, 1 h, 100%; (d) BzCl, Ag₂O-KI, THF, 40 °C, 2 h, **5a**: 90% yield after removing 50% of the recovered **5b**; (e) MsCl, pyridine, room temperature, 2 h, 100%; (f) 5% NaOH methanol, reflux, 3 h, 88%; (g) CH₃I, NaH, room temperature, 4 h, 80% (* after recovering the starting material from **5b**, 90%).

Table 1	
NMR data for compound 7	,

Carbon	δ_{C}	$\delta_{\rm H}$ mult (J in Hz)	¹ H– ¹ HCOSY	HMBC (H \rightarrow C)	NOESY
1	78.9 d	3.23 dd (10.0, 8.0)	Η-2α, Η-2β	C-10, C-17, C-1′	Η-3β
2	26.4 t	1.58 m (hidden) (α)	Η-1, Η-2β, Η-3α, Η-3β	_	H-1′, H-21
		2.17 m (β)	Η-1, Η-2α, Η-3α, Η-3β	C-4, C-11	_
3	36.3 t	1.32 m (β)	Η-2β, Η-2α, Η-3α	C-5	_
		1.92 m (α)	Η-2β, Η-2α, Η-3β	C-1, C-5	H-18
4	42.7 s	_	_	_	_
5	53.8 d	2.40 d (3.2)	H-17 (W-type)	C-3, C-7, C-10, C-17	Η-1, Η-3β, Η-18
6	81.6 d	4.03 d (11.2)	6-OH	C-4, C-11, C-17	H-18, OCH ₂ O
7	98.2 s	_	_	_	_
8	81.3 s	_	_	_	_
9	133.9 d	6.26 d (10.0)	H-14	C-13, C-15	_
10	213.9 s	_	_	_	_
11	62.5 s	_	_	_	_
12	48.5 t	2.88 d (10.8) (β)	Η-12α, Η-13	C-11, C-16	_
		3.89 d (10.8) (α)	Η-12β, Η-13	C-14, C-16	H-15α, H-16, H-17, H-1′
13	41.0 d	2.89 m (hidden)	H-16, H-12	C-9, C-15	Η-15β
14	127.8 d	5.92 dd (10.0, 6.0)	H-9, H-13	C-8, C-16	_
15	45.1 t	1.52 m (hidden) (β)	Η-15α, Η-16	C-7	H-13
		2.79 m (hidden) (α)	Η-15β, Η-16	C-7, C-9	_
16	72.3 d	4.42 t (7.2)	Η-13, Η-14, Η-15α, Η-15β	C-12, C-14	H-17
17	63.9 d	4.21 d (3.2)	H-5 (W-type)	C-5, C-6, C-10, C-19, C-21	H-16
18	21.2 q	1.32 s	_	C-3, C-5, C-19	H-3a, H-5, H-6
19	172.4 s	_	_	_	_
21	43.9 t	2.82 m (hidden)	H-21 (δ 4.25), H-22	C-17, C-19	_
		4.25 m	H-21 (δ 2.82), H-22	C-17, C-19	_
22	12.6 q	1.19 t (7.2)	H-21	_	_
1′	56.1 q	3.33 s	_	C-1	_
OCH ₂ O	91.4 t	4.98 s	_	C-8	H-6
		5.03 s	_	C-7, C-8	_
6-OH	_	2.33 d (11.2)	_	_	_


corresponding to the C₂₆H₃₇NO₉Na which is 14 times units than that of **10**. The ¹H and ¹³C NMR spectra of **15** were very similar to those of **10**, except for C-12 (δ_C 54.8 d), C-14 (δ_C 102.4 d), and C-15 (δ_C 35.6 t), indicating that **15** was the methyl ether of **10**. Another

target taxane-like core compound **17**, representing a new class of nor-taxanes without the 16-, 17-, 18-, and 19-methyl groups, but with oxygenation at C-15, was afforded by B_2H_6 reduction of **15**, followed by Pelletier's cleavage of **16** as described above, in a 64%

Table 2

NMR data for compounds 10 and 15

Carbon no.	10					15
	δ_{C}	$\delta_{\rm H}$ mult (J in Hz)	¹ H– ¹ HCOSY	HMBC (H \rightarrow C)	NOESY	δ_{C}
1	81.2 d	4.48 dd (10.4, 7.2)	Η-2α, Η-2β	C-10, C-17, C-1′	H-5	81.4 δ
2	24.8 t	1.51 m (α)	Η-1, Η-2β, Η-3α, Η-3β	C-4	_	24.9 t
		2.10 m (β)	Η-1, Η-2α, Η-3α, Η-3β	C-4, C-11	H-1′	
3	35.4 t	1.42 m (β)	Η-2β, Η-2α, Η-3α	C-1, C-5, C-18, C-19	H-18, H-22	35.5 t
		1.92 m (α)	Η-2β, Η-2α, Η-3β	C-1, C-5, C-18, C-19	H-18	
4	43.5 s	_	_	_	_	43.6 s
5	57.1 d	1.87 d (2.8)	H-17 (W-type)	C-3, C-10, C-18, C-19	H-6′, H-18	57.2 d
6	93.4 d	3.80 s	_	C-4, C-8, C-11, C-17, C-6'	H-18, OCH ₂ O	93.5 d
7	92.7 s	_	—	_	_	92.7 s
8	85.8 s	_	—	_	_	86.0 s
9	75.0 d	5.44 d (6.0)	H-12	C-7, C-13, C-14, C-15	H-6′	75.0 d
10	210.4 s	_	—	_	_	210.5 s
11	63.6 s	_	—	_	_	63.7 s
12	56.0 d	3.92 dd (6.4, 4.8)	H-9, H-13	C-8, C-11, C-14, C-16	_	54.8 τ
13	49.0 d	2.80 t (4.0)	H-12, H-16	C-9, C-15	H-16′	48.4 d
14	95.8 d	5.58 d (3.2)	14-OH	C-9, C-12, C-16	Η-15β	102.4 c
15	38.4 t	1.83 dd (13.6, 10.8) (β)	H-15a, H-16	C-7	H-14	35.6 τ
		2.38 dd (14.0, 6.4) (α)	Η-15β, Η-16	C-7, C-9, C-13	H-16′, H-17	
16	72.8 d	4.02 m	Η-13, Η-15α, Η-15β	C-14, C-16′	H-17	72.9 d
17	63.0 d	4.43 d (2.8)	H-5 (W-type)	C-5, C-6, C-7 C-10, C-19, C-21	H-15a, H-16, H-21, H-22	63.0 d
18	20.5 q	1.26 s	_	C-3, C-5, C-19	H-3β, H-5, H-6, H-6′	20.6 q
19	171.3 s	_	_	_	_	717.3 s
21	42.8 t	2.89 m	H-21 (δ 4.31), H-22	C-17, C-19	H-17	42.9 t
		4.31 m	H-21 (δ 2.89), H-22	C-17, C-19	H-17	
22	12.2 q	1.16 t (7.2)	H-21	_	H-1′, H-17	12.3 q
1′	56.4 q	3.27 s	_	C-1	_	56.4 q
6′	58.0 q	3.26 s	_	C-6	H-18	58.2 q
14′		_	_	_	_	56.6 q
1′6	56.5 q	3.37 s	_	C-16	H-1′	56.5 q
OCH ₂ O	91.4 t	4.99 s	_	C-7, C-8	H-6, H-6′	92.9 t
		5.13 s	_	C-7, C-8	Η-15α	
14-OH	_	3.87 d (3.2)	H-14	_	_	

Scheme 5. (a) OsO₄, NMO, 5 h, 100%; (b) HIO₄, THF, aq Na₂SO₃, 70%; (c) B₂H₆, THF, reflux, 1.5 h, 96%; (d) B₂H₆, THF, reflux, 20 h, 52%; (e) Ag₂CO₃, Celite, toluene, reflux, 17 h, 30%; (f) (i) SOCl₂-pyridine, room temperature, 1 h, (ii) CH₃OH-H₂O (9:1), 70 °C, 2 h, 78%.

isolated yield (Scheme 6). The ¹H and ¹³C NMR spectra of **16** (see Section 4) showed distinct twin signals, implying that it is the epimeric pair at C-10. The ¹H and ¹³C NMR spectra of **17**, as compared with those of **14**, showed the absence of the γ -lactone group, leading to noticeable differences, especially in C-1, C-2, C-8, C-11,

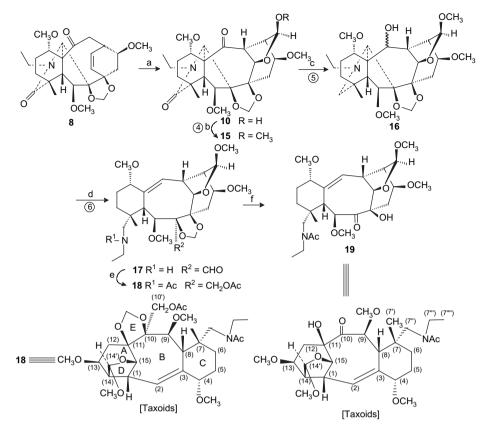

C-14, and C-14' (Tables 3 and 4). The structure of **17**, including the absolute configuration based on a derivation from the known C_{19} -diterpenoid alkaloid deltaline (**1**),¹² was established unambiguously by the 2D NMR (Table 4) and single crystal X-ray analysis (Fig. 1) of the analogue **18** prepared by N-acetylation and

Table 3

NMR data for compound 14^a

Carbon	δ_{C}	$\delta_{\rm H}$ mult (J in Hz)	¹ H– ¹ H COSY	HMBC (H \rightarrow C)
1	41.7 d	3.71 m (hidden)	H-2, H-14, H-15	C-3, C-11, C-13, C-14'
2	125.5 d	5.47 d (2.0)	H-1	C-4, C-8, C-14, C-15
2 3 4	137.9 s	_	_	—
4	80.9 d	3.65 m (hidden)	Η-5α, Η-5β	C-2, C-6, C-8, C-4'
5	25.0 t	1.79 m (hidden) (α)	Η-4, Η-5β, Η-6α, Η-6β	C-7
		1.93 m (β)	Η-4, Η-5α, Η-6α, Η-6β	C-3, C-7
6	27.3 t	1.23 m (β)	Η-5α, Η-5β, Η-6α	C-4, C-8, C-7', C-7"
		1.82 m (hidden) (α)	Η-5α, Η-5β, Η-6β	C-7′
7	36.8 s	_	_	_
8	42.0 d	2.75 d (7.2)	H-9	C-2, C-4, C-6, C-10, C-7'
9	84.5 d	4.16 d (7.2)	H-8	C-3, C-11, C-9', C-10'
10	91.3 s		_	_
11	83.6 s	_	_	_
12	30.5 t	1.83 m (hidden) (β)	H-12α, H-13	C-10
		2.64 dd (15.6, 6.4) (α)	Η-12β, Η-13	C-10, C-14, C-15
13	71.8 d	3.68 m (hidden)	Η-12α, Η-12β, Η-14	C-13′
14	44.5 d	2.99 m	H-1, H-13	C-12, C-15
15	77.5 d	6.16 d (5.2)	H-1	C-12, C-14, C-14'
4′	55.4 g	3.31 s	_	C-4
7′	26.7 g	1.38 s	_	C-6, C-8, C-7"
9′	61.7 q	3.39 s	_	C-9
10′	200.9 d	9.58 s	_	_
13′	56.6 q	3.44 s	_	C-13
14′	173.1 s	_	_	_
7″	57.6 t	2.79 m (hidden)	Η-7" (δ 3.22)	C-8
		3.22 m (hidden)	Η-7" (δ 2.79)	_
7‴	44.2 t	3.01 m (hidden)	H-7 ^{'''} (δ 3.27), H-7 ^{''''}	C-7''''
		3.27 m (hidden)	H-7 ^{""} (δ 3.01), H-7 ^{""}	C-7''''
7‴	11.2 q	1.49 t (7.2)	H-7‴	_
OCH ₂ O	91.7	5.33 s	—	C-10, C-11
		5.80 s	_	C-10, C-11
NH	_	7.14 br s	_	_

^a The numbering of taxoids.

Scheme 6. (a) (i) O₃, CH₂Cl₂, -78 °C, (ii) Me₂S, room temperature, (iii) Na₂SO₃, THF-H₂O, room temperature, 70%; (b) CH₃I, NaH, THF, room temperature, 100%; (c) B₂H₆, THF, reflux, 78%; (d) (i) SOCl₂, pyridine, room temperature, (ii) MeOH-H₂O (9:1), reflux, 84%; (e) (i) Ac₂O-pyridine, room temperature, (ii) NaBH₄, room temperature, (iii) Ac₂O-pyridine, room temperature, 91%; (f) (i) Ac₂O-pyridine, room temperature, (iii) *mCPBA/CHCl₃*, Na₂CO₃, (iii) HOAc-H₂O, 69%.

Table 4	
NMR data for compound	17 ^a

Carbon	δ_{C}	$\delta_{\rm H}$ mult (J in Hz)	¹ H– ¹ H COSY	HMBC (H \rightarrow C)
1	39.7 d	3.44 m (hidden)	H-2, H-15	C-3, C-11, C-13, C-14'
2	127.9 d	5.62 d (2.0)	H-1	C-4, C-8, C-14, C-15
2 3 4	136.8 s		_	_
4	80.7 d	3.64 br s	Η-5α, Η-5β	C-2, C-6, C-8, C-4'
5	24.4 t	1.73 m (α)	Η-4, Η-5β, Η-6α, Η-6β	_
		1.93 m (β)	Η-4, Η-5α, Η-6α, Η-6β	C-3, C-7
6	26.8 t	1.47 m (hidden) (β)	Η-5α, Η-5β, Η-6α	C-4
		1.80 m (α)	Η-5α, Η-5β, Η-6β	C-4, C-7′, C-7″
7	36.5 s			_
8	44.6 d	2.70 d (8.0)	H-9	C-2, C-4, C-6, C-10, C-7', C-7
9	85.7 d	3.95 d (8.0)	H-8	C-3, C-7, C-11, C-9', C-10'
10	91.8 s	_ ```	_	
11	85.7 s	_	_	_
12	31.7 t	1.64 dd (14.4, 11.2) (β)	H-12a, H-13	C-10, C-14
		2.34 dd (14.4, 6.0) (α)	Η-12β, Η-13	C-10, C-14, C-15
13	72.8 d	3.49 m (hidden)	Η-14, Η-12α, Η-12β	C-11, C-13', C-14'
14	48.3 d	2.57 t (4.0)	H-1, H-13	C-2, C-12, C-15
15	76.4 d	5.32 d (5.6)	H-1	C-12, C-14, C-14'
4′	55.0 g	3.27 s	_	C-4
7′	26.3 q	1.35 s	_	C-6, C-8, C-7"
9′	61.3 q	3.46 s	_	C-9
10′	199.4 d	9.52 s	_	_
13′	56.3 q	3.33 s	_	C-13
14′	101.1 d	4.95 s	_	C-1, C-13, C-15, C-14"
7″	57.4 t	2.82 m	H-7″ (δ 3.22)	C-7′, C-7‴
		3.22 m (hidden)	Η-7" (δ 2.82)	C-6, C-7′
14″	54.9 q	3.41 s	_	C-14′
7‴	44.2 t	3.05 m	H-7 ^{""} (δ 3.26), H-7 ^{""}	C-7″
		3.26 m (hidden)	Η-7 " (δ 3.05), Η-7 ""	C-7″
7‴	11.0 g	1.49 t (7.2)	H-7‴	
OCH ₂ O	91.4 t	5.19 s	_	C-10, C-11
2		5.59 s	_	C-10, C-11

^a The numbering of taxoids.

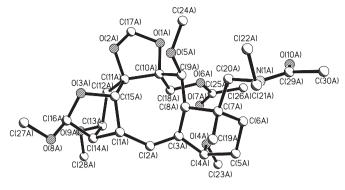


Figure 1. X-ray structure of 18.

NaBH₄ reduction, and acetylation of **17**. The X-ray crystallography data of **18** are listed below: colorless crystals from cyclohexane-acetone are monotectic, space group *P*2₁, *a*=10.253 (1), *b*=17.78 (1), *c*=17.594 (1) Å, β =106.589 (1)°, *V*=3074.7 (1) Å³, *Z*=2, *d*_x=1.257 g/ cm³. Full-matrix least-squares refinements gave *R*(*F*)=0.0567, *wR*(*F*)=0.0523 for 739 parameters and 12,499 reflections with *l*≥3*s*(1). The X-ray diffraction analysis of **18** showed that the skeleton consists of one eight-membered ring B, two six-membered rings A and C, each with the chair conformation, as well as two five-membered heterocyclic rings D and E, having the envelope form. In addition, the cis-fusion patterns of the A/B, A/D, B/D, and B/E rings were also observed. Therefore, the stereochemistry of C-1, C-8, and the bridge ring of **18** is the same as those of the taxoids, except for the missing 16, 17, 18, and 19-methyl groups. In addition, the NOE relationships between H-14' ($\delta_{\rm H}$ 4.93 s) and H-12 β ($\delta_{\rm H}$ 1.52 m) also

Table 5NMR data for compound 18°

supported the *S* configuration at C-14', the same as **10**. Finally, acetylation of **17** with Ac₂O–pyridine, followed by *m*CPBA oxidation and HOAc hydrolysis, furnished compound **19** in 69% yield (Scheme 6). The IR and ¹³C NMR spectra (Table 6) of **19** ($C_{26}H_{41}NO_8$, HR-ESIMS) showed the distinct ketone and ester signals at 1712 cm⁻¹ and δ_C 199.1 s, as well as at 1633 cm⁻¹ and δ 171.8 s, 21.6 q, respectively. It is important to point out that the conversion of **1** \rightarrow **3**, **3**(\rightarrow **4**) \rightarrow **5a**, **5a** \rightarrow **8**, **8** \rightarrow **15**, **15** \rightarrow **16**, and **16** \rightarrow **17** shown in Schemes 4 and 6 and Section 4 was carried out in six steps in an overall yield of 18%.

3. Conclusion

In conclusion, a short, efficient, and effective conversional synthesis, based on diterpenoid alkaloid chemistry, of the taxane-like ABC ring system, and yielding a new class of nor-taxanes, has been developed. The route is mainly based on the Grob fragmentation and Pelletier's cleavage, using readily available starting material, operationally simple reactions employing cheap chemical reagents, and in good overall yield (18% for 6 steps from deltaline **1**). Further research on the synthetic conversion to the taxanes based on the strategy shown in Scheme 3 is continuing.

4. Experimental section

4.1. General methods

Melting points were determined on a Kofler block (uncorrected); optical rotations were measured in a 1.0 dm cell with a PE-314 polarimeter at 20 ± 1 °C; IR spectra were recorded on a Nicolet 200 SXV spectrometer; MS spectra were obtained with

Carbon	δ_{C}	$\delta_{\rm H}$ mult (J in Hz)	¹ H– ¹ H COSY	HMBC (H \rightarrow C)
1	40.0 d	3.39 m (hidden)	H-2, H-14, H-15	C-3, C-11, C-13, C-14'
2	129.0 d	5.71 s	H-1	C-4, C-8, C-14, C-15
3	139.6 s	_	_	_
2 3 4	79.9 d	3.67 m	Η-5α, Η-5β	C-2, C-6, C-8, C-4'
5	23.3 t	1.55 m (α)	Η-4, Η-5β, Η-6α, Η-6β	C-7
		1.86 m (β)	Η-4, Η-5α, Η-6α, Η-6β	C-7
6	26.6 t	1.23 m (β)	Η-5α, Η-5β, Η-6α	C-8
		1.78 m (α)	Η-5α, Η-5β, Η-6β	_
7	39.7 s	_	_	_
8	51.3 d	2.69 d (8.4)	H-9	C-2, C-4, C-6, C-10, C-7
9	86.0 d	3.86 d (9.2)	H-8	C-7, C-11, C-9', C-10'
10	87.7 s		_	_
11	87.6 s	_	_	_
12	32.8 t	1.52 m (β)	Η-12α, Η-13	C-10
12	52.01	$2.67 \text{ m}(\alpha)$	Η-12β, Η-13	C-10, C-14, C-15
13	73.0 d	3.31 m	Η-12, Η-13 Η-14, Η-12α, Η-12β	C-13'
14	48.8 d	2.58 m	H-1, H-13	C-12, C-15
15	48.8 d 79.7 d	5.28 d (6.0)	H-1	C-10, C-12, C-14, C-14'
15 4'	55.7 q	3.22 s	n-1	C-10, C-12, C-14, C-14 C-4
4 7'	26.8 q	0.93 s	—	C-4 C-6, C-8, C-7″
9'		3.56 s	—	C-9
-	60.7 q			
10′	66.7 t	4.39 ABq (12.0)	H-10′	C-9, C-11, OCO
13′	56.2 q	3.37 s	—	C-13
14′	101.7 d	4.96 s		C-1, C-13, C-15, C-14"
7″	53.0 t	3.33 m (hidden)	Η-7" (δ 3.72)	NCO
		3.72 m	H-7″ (δ 3.33)	NCO
14″	54.9 q	3.42 s	—	C-14′
7‴	45.7 t	3.27 m (hidden)	H-7 [™] (δ 3.47), H-7 [™]	NCO
		3.47 m	H-7 ''' (δ 3.27), H-7 ''''	NCO
7‴″	13.5 q	1.18 t (7.2)	H-7 '''	_
OCH ₂ O	91.6 t	4.92 s	_	C-10, C-11
		5.17 s	—	C-10, C-11
NCO	171.8 s	_	—	—
NCOCH ₃	21.7 q	2.15 s	_	_
000	170.4 s	_	_	_
OCOCH₃	21.0 g	2.10 s	_	_

^a The numbering of taxoids.

Table 6				
NMR data	for	com	pound	19 ^a

Carbon	δ_{C}	$\delta_{\rm H}$ mult (J in Hz)	¹ H– ¹ H COSY	HMBC (H \rightarrow C)
1	39.6 d	3.38 m (hidden)	H-2, H-14, H-15	C-3, C-11, C-13, C-14'
2	128.2 d	5.40 s	H-1	C-4, C-8, C-14, C-15
3	136.7 s	_	_	_
4	80.3 d	3.22 m	Η-5α, Η-5β	C-2, C-6, C-8, C-4'
5	26.4 t	1.54 m (α)	Η-4, Η-5β, Η-6α, Η-6β	_
		1.73 m (β)	Η-4, Η-5α, Η-6α, Η-6β	_
6	25.3 t	1.23 m (β)	Η-5α, Η-5β, Η-6α	_
		1.79 m (α)	Η-5α, Η-5β, Η-6β	_
7	40.0 s	_ ``		_
8	48.0 d	2.86 d (10.0)	H-9	C-2, C-4, C-6, C-7'
9	89.3 d	3.88 d (10.4)	H-8	C-7, C-11, C-9'
10	199.0 s	_ ```	_	
11	80.2 s	_	_	_
12	33.1 t	1.18 dd (13.2, 11.2) (β)	H-12a, H-13	C-10, C-15
		2.94 dd (13.2, 6.0) (α)	H-12β, H-13	C-10, C-14, C-15
13	72.2 d	3.26 m	Η-14, Η-12α, Η-12β	C-13′
14	48.5 d	2.48 t (3.2)	H-1, H-13	C-12, C-15
15	79.9 d	5.23 d (5.6)	H-1	C-12, C-14, C-14'
4′	56.3 q	2.96 s	_	C-4
7′	24.4 q	0.91 s	_	C-6, C-8, C-7"
9′	57.6 g	3.30 s	_	C-9
13′	56.2 g	3.30 s	_	C-13
14′	102.2 d	4.90 s	_	C-1, C-13, C-15, C-14"
7″	53.3 t	3.08 m	H-7″ (δ 3.55)	C-7′
		3.55 m	Η-7" (δ 3.08)	C-6
14″	54.9 q	3.39 s	_	C-14′
7‴	45.8 t	3.34 m	H-7‴, H-7‴	C-7″
7‴	13.4 g	1.11 t (7.2)	H-7‴	
NCO	171.7 s	_	_	_
NCOCH ₃	21.6 g	2.09 s	_	_

^a The numbering of taxoids.

Finnigan LCQ DECA mass spectrometer; HRMS spectra were obtained with a Bruker BioTOFQ mass spectrometer; ¹H and ¹³C NMR spectra were acquired on a Bruker AC-E 200 or a Varian INOVA-400/54 spectrometer, with TMS as internal standard; silica gel GF₂₅₄ and H (10–40 μ m, Qingdao Sea Chemical Factory, China) were used for TLC and CC.

4.1.1. Preparation of compound 2

A solution of deltaline (1) (11.0 g, 21.70 mmol) in 6.5% HBr-HOAc (527 ml, w/v) was heated at 85 °C for 50 h. Removal of solvent gave a residue, which was diluted with water (100 ml). Basification (NH₄OH, pH 10), extraction (CHCl₃, 200 ml×3), drying (Na₂SO₄), and evaporation in vacuum gave a residue (13.0 g), which was chromatographed over silica gel H (220 g) eluted with cyclohexane-acetone (8:1) to give 2 (11.1 g, 85%). Compound 2: mp: 64-66 °C; $[\alpha]_D^{20}$ –28.4 (*c* 0.5, CHCl₃); IR (KBr): 1739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (3H, s, H₃-18), 1.06 (3H, t, J=7.2 Hz, NCH₂CH₃), 2.02, 2.06, 2.06, 2.09 (each 3H, s, OCH₃×4), 3.25 (3H, s, OCH₃), 3.53 (1H, dd, *J*=9.6, 7.6 Hz, H-1β), 4.20 (1H, d, *J*=5.6 Hz, H-9), 4.76 (1H, dd, *J*=9.6, 6.0 Hz, H-16α), 4.85, 4.96 (each 1H, s, OCH₂O), 5.44 (1H, s, H-6 α), 5.53 (1H, t, J=5.2 Hz, H-14 β); ¹³C NMR (100 MHz, CDCl₃) δ 78.3 (d, C-1), 26.7 (t, C-2), 36.3 (t, C-3), 33.5 (s, C-4), 50.7 (d, C-5), 77.3 (d, C-6), 91.0 (s, C-7), 81.3 (s, C-8), 47.2 (d, C-9), 95.4 (s, C-10), 57.3 (s, C-11), 34.4 (t, C-12), 38.5 (d, C-13), 73.8 (d, C-14), 33.7 (t, C-15), 73.2 (d, C-16), 63.1 (d, C-17), 25.3 (q, C-18), 56.4 (t, C-19), 50.1 (t, C-21), 13.6 (q, C-22), 170.6 s, 170.2 s, 170.0 s, 169.7 s, 23.2 q, 21.5 q, 21.2 q, 21.1 q (OAc×4), 55.0 (q, C-1'), 93.9 (t, OCH₂O); ESIMS m/z 606 $[M+H]^+$; HR-ESIMS $[M+H]^+$ m/z calcd for $C_{31}H_{44}NO_{11}$: 606.2909, found: 606.2889.

4.1.2. Preparation of compound 3

Method 1. To a solution of **2** (6.4 g, 10.58 mmol) in acetone– H_2O -glacial acetic acid (165:42:3) (210 ml) under ice bath, KMnO₄ (5.0 g, 31.74 mmol) was added. Upon addition was completed, cold bath was removed and the reaction mixture stirred at room temperature

for 1 h, to which Na₂SO₃ (5.0 g) in H₂O (20 ml) was added for stopping the reaction. Usual work-up and chromatography (silica gel H, 130 g) using cyclohexane-acetone (5:1) as eluent furnished 3 (4.9 g, 75%). *Method 2*. A solution of deltaline (**1**) (11.0 g, 21.7 mmol) in 6.5% HBr-HOAc (527 ml, w/v) was heated at 85 °C for 50 h. The usual work-up gave the crude 2 (13.0 g) and then exposed to acetone-H₂O-glacial acetic acid (165:42:3) (430 ml) under ice bath, followed by KMnO₄ (10.2 g, 65.1 mmol), then the reaction mixture was stirred at room temperature for 1 h, to which Na₂SO₃ (10 g) in H₂O (40 ml) was added for stopping the reaction. The same work-up as method 1 furnished **3** (8.6 g, 64%). Compound **3**: mp: 213–215 °C; $[\alpha]_D^{20}$ –23.0 (*c* 0.5, CHCl₃); IR (KBr): 1739, 1648 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.23 (3H, s, H₃-18), 1.15 (3H, t, *J*=7.2 Hz, NCH₂CH₃), 2.04, 2.08, 2.08, 2.11 (each 3H, s, OCH₃×4), 2.94–3.02, 3.99-4.08 (each 1H, m, NCH₂CH₃), 3.60 (1H, d, J=3.2 Hz, H-17), 3.73 (1H, t, *J*=8.4 Hz, H-1β), 4.10 (1H, d, *J*=5.2 Hz, H-9), 4.78 (1H, dd, J=9.6, 5.2 Hz, H-16α), 4.89, 4.97 (each 1H, s, OCH₂O), 5.38 (1H, d, J=1.6 Hz, H-6 α), 5.55 (1H, t, J=5.2 Hz, H-6 α); ¹³C NMR (50 MHz, CDCl₃) δ 79.9 (d, C-1), 26.6 (t, C-2), 34.6 (t, C-3), 44.9 (s, C-4), 50.2 (d, C-5), 75.7 (d, C-6), 94.7 (s, C-7), 89.6 (s, C-8), 46.8 (d, C-9), 80.3 (s, C-10), 54.9 (s, C-11), 33.7 (t, C-12), 37.8 (d, C-13), 73.2 (d, C-14), 33.5 (t, C-15), 72.5 (d, C-16), 62.1 (d, C-17), 23.2 (q, C-18), 169.5 (s, C-19), 43.0 (t, C-21), 12.2 (q, C-22), 172.3 s, 170.6 s, 170.2 s, 169.5 s, 21.5 q, 21.3 q, 21.1 q (OAc×4), 54.9 (q, C-1'), 94.1 (t, OCH₂O); ESIMS *m*/*z* 620 $[M+H]^+$; HR-ESIMS $[M+Na]^+$ m/z calcd for $C_{31}H_{41}NO_{12}Na$: 642.2521, found: 642.2497.

4.1.3. Preparation of compound 4

A solution of **3** (8.9 g, 14.38 mmol) in 300 ml of 5% NaOH methanol was refluxed for 1 h. Evaporation under reduced pressure, dilution (H₂O, 100 ml), acidification with 10% HCl to pH 4, followed by basification (NH₄OH, pH 10), extraction (*n*-butanol, 250 ml×3), and general work-up gave **4** (6.5 g, 100%). Compound **4**: mp: 234–236 °C; $[\alpha]_D^{20}$ –11.4 (*c* 0.5, CH₃OH); IR (KBr): 3396, 1618 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.99 (3H, s, H₃-18), 0.99

(3H, t, *J*=7.2 Hz, *N*CH₂*C*H₃), 3.28 (3H, s, OCH₃), 3.70 (1H, t, *J*=6.4 Hz, H-1β), 3.76–3.90 (1H, m, H-16), 4.89 (1H, t, *J*=4.8 Hz, H-14β), 5.11, 5.22 (each 1H, s, OCH₂O); ¹³C NMR (100 MHz, CDCl₃) δ 81.9 (d, C-1), 26.2 (t, C-2), 34.3 (t, C-3), 45.6 (s, C-4), 50.6 (d, C-5), 75.6 (d, C-6), 90.7 (s, C-7), 81.3 (s, C-8), 49.6 (d, C-9), 78.7 (s, C-10), 52.2 (s, C-11), 36.5 (t, C-12), 38.6 (d, C-13), 72.0 (C-14), 35.3 (t, C-15), 71.1 (d, C-16), 63.3 (d, C-17), 21.7 (q, C-18), 173.0 (s, C-19), 42.2 (t, C-21), 12.5 (q, C-22), 55.2 (q, C-1′), 93.4 (t, OCH₂O); ESIMS *m*/*z* 452 [M+H]⁺; HR-ESIMS [M+Na]⁺ *m*/*z* calcd for C₂₃H₃₃NO₈Na: 474.2098, found: 474.2075.

4.1.4. Preparation of compounds 5a and 5b

To a solution of 4 (2.3 g, 5.10 mmol) in fresh THF (100 ml), were added sequentially KI (169 mg, 1.02 mmol), Ag₂O (1.77 g, 7.65 mmol), and BzCl (1.1 ml, 9.18 mmol) under argon steam and the mixture was heated at 40 °C for 2 h, to which water (3 ml) was added to stop the reaction. A general work-up procedure gave a residue, which was diluted with H₂O (20 ml). Basifying (NH₄OH, pH 10), extraction (CHCl₃, 30 ml×3), drying (Na₂SO₄), evaporation, and column chromatography (silica gel H, 75 g, CHCl₃–MeOH 95:5 to 19:1) furnished **5a** (1.27 g, 45%, after recovering the starting material from 5b, 90%) and 5b (1.42 g, 50%). The latter was hydrolyzed with 5% NaOH methanol to recover the starting material 4 for the next use. Compound **5a**: mp: 148–150 °C; $[\alpha]_D^{20}$ –19.8 (*c* 0.5, CHCl₃); IR (KBr): 3422, 1712, 1623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.16 (3H, t, J=7.2 Hz, NCH₂CH₃), 1.29 (3H, s, H₃-18), 2.93-2.98, 3.97-4.03 (each 1H, m, NCH2CH3), 3.25 (3H, s, OCH3), 3.43 (1H, d, *I*=5.2 Hz, H-9), 3.65 (1H, d, *I*=3.2 Hz, H-17), 3.76 (1H, t, *I*=8.4 Hz, H-1 α), 4.18 (1H, br s, H-6 α), 4.80 (1H, t, *J*=4.8 Hz, H-14 β), 5.05, 5.22 (each 1H, s, OCH₂O), 5.12-5.14 (1H, m, H-16a), 7.43-8.04 (5H, m, Ar–H); ¹³C NMR (100 MHz, CDCl₃) δ 82.2 (d, C-1), 26.5 (t, C-2), 33.3 (t, C-3), 45.4 (s, C-4), 50.8 (d, C-5), 75.3 (d, C-6), 90.4 (s, C-7), 82.4 (s, C-8), 50.8 (d, C-9), 79.9 (s, C-10), 53.3 (s, C-11), 37.1 (t, C-12), 39.7 (d, C-13), 73.4 (d, C-14), 34.4 (t, C-15), 71.5 (d, C-16), 62.6 (d, C-17), 21.7 (q, C-18), 173.7 (s, C-19), 43.1 (t, C-21), 12.3 (q, C-22), 55.0 (q, C-1'), 93.8 (t, OCH₂O), 165.9 (s, Ar-COO), 129.9 (s, C-1"), 129.5 (d, C-2", 6"), 128.3 (d, C-3", 5"), 133.1 (d, C-4"); ESIMS m/z 556 [M+H]+; HR-ESIMS $[M+Na]^+$ *m*/*z* calcd for C₃₀H₃₇NO₉Na: 578.2361, found: 578.2338. Compound **5b**: mp: 266–268 °C; $[\alpha]_D^{20}$ –18.0 (*c* 0.5, CHCl₃); IR (KBr): 3520, 3378, 1716, 1621 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (3H, t, J=7.2 Hz, NCH₂CH₃), 1.27 (3H, s, H₃-18), 2.91-2.96, 3.98-4.03 (each 1H, m, NCH₂CH₃), 3.22 (3H, s, OCH₃), 3.60 (1H, d, J=2.8 Hz, H-17), 3.70 (1H, d, J=4.8 Hz, H-9), 3.78 (1H, t, J=8.8 Hz, H-1β), 3.87 (1H, br d, J=8.8 Hz, H-16α), 5.10, 5.19 (each 1H, s, OCH₂O), 5.77 (1H, t, *J*=4.8 Hz, H-14β), 7.37–7.59 (5H, m, Ar–H); ¹³C NMR (50 MHz, CDCl₃) δ 79.7 (d, C-1), 24.7 (t, C-2), 32.7 (t, C-3), 43.4 (s, C-4), 48.6 (d, C-5), 73.7 (d, C-6), 88.3 (s, C-7), 79.3 (s, C-8), 46.4 (d, C-9), 78.0 (s, C-10), 51.0 (s, C-11), 36.0 (t, C-12), 38.3 (d, C-13), 72.7 (d, C-14), 35.3 (t, C-15), 68.3 (d, C-16), 60.8 (d, C-17), 20.1 (q, C-18), 171.1 (s, C-19), 40.5 (t, C-21), 10.7 (q, C-22), 91.6 (t, OCH₂O), 53.2 (q, C-1'), 164.1 (s, Ar-COO), 128.8 (s, C-1"), 127.9 (d, C-2", 6"), 126.8 (d, C-3", 5"), 131.2 (d, C-4"); ESIMS m/z 556 [M+H]+; HR-ESIMS [M+Na]⁺ *m*/*z* calcd for C₃₀H₃₇NO₉Na: 578.2361, found: 578.2338.

4.1.5. Preparation of compounds 6 and 7

Alcohol **5a** (1.65 g, 2.97 mmol) was first mesylated with MsCl (0.82 ml, 8.91 mmol) in dry pyridine (60 ml) at room temperature for 2 h, stopping the reaction with H₂O, and the usual work-up gave **6**, and then exposed to 5% sodium hydroxide–methanol (60 ml) under reflux for 3 h. Evaporation under reduced pressure, dilution (H₂O, 100 ml), extraction (CHCl₃, 100 ml×3), drying (Na₂SO₄), and evaporation in vacuum gave a residue (1.29 g), followed by chromatography (silica gel H, 25 g; cyclohexane–acetone 6:1) furnished **7** (1.13 g, 88%). Compound **6**: mp: 152–154 °C; $[\alpha]_D^{20}$ –33.9 (*c* 0.8, CHCl₃); IR (KBr): 3412, 1713, 1623, 1354 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.16 (3H, t, *J*=7.2 Hz, *N*CH₂*CH*₃), 1.30 (3H, s, H₃-18),

2.93-2.98, 3.97-4.04 (each 1H, m, NCH₂CH₃), 3.09 (3H, s, OMs), 3.26 (3H, s, OCH₃), 3.63 (1H, d, J=3.2 Hz, H-17), 3.74 (1H, d, J=5.6 Hz, H-9), 3.77 (1H, t, *J*=8.8 Hz, H-1β), 4.21 (1H, d, *J*=0.8 Hz, H-6α), 5.06, 5.24 (each 1H, s, OCH₂O), 5.11 (1H, dd, J=9.2, 2.4 Hz, H-16α), 5.49 (1H, t, J=5.2 Hz, H-14 β), 7.44–8.11 (5H, m, Ar–H); ¹³C NMR (100 MHz, CDCl₃) δ 82.6 (d, C-1), 26.6 (t, C-2), 33.0 (t, C-3), 45.4 (s, C-4), 51.0 (d, C-5), 78.8 (d, C-6), 93.3 (s, C-7), 81.4 (s, C-8), 49.2 (d, C-9), 79.5 (s, C-10), 53.5 (s, C-11), 36.5 (t, C-12), 38.8 (d, C-13), 75.1 (d, C-14). 34.7 (t, C-15), 72.1 (d, C-16), 62.5 (d, C-17), 21.8 (q, C-18), 173.2 (s, C-19), 43.1 (t, C-21), 12.4 (q, C-22), 55.0 (q, C-1'), 93.8 (t, OCH2O), 166.1 (s, Ar-COO), 130.0 (s, C-1"), 129.7 (d, C-2", 6"), 128.5 (d, C-3", 5"), 133.2 (d, C-4"), 38.3 (q, OMs); ESIMS *m*/*z* 634 [M+H]⁺; HR-ESIMS $[M+Na]^+ m/z$ calcd for $C_{31}H_{39}NO_{11}SNa$: 656.2136, found: 656.2108. Compound **7**: mp: 68–70 °C; $[\alpha]_D^{20}$ +22.6 (*c* 0.5, CHCl₃); IR (KBr): 3518, 3389, 1683, 1642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 1; ESIMS *m*/*z* 434 [M+H]⁺; HR-ESIMS $[M+Na]^+$ *m*/*z* calcd for C₂₃H₃₁NO₇Na: 456.1993, found: 456.1982.

4.1.6. Preparation of the key intermediate 8

The olefin-ketone **8**, employed as the key intermediate, could be synthesized by one-pot mesylation-Grob fragmentation-methylation procedure. Alcohol 5a (1.65 g, 2.97 mmol) was first mesylated with MsCl (0.82 ml, 8.91 mmol) in dry pyridine (60 ml) at room temperature for 2 h, then exposed to 5% sodium hydroxidemethanol (60 ml) under reflux for 3 h. Finally, the C-6 and C-16 hydroxyl groups were protected using CH₃I (1.65 ml, 26.10 mmol) and NaH (935 mg, 39.14 mmol) in THF (50 ml) at room temperature for 4 h (TLC monitoring). Adding H₂O to stop the reaction, and the usual work-up, followed by chromatography (silica gel H, 30 g; cyclohexane-acetone 7:1), furnished 8 (962 mg, 70%). Compound **8**: mp: 67–69 °C; $[\alpha]_D^{20}$ +30.6 (*c* 0.5, CHCl₃); IR (KBr): 2935, 1699. 1649 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.21 (3H, t, J=7.2 Hz, NCH₂CH₃), 1.30 (3H, s, H₃-18), 3.20 (1H, dd, *J*=10.0, 8.0 Hz, H-1α), 3.29, 3.30, 3.26 (each 3H, s, OCH₃×3), 3.60 (1H, d, J=12.0 Hz, H-6 α), 3.85 (1H, t, J=7.2 Hz, H-16), 4.21 (1H, d, J=2.8 Hz, H-17), 2.70–2.79, 4.21-4.31 (each 1H, m, NCH₂CH₃), 4.89, 5.05 (each 1H, s, OCH₂O), 5.85 (1H, dd, *J*=10.0, 6.8 Hz, H-14), 6.08 (1H, d, *J*=10.0 Hz, H-9); ¹³C NMR (100 MHz, CDCl₃) δ 81.8 (d, C-1), 26.3 (t, C-2), 36.0 (t, C-3), 43.0 (s, C-4), 49.8 (d, C-5), 90.3 (d, C-6), 97.3 (s, C-7), 81.5 (s, C-8), 133.2 (d, C-9), 213.9 (s, C-10), 61.5 (s, C-11), 49.4 (t, C-12), 35.7 (d, C-13), 126.7 (d, C-14), 43.9 (t, C-15), 80.8 (d, C-16), 63.7 (d, C-17), 21.5 (q, C-18), 172.5 (s, C-19), 41.2 (t, C-21), 12.5 (q, C-22), 55.9 (q, C-1'), 57.9 (q, C-6'), 56.1 (q, C-16'), 91.0 (t, OCH₂O), ESIMS *m*/*z* 484 [M+Na]⁺; HR-ESIMS $[M+Na]^+$ *m*/*z* calcd for C₂₅H₃₅NO₇Na: 484.2306, found: 484.2295.

4.1.7. Preparation of compound 9

To a solution of 8 (428 mg, 0.93 mmol) in t-BuOH-THF-H₂O (10:3:1, 15 ml) NMO (1.34 mg, 11.44 mmol) and OsO₄ (64 mg, 0.25 mmol) were added and the reaction solution was stirred at room temperature for 5 h, then, to this solution 10 ml of saturated Na₂SO₃ solution was added and stirred vigorously for 15 min. The removal of solvent, basification (NH₄OH, pH 10), extraction (CHCl₃, 20 ml \times 3), drying (Na₂SO₄), and evaporation afforded compound **9** (460 mg, 100%). Compound **9**: mp: 180–182 °C; $[\alpha]_D^{20}$ +43.2 (*c* 0.6, CHCl₃); IR (KBr): 3406, 2927, 1689, 1641 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (3H, t, *J*=7.2 Hz, *N*CH₂CH₃), 1.36 (3H, s, H₃-18), 3.15 (1H, dd, *J*=10.0, 7.6 Hz, H-1β), 3.32, 3.34, 3.43 (each 3H, s, OCH₃×3), 3.80 (1H, t, J=8.8 Hz, H-16a), 4.21 (1H, t, J=4.4 Hz, H-14), 4.39 (1H, d, J=3.2 Hz, H-17), 4.50 (1H, d, J=5.2 Hz, H-9); ¹³C NMR (50 MHz, CDCl₃) δ 81.2 (d, C-1), 26.2 (t, C-2), 35.4 (t, C-3), 43.9 (s, C-4), 49.3 (d, C-5), 92.4 (d, C-6), 95.4 (s, C-7), 81.3 (s, C-8), 68.9 (d, C-9), 212.0 (s, C-10), 61.6 (s, C-11), 43.7 (d, C-12), 39.7 (d, C-13), 62.2 (d, C-14), 35.6 (t, C-15), 80.6 (d, C-16), 62.9 (d, C-17), 21.8 (q, C-18), 172.4 (s, C-19), 46.3 (t, C-21), 12.3 (q, C-22), 56.1 (q, C-1'), 58.2 (q, C-6'), 56.6 (q, C-16'), 91.0 (t, OCH₂O); ESIMS m/z 518 [M+Na]⁺; HR-ESIMS [M+Na]⁺ m/z calcd for C₂₅H₃₇NO₉Na: 518.2361, found: 518.2334.

4.1.8. Preparation of compound 10

To a solution of **9** (703 mg, 1.42 mmol) in THF (16 ml), HIO₄·2H₂O (647 mg, 2.84 mmol) was added and the mixture stirred at room temperature for 30 min. After basifying with saturated Na₂SO₃ solution (30 ml) to pH 7–8, the reaction solution was stirred vigorously for 10 h. Evaporation, extraction (CHCl₃, 35 ml×3), and the removal of solvent gave a residue that was recrystallized from ether to afford compound **10** (490 mg, 70%). Compound **10**: mp: 181–183 °C; $[\alpha]_D^{\beta 0}$ +5.6 (*c* 0.5, CHCl₃); IR (KBr): 3378, 1669, 1640 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 2; ESIMS *m*/*z* 516 [M+Na]⁺; HR-ESIMS [M+Na]⁺ *m*/*z* calcd for C₂₅H₃₅NO₉Na: 516.2204, found: 516.2180.

4.1.9. Preparation of compound 11

To a solution of **10** (197.0 mg, 0.40 mmol) in 10 ml of THF, B_2H_6- THF (1.2 ml, 1.2 mmol) was added and the reaction solution was refluxed for 1.5 h under argon gas steam. Quenching the reaction with H₂O, evaporation, dilution (H₂O, 5 ml), basifying (NH₄OH, pH 10), extraction (CHCl₃, 10 ml×3), drying (Na₂SO₄), and the removal of solvent and chromatography (silica gel H, 4.2 g, cyclohexaneacetone 16:1) afforded 11 (184.7 mg, 96%). Compound 11: mp: 76-78 °C; [α]_D²⁰ –24.8 (*c* 0.5, CHCl₃); IR (KBr): 3381, 1685 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (3H, s, H₃-18), 1.03 (3H, t, *J*=7.2 Hz, *N*CH₂*CH*₃), 3.23, 3.24, 3.45 (each 3H, s, OCH₃×3), 3.57 (1H, s, H-6α), 3.60–3.66 (H-14, hidden), 3.74 (1H, dd, *I*=11.2, 6.8 Hz, H-1^β), 3.91 (1H, d, *I*=2.0 Hz, H-17), 4.00 (1H, dd, *I*=6.4, 5.2 Hz, H-14), 4.98, 5.15 (each 1H, s, OCH₂O), 5.15 (1H, d, *J*=2.4 Hz, H-9); ¹³C NMR (50 MHz, CDCl₃) δ 83.7 (d, C-1), 25.1 (t, C-2), 36.3 (t, C-3), 31.9 (s, C-4), 58.7 (d, C-5), 91.4 (d, C-6), 94.0 (s, C-7), 86.1 (s, C-8), 64.9 (d, C-9), 213.1 (s, C-10), 63.6 (s, C-11), 55.8 (d, C-12), 35.2 (d, C-13), 64.3 (d, C-14), 37.5 (t, C-15), 76.7 (d, C-16), 64.3 d (d, C-17), 24.7 (q, C-18), 55.6 (t, C-19), 50.1 (t, C-21), 13.9 (q, C-22), 56.3 (q, C-1'), 57.8 (q, C-6'), 57.2 (q, C-16'), 92.2 (t, OCH₂O); ESIMS *m*/*z* 482 [M+H]⁺; HR-ESIMS [M+Na]⁺ *m*/*z* calcd for C₂₅H₃₉NO₈Na: 504.2568, found: 504.2544.

4.1.10. Preparation of compound 12

To a solution of 11 (192 mg, 0.40 mmol) in THF (5 ml), B₂H₆-THF (1.8 ml, 1.8 mmol) was added and the mixture was refluxed for 20 h under argon gas steam. Quenching with H₂O, evaporation, dilution with H₂O (5 ml), basification (NH₄OH, pH 10), extraction (CHCl₃, 10 ml \times 3), drying (Na₂SO₄), removal of solvent, and chromatography (silica gel H, 5 g, cyclohexane-acetone 5:1) gave compound 12 (100 mg, 51.8%). Compound **12**: mp: 65–67 °C; $[\alpha]_{D}^{20}$ –5.9 (c 0.5, CHCl₃); IR (KBr): 3398 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (3H, s, H₃-18), 0.89 (3H, t, *J*=7.2 Hz, *N*CH₂CH₃), 3.15 (1H, dd, *J*=10.4, 6.8 Hz, H-1β), 3.34, 3.42, 3.45 (each 3H, s, OCH₃×3), 3.58 (1H, s, H-6α), 3.69-3.75 (1H, m, H-16α), 3.87 (1H, dd, *J*=7.6, 5.6 Hz, H-10), 5.04 (1H, d, *J*=2.4 Hz, H-9), 4.98, 5.12 (each 1H, s, OCH₂O); ¹³C NMR (100 MHz, CDCl₃) δ 84.1 (d, C-1), 25.4 (t, C-2), 35.6 (t, C-3), 32.2 (s, C-4), 52.8 (d, C-5), 92.8 (d, C-6), 94.1 (s, C-7), 85.1 (s, C-8), 65.9 (d, C-9), 75.9 (d, C-10), 55.0 (s, C-11), 47.9 (d, C-12), 37.6 (d, C-13), 64.2 (t, C-14), 37.4 (t, C-15), 76.8 (d, C-16), 63.0 (d, C-17), 25.6 (q, C-18), 55.4 (t, C-19), 49.9 (t, C-21), 13.8 (q, C-22), 56.7 (q, C-1'), 56.9 (q, C-6'), 58.5 (q, C-16'), 91.8 (t, OCH₂O); ESIMS *m*/*z* 506 [M+Na]⁺; HR-ESIMS $[M+Na]^+$ *m*/*z* calcd for C₂₅H₄₁NO₈Na: 506.2724, found: 506.2707.

4.1.11. Preparation of compound 13

To a solution of **12** (100 mg, 0.21 mmol) in toluene (5 ml), fresh silver carbonate-Celite (936 mg, 1.66 mmol) was added and the reaction solution was refluxed for 17 h. The solution was filtrated, and the filtrate was evaporated to give a residue that was chromatographed (silica gel H, 1.4 g, cyclohexane–acetone 7:1) afforded compound **13** (30 mg, 30%). Compound **13**: mp: 190–192 °C; $[\alpha]_D^{20}$

+2.0 (*c* 0.8, CHCl₃); IR (KBr): 3555, 1790 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (3H, s, H₃-18), 1.03 (3H, t, *J*=7.2 Hz, *N*CH₂*C*H₃), 3.27 (1H, dd, *J*=10.4, 6.8 Hz, H-1 β), 3.35, 3.39, 3.40 (each 3H, s, OCH₃×3), 3.61 (1H, s, H-6 α), 3.64 (1H, d, *J*=2.4 Hz, H-17), 3.88–3.93 (1H, m, H-16 α), 4.25 (1H, d, *J*=11.2 Hz, H-10), 4.94, 5.14 (each 1H, s, OCH₂O), 5.79 (1H, d, *J*=6.4 Hz, H-9); ¹³C NMR (100 MHz, CDCl₃) δ 82.3 (d, C-1), 25.6 (t, C-2), 37.1 (t, C-3), 32.2 (s, C-4), 51.9 (d, C-5), 92.5 (d, C-6), 94.9 (s, C-7), 84.9 (s, C-8), 72.4 (d, C-9), 72.7 (d, C-10), 55.3 (s, C-11), 45.6 (d, C-12), 51.3 (d, C-13), 173.6 (s, C-14), 38.4 (t, C-15), 77.5 (d, C-16), 64.8 (d, C-17), 25.7 (q, C-18), 55.5 (t, C-19), 49.9 (t, C-21), 13.8 (q, C-22), 56.6 (q, C-1'), 58.4 (q, C-6'), 56.6 (q, C-16'), 92.9 (t, OCH₂O); ESIMS *m*/*z* 502 [M+Na]⁺; HR-ESIMS [M+Na]⁺ *m*/*z* calcd for C₂₅H₃₇NO₈Na: 502.2411, found: 502.2416.

4.1.12. Preparation of 4α ,9 β ,13 β -trimethoxy-16,17,18,19-nor-7 β -methyl-7 α -(N-ethylmethylamine)-10,11-dioxymethylen-taxa-2-ene-14 β -lide (**14**)

To a solution of **13** (18 mg, 0.038 mmol) in pyridine (1 ml), SOCl₂ (0.05 ml) was added and the reaction solution was stirred at room temperature for 1 h. Stopping the reaction with H₂O (0.1 ml), evaporation, basification (saturated NaHCO₃ solution), extraction (CHCl₃, 5 ml×3), drying (Na₂SO₄), and the removal of solvent gave a residue that was dissolved in a mixture of methanol–H₂O (2 ml, 9:1). The solution was heated at 70 °C for 21 h. Evaporation and chromatography (silica gel H, 500 mg, CHCl₃–MeOH 20:0.35 → 95:5) afforded **14** (13 mg, 78%). Compound **14**: mp: 178–180 °C; $[\alpha]_{D}^{20}$ –24.3 (*c* 0.6, CHCl₃); IR (KBr): 3422, 1786, 1719 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 3; ESIMS *m/z* 480 [M+H]⁺; HR-ESIMS [M+H]⁺ *m/z* calcd for C₂₅H₃₈NO₈: 480.2592, found: 480.2592.

4.1.13. Preparation of compound 15

To a solution of **8** (1.5 g, 3.25 mmol) in CH_2Cl_2 (75 ml) was passed ozone gas (50-100 cc/min) at -78 °C for 1.5 h until the reaction solution was changed into blue color and then oxygen gas was passed to remove the remained ozone gas. To the reaction mixture was added Me₂S (2 ml) and the solution stirred at room temperature for 30 min. The removal of solvent in vacuum gave a residue, which was dissolved with THF (70 ml). After adding saturated Na₂SO₃ solution (70 ml), the mixture was stirred vigorously at room temperature for 10 h. The usual work-up gave the crude 10 (1.43 g), and followed by recrystallization from ether to furnish 10 (1.12 g, 70%), as colorless needle crystals. To a solution of the crude 10, as above, (1.12 g, 2.27 mmol) in THF (25 ml) were added sequentially NaH (545 mg, 22.72 mmol) and CH₃I (0.41 ml, 682 mmol) and the reaction mixture was stirred at room temperature for 2 h under argon steam. The general work-up furnished 15 (1.15 g, 100%). Compound **15**: mp: 96–98 °C; $[\alpha]_D^{20}$ +33.0 (c 0.5, CHCl₃); IR (KBr): 1649, 1097 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.15 (3H, t, J=7.2 Hz, NCH₂CH₃), 1.24 (3H, s, H₃-18), 3.26, 3.26, 3.37, 3.38 (each 3H, s, OCH₃×4), 3.79 (1H, s, H-6α), 3.84 (1H, dd, *J*=6.4, 4.8 Hz, H-12), 3.97–4.02 (1H, m, H-16a), 2.84–2.91, 4.29–4.36 (each 1H, m, NCH₂CH₃), 4.42 (1H, d, J=3.2 Hz, H-17), 4.47 (1H, dd, J=10.4, 7.2 Hz, H-1β), 4.99, 5.13 (each 1H, s, OCH₂O), 5.07 (1H, s, H-14), 5.40 (1H, d, *I*=6.8 Hz, H-9); ¹³C NMR (100 MHz, CDCl₃) see Table 2; ESIMS *m*/*z* 508 $[M+H]^+$; HR-ESIMS $[M+Na]^+$ m/z calcd for C₂₆H₃₇NO₉Na: 530.2361, found: 530.2335.

4.1.14. Preparation of compound 16

To a solution of **15** (1.09 g, 2.16 mmol) in THF (10 ml) was B_2H_6 -THF (8.36 ml, 8.63 mmol) and the mixture was refluxed for 6 h. Quenching the reaction with H₂O, evaporation, dilution with H₂O (10 ml), basification (NH₄OH, pH 10), extraction (CHCl₃, 15 ml×3), drying (Na₂SO₄), and the removal of CHCl₃, followed by chromatography (silica gel H, 30 g, cyclohexane–acetone 13:1) furnished **16** (504 mg, 78%). Compound **16**: ¹H NMR (400 MHz, CDCl₃) δ 0.89/

0.89 (3H, s, H₃-18), 1.03/1.02 (3H, t, J=7.2 Hz, NCH₂CH₃), 3.32, 3.36, 3.38, 3.39/3.35, 3.36, 3.38, 3.39 (each 3H, s, OCH₃×4), 3.62/3.57 (1H, s, H-6a), 3.73-3.78/3.73-3.79 (1H, m, H-16a), 3.80/3.59 (1H, d, *J*=2.4 Hz, H-17), 4.03 (1H, dd, *J*=10.4, 7.2 Hz, H-1β), 3.72 (1H, dd, I=10.0, 7.2 Hz, H-1 β), 4.42 (1H, d, I=10.0 Hz, H-10 α), 4.30 (1H, dd, *I*=11.6, 1.2 Hz, H-10β), 4.92, 5.08/4.92, 5.09 (each 1H, s, OCH₂O), 4.99/4.94 (1H, s, H-14), 5.40/5.37 (1H, d, *J*=6.4 Hz, H-9); ¹³C NMR (100 MHz, CDCl₃) δ 79.4/82.6 (d, C-1), 25.5/25.6 (t, C-2), 37.2/37.3 (t, C-3), 33.1/32.2 (s, C-4), 54.0/52.2 (d, C-5), 92.9/92.7 (d, C-6), 94.1/ 94.3 (s, C-7), 87.0/87.3 (s, C-8), 78.8/74.1 (d, C-9), 74.2/72.9 (d, C-10), 53.8/55.1 (s, C-11), 47.4/48.7 (d, C-12), 44.4/48.1 (d, C-13), 102.4/ 102.1 (d, C-14), 38.2/38.1 (t, C-15), 73.7/73.8 (d, C-16), 65.5/64.6 (d, C-17), 25.1/25.7 (q, C-18), 55.6/55.7 (t, C-19), 50.0/49.8 (t, C-21), 13.8/13.8 (q, C-22), 59.8 q, 57.9 q, 56.2 q, 54.7 q/58.3 q, 56.7 q, 56.2 q, 54.7 q (C-1', 6', 14', 16'), 92.4/92.4 (t OCH₂O); ESIMS m/z 496 $[M+H]^+$; HR-ESIMS $[M+Na]^+$ m/z calcd for C₂₆H₄₁NO₈Na: 518.2724, found: 518.2699.

4.1.15. Preparation of 4α ,9 β ,13 β ,14' β -tetramethoxy-10 α -formyl-16,17,18,19-nor-7 β -methyl-7 α -(N-ethylmethylamine)-10 β ,11 β -dioxymethylen-tax-2-ene-14 β -acetal (**17**)

Reaction of a solution of **16** (1.10 g, 2.22 mmol) in pyridine (20 ml) with SOCl₂ (0.32 ml, 4.44 mmol) at room temperature for 8 min was carried out. Stopping the reaction with H₂O, followed by chilling at 0 °C, and the removal of pyridine, gave a residue. Diluting (H₂O, 15 ml), basification (5% NaHCO₃, pH 8), extraction (CHCl₃, 20 ml×3), and evaporation gave a residue (1.18 g), which was dissolved in MeOH–H₂O (30 ml, 9:1), and the solution was refluxed for 15 h. The usual work-up, followed by chromatography (silica gel H, 20 g, CHCl₃–MeOH 80:1.4 to 95:5), furnished 923 mg of **17** (84%). Compound **17**: mp: 48–50 °C; $[\alpha]_D^{20}$ +61.2 (*c* 0.6, CHCl₃); IR (KBr): 3421, 1721, 1650, 1098 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 4; ESIMS *m*/*z* 496 [M+H]⁺; HR-ESIMS [M+H]⁺ *m*/*z* calcd for C₂₆H₄₂NO₈: 496.2905, found: 496.2909.

4.1.16. Preparation of 4α ,9 β ,13 β ,14' β -tetramethoxy-10 α acetoxymethylen-16,17,18,19-nor-7 β -methyl-7 α -(N-acetyl-Nethylmethylamine)-10 β ,11 β -dioxymethylen-tax-2-en-14 β -acetal (**18**)

A mixture of 17 (562 mg, 1.14 mmol), Ac₂O (2 ml), and pyridine (2 ml) was stirred at room temperature for 1 h. The reaction solution was evaporated to yield a residue, which was diluted with H₂O (10 ml) and after basifying to pH 8 using NH₄OH solution was extracted with $CHCl_3$ (15 $ml{\times}3).$ Evaporation of the combined CHCl₃ solutions gave a residue, to which THF (10 ml) and NaBH₄ (110 mg, 2.89 mmol) were added. The reaction solution was stirred at room temperature for 2.5 h. After quenching with H₂O, extraction with $CHCl_3$ (15 ml×3), drying (Na₂SO₄), and the removal of solvent gave a residue, to which Ac₂O (2 ml) and pyridine (2.5 ml) were added, and the mixture was stirred at 50 °C for 12 h. The usual work-up, followed by chromatography (silica gel H, 15 g, cyclohexane-acetone 7:1) furnished 18 (600 mg, 91%). Compound 18: mp: $173-175 \circ C$; $[\alpha]_D^{20}$ +58.4 (c 0.5, CHCl₃); IR (KBr): 1739, 1643 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 5; ESIMS m/z 604 [M+Na]⁺; HR-ESIMS [M+Na]⁺ *m*/*z* calcd for C₃₀H₄₇NO₁₀Na: 604.3092, found: 604.3120.

4.1.17. Preparation of 11-hydroxyl- 4α , 9β , 13β , $14'\beta$ -tetramethoxy-16,17,18,19-nor- 7β -methyl- 7α -(N-acetyl-N-ethylmethylamine)-tax-2-en-14 β -acetal-10-one (**19**)

A mixture of **17** (152 mg, 0.31 mmol), Ac₂O (1 ml), and pyridine (1 ml) was stirred at room temperature for 1 h. The reaction solution was evaporated to give a residue, which was diluted with H₂O (10 ml) and after basifying to pH 8 using NH₄OH solution, extracted with CHCl₃ (10 ml×3). Evaporation of the combined CHCl₃ solutions gave a residue, to which were added CHCl₃ (5 ml), *m*CPBA

(159 mg, 0.46 mmol), and Na₂CO₃ (80 mg). The reaction solution was stirred at room temperature for 22 h. After quenching with H₂O, extraction with CHCl₃ (10 ml×3), drying (Na₂SO₄), and the removal of solvent gave a residue, to which 80% HOAc solution was added and the mixture stirred at room temperature for 3.5 h. After basifying to pH 8 with NH₄OH, extraction with CHCl₃ (10 ml×3), drying (Na₂SO₄), and the removal of solvent gave a residue that was chromatographed over silica gel H (4 g) eluted with CHCl₃–MeOH (60:0.35) to give compound **19** (105 mg, 69%). Compound **19**: mp: 94–96 °C; $[\alpha]_{D}^{20}$ +22.2 (*c* 0.5, CHCl₃); IR 3409, 1712, 1633 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 6; ESIMS *m*/*z* 518 [M+Na]⁺; HR-ESIMS *m*/*z* calcd for C₂₆H₄₁NO₈Na: 518.2724, found: 518.2695.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 30472075) and the Excellent Ph.D. Dissertation Foundation of China (No. 200367) for financial support of this research.

References and notes

- 1. (a) Holton, R. A.; Kim, H. B.; Somoza, C.; Liang, F.; Biediger, R. T.; Boatinan, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentle, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1599-1600; (b) Nicolaou, K. C.; Yang, E.; Liu, J. J.; Ueno, H.; Nanfermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaude, J.; Couladouuroa, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367, 630-634; (c) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, T.; Sneder, L. B.; Magee, T. V.; Jung, D. K.; Isaaes, R. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Digrandi, M. J. J. Am. Chem. Soc. 1996, 118, 2843-2869; (d) Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancing, P. E.; Glass, T. E.; Krauss, N. E.; Lee, D.; Marquess, D. G.; Mcgtrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2755-2756; (e) Mukaiyama, T.; Shiian, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem.-Eur. J. 1999, 5, 121-161; (f) Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980-12981.
- 2. For reviews, see: Boa, A. N.; Jenkins, P. R.; Lawrente, N. J. Contemp. Org. Synth. 1994, 1, 47-75; Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem., Int. Ed. Engl. 1994, 33, 15-44; (a) Hermando, J. I. M.; Ferreira, M. R. R.; Lena, J. I. C.; Birlirakis, N.; Arseniyadi, S. Tetrahedron: Asymmetry 2000, 11, 951-973; (b) Petit, M.; Chouraqui, G.; Phansavath, P.; Aubert, C.; Malacria, M. Org. Lett. 2002, 4, 1027-1029; (c) Smil, N. V.; Caurent, A.; Spassova, N. S.; Fallis, A. G. Tetrahedron Lett. 2003, 44, 5129-5132; (d) Yap, G. P. A.; Fallis, A. G. Synlett 2003, 1263-1266; (e) Iwamoto, M.; Miyano, M.; Utsugi, M.; Kawada, H.; Nakada, M. Tetrahedron Lett. 2004, 45, 8653-8656; (f) Garcvia-Fandino, R.; Codesido, E. M.; Sobarzo-Sanchez, E.; Castedeo, L.; Granja, J. R. Org. Lett. 2004, 6, 193–196; (g) Kawada, H.; Iwamoto, M.; Utsugi, M.; Miyano, M.; Nakada, M. Org. Lett. 2004, 6, 4491-4494; (h) Brennan, N. K.; Guo, X.; Paguentte, L. A. J. Org. Chem. 2005, 70, 732-734; (i) Hamon, S.; Feffeira, M. R. R.; Moral, J. Q.; Hernando, J. I. M.; Lena, J. I. C.; Birlirakis, N.: Toupet, L.: Arsenivadis, S. Tetrahedron: Asymmetry 2005, 16, 3241-3255; (j) Hamon, S.; Birlirakis, N.; Toupet, L.; Arseniyadis, S. Eur. J. Org. Chem. 2005, 4082-4092.
- (a) Kingston, D. G. I. Pharmacol. Ther. 1991, 52, 1–34; (b) Datta, A.; Jayasinghe, L. R.; Georgy, G. I. J. Med. Chem. 1994, 37, 4258–4260.
- (a) Wang, F. P.; Liang, X. T. *The Alkaloids*; Cordell, G. A., Ed.; Academic: New York, NY, 1992; Vol. 42, pp 151–247; (b) Wang, F. P.; Liang, X. T. *The Alkaloids*; Cordell, G. A., Ed.; Elsevier Science: New York, NY, 2002; Vol. 59, pp 1–280.
- Pelletier, S. W.; Mody, N. V.; Joshi, B. S.; Scharmm, L. C. *Alkaloids*; Pelletier, S. W., Ed.; John Wiley & Sons: New York, NY, 1984; Vol. 2, pp 205–462.
 (a) Wang, F. P.; Yang, J. S.; Chen, Q. H.; Xu, L.; Li, B. G. *Chem. Pharm. Bull.* 2000,
- (a) Wang, F. P.; Yang, J. S.; Chen, Q. H.; Xu, L.; Li, B. G. Chem. Pharm. Bull. 2000, 48, 1912–1916; (b) Wang, F. P.; Chen, Q. H.; Xu, L.; Li, B. G. Tetrahedron 2001, 57, 4705–4712; (c) Chen, Q. H.; Xu, L.; Wang, F. P. Tetrahedron 2002, 58, 9431–9444; (d) Wang, F. P.; Xu, L. Tetrahedron 2005, 61, 2149–2167.
- (a) Cai, L. Ph.D. Dissertation, Sichuan University, 2006; p 55; (b) Zou C.-L. Ph.D. Dissertation, Sichuan University, 2008.
- Srivastava, S. K.; Joshi, B. S.; Newton, M. G.; Lee, D.; Pelletier, S. W. Tetrahedron Lett. 1995, 36, 519–522.
- 9. Zou, C. L; Ji, H.; Xie, G. B.; Chen, D. L.; Wang, F. P. J. Asian Nat. Prod. Res., in press.
- (a) Bouzide, A.; Sauve, G. *Tetrahedron Lett.* **1997**, *38*, 5945–5948; (b) Bouzide, A.; Sauve, G. Org. Lett. **2002**, *4*, 2329–2332.
- 11. Fetizon, M.; Golfier, M.; Louis, J. M. Tetrahedron 1975, 31, 171-176.
- (a) Pelletier, S. W.; Mody, N. V.; Dailley, O. D., Jr. Can. J. Chem. **1980**, 58, 1875– 1879; (b) Pelletier, S. W.; Dailey, O. D.; Mody, N. V.; Olsen, J. D. J. Org. Chem. **1981**, 46, 3284–3293; (c) Pelletier, S. W.; Mody, N. V.; Varughese, K. I.; Maddry, J. A.; Desai, H. K. J. Am. Chem. Soc. **1981**, 103, 6536–6538.