This article was downloaded by: [Florida International University] On: 31 December 2014, At: 22:06 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Water International

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/rwin20</u>

Climate Change and Trend Detection in Selected Rivers within the Asia-Pacific Region

Daniel Cluis^a & Claude Laberge^b

^a University of Quebec, Sainte-Foy, Quebec, Canada

^b STATEX, Sainte-Foy, Quebec, Canada Published online: 22 Jan 2009.

To cite this article: Daniel Cluis & Claude Laberge (2001) Climate Change and Trend Detection in Selected Rivers within the Asia-Pacific Region, Water International, 26:3, 411-424, DOI: <u>10.1080/02508060108686933</u>

To link to this article: http://dx.doi.org/10.1080/02508060108686933

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Climate Change and Trend Detection in Selected Rivers within the Asia-Pacific Region

Daniel Cluis, University of Quebec, Sainte-Foy, Quebec, Canada, and Claude Laberge, STATEX, Sainte-Foy, Quebec, Canada

Abstract: Global climate change is currently an issue of great concern. This phenomenon was studied using the runoff of large rivers, which can be considered a regional integrator of the local precipitation occurring in their basins. The long-term stationarity and the possibility of trends in streamflow records stored in the databank of the Global Runoff Data Center (GRDC) at the Federal Institute of Hydrology in Koblenz (Germany) were studied. Runoff records originating from 78 rivers with long monthly runoff series that are geographically distributed throughout the whole Asia-Pacific region were selected for study. For each of the selected rivers, three time series were constructed and analyzed: the mean yearly, and the maximum and minimum monthly discharges. These series were submitted to a two-tier analysis. First, a segmentation procedure developed by Hubert was applied to assess their stationarity. Then the segmented series were submitted to a specialized trend detection software. The results show that about two-thirds of the series have remained stationary and that the monthly minimum runoff exhibited more changing levels (37/78) than the mean (26/78) and maximum (18/78) runoff. Most of the detected changes occurred during the 1960s and 1970s, a period of rapid demographic expansion and urbanization in Asia, when irrigation and other water uses were developed, especially in tropical areas. During the same period and within the area studied, a number of large dams and reservoirs were completed. Since these anthropic interventions could be at the origin of the changes in runoff, there is no regionally consistent evidence supporting global climate change.

Keywords: Climate change, trend detection, Asia-Pacific rivers, segmentation, non-parametric tests.

Introduction

Global climate change is currently an issue of great concern and is often blamed for the occurrence of very low frequency, extreme meteorological events. In this regard, the runoff from large rivers can be considered a regional integrator of the local precipitation occurring in their basins. Folland et al. (1990) and Mann et al. (1999) showed an increase in global temperature variations over the last two decades. IPCC (1996) also concluded that there has been an increase in global mean surface air temperature by between 0.3 and 0.6°C since the late 19th century. These warmer temperatures over the last two decades could imply some changes in the water balance of different parts of the world. Leith and Wakefield (1998) and Zhang et al. (in press) have shown that warmer temperatures have had an effect on the hydrology of streams in Canada. IPCC (1996) also stated that warmer temperatures will lead to more vigorous hydrological cycle, translating into prospects for more severe droughts and/or floods in some places and less severe droughts and/or floods in other places. Hence, more investigation must be performed to evaluate the effects of warmer temperatures on hydrology and the availability of an international databank for river runoff constitutes a precious tool that should be exploited for regional analyses.

The Global Runoff Data Center (GRDC) in the German Federal Institute of Hydrology (BfG) at Koblenz (Germany) operates under the auspices of the World Meteorological Organization (WMO). One of its objectives is to collect the discharge time series of the world's rivers, to store them in a unified data bank with a consistent format, and to disseminate this acquired information for scientific use. This exchange of data allows interesting regional syntheses to be made, exploiting information otherwise disseminated at the country level. Such an availability of regional data leads to a better global knowledge of the river regimes (mean values and seasonal distribution of discharges), as well as the availability of surface water resources which constitute an important part of the terrestrial hydrologic cycle.

On the scientific front, this data bank constitutes a major contribution to the water budgets of the world's oceans and to Global Circulation Models (GCM), which are an increasingly important tool for providing a better understanding of the phenomena driving the Earth's climatic environment. In this period of postulated climatic changes and of devastating "El Niño" effects, it provides an unbiased reference against which hypotheses can be statistically tested and assessed.

In a more practical way, water availability constitutes a vital but scarce and dwindling resource for many countries, which limits possibilities for current and future food self-sufficiency. For these mostly tropical and equatorial countries, any change in the long-term availability of water will be fundamentally important for their survival and future well being, both economically and politically.

The purpose of this paper is to investigate the longtime trends of selected Asian and Oceanian river discharges chosen in WMO Regions 2 and 5 by examining and testing whether the eventuality of structural changes (trends) in the discharge data is related to possible modifications either of regional climatic conditions or land and water uses within the river basins. For the purposes of this study, two statistical tools are used: the segmentation procedure (Hubert et al., 1989) and DETECT specialized software (Cluis, 1988; Cluis et al., 1989) for trend detection in time series with characteristics such as non normal distribution, auto-correlation, seasons, outliers, and non-equidistant sampling intervals.

Data Description

The data were directly selected from the GRDC data bank using the GRDC Catalogue Tool software (Version 2.1 for Windows 95-NT). This software allows a researcher to query for data according to specific successive selection criteria such as aggregation frequency (daily or monthly), WMO regions (six continental entities) or subregion numbers (regional entities or watersheds), river name or GRDC station number, country code, range of operational years, and size of river basin.

Once the query file for stations is completed, the GRDC database system extracts the selected data and provides them to the user as an ASCII file. In this case, stations with monthly records from WMO Regions 5 (Oceania-Pacific) and 2 (Asia) were extracted from the GRDC database. A working data set of 78 stations was obtained by using the following criteria as selection guidelines:

- Length of operation: The selected stations present a record of a minimum of 25 years of continuous operation until recent years, with generally less than 5 percent missing data (eight stations were selected with a proportion of missing values greater than 5 percent but smaller than 10 percent).
- Regional representativity: The selected stations should drain large areas, making them representative of their climatic regions and less sensitive to local meteorological events.
- Geographical distribution: The chosen stations are distributed within the whole Asia-Pacific region accord-

ing to the availability of long time series within the database and their adherence to the selection criteria. They are grouped into five regional geographical subsets to allow possible regionalization of the obtained results. These five subsets are: Oceania-Pacific (19), Southeast Asia (9), Far East Asia (25), Indian Subcontinent (11), and Central Asia (13). The location of the gauging stations is shown in Figure 1 with each station identified by its number from Table 1.

According to GRDC procedures, countries provide their discharge data for storage in the database and are solely responsible for the quality of these data. Lacking information about the quality and homogeneity of the data, the non-parametric trend detection techniques as described and used later in this paper seem to be the most appropriate techniques, even if some detection power is lost in exchange for robustness. On the other hand, very little is known about land and water uses in the water basin areas controlled by the stations; this is also true for historic changes within the river basin, human interventions, derivations or impoundments that might have occurred over the duration of the discharge records. These uncertainties need to be considered in the interpretation of the results obtained in this study, so that conclusion may eventually be derived from these results.

The selected stations within the Asia-Pacific region used for this study are presented in Table 1. The table presents the following information for each river: its GRDC station number, a number for identification on Figure 1, country location code, name of the river and of the related gauging station, longitude and latitude, watershed area, first and last full years of operation, percentage of missing data, and total length of the record in years. The data extracted from the database and used throughout the analysis are the monthly discharges from which yearly values were compounded. The few monthly missing values were first filled in using the long-term monthly mean values. This procedure was generally applied with the exception of cases where such a synthetic value would become a yearly maximum or minimum; in such cases, an interpolated value calculated between successive months was preferred to generate an occasional missing monthly value. Three series of yearly values were then created for analysis:

- A mean yearly series obtained from the 12 monthly values,
- A yearly series of monthly maximum values, abbreviated as maximum monthly series,
- A yearly series of monthly minimum values, abbreviated as minimum monthly series.

The first series should allow the detection of temporal changes in the mean level of the series, and the two last series reflect the change in levels of extreme (high or low) events over time.

Figure 1. Location of rivers studied in Asia and Oceania. The number representing each river is shown in Table 1. CA = Central Asia; FEA = Far-East Asia; ISC = Indian Subcontinent; SEA = Southeast Asia; and OP = Oceania-Pacific.

Statistical Approach

Hubert's Segmentation Procedure

As a preliminary analysis, a segmentation procedure was applied to yearly series (minimum, mean and maximum). The segmentation procedure was developed by Hubert et al. (1989) and has found many applications, especially for testing for homogeneity and stationarity in the means of West African precipitation and discharge records. In the present study, the segmentation procedure is used to reduce the number of series to be studied by the DE-TECT software. Without this preliminary step, 234 series would have to be studied by the time-consuming interactive DETECT software.

Essentially, the segmentation procedure determines, for a record of given length, the optimal segmentation of this series into two, three, four, etc., segments of constant levels (stepwise change). The sense of "optimal" here is that the Root Mean Square Error between the measured data and the model (the different levels of each segment) is minimal.

For a series of length n, the number of possible segmentations into m segments N(n,m) can be expressed as the number of possible groupings of (m - 1) objects selected out of a population of (n - 1) objects:

$$N(n,m) = \frac{(n-1)!}{(m-1)!(n-m)!}$$

This number quickly becomes very large and Hubert et al. (1989) have developed an optimization algorithm based on arborescences that avoids testing the bulk of the possible combinations. The search for the optimal segmentation is completed by a constraint applied to the produced segmentations; segments will only be accepted if the means of contiguous segments are significantly different; this can be tested using the contrast concepts introduced by Scheffé (1959) and presented by Dagnelie (1970). The Scheffé test limits the order of the segmentations. Once the optimal segmentation is obtained, the residuals (differences between data values and the local segmentation level) are tested for independence (Wald-Wolfowitz, 1943).

This procedure makes no hypothesis about the distributional or persistence structure of the data. The authors tested the reliability of their procedure using Monte-Carlo simulations on constructed stationary series and found that the Scheffé test on the absence of contrast often falsely rejected the stationarity hypothesis, i.e., over-segmenting the stationary series. In fact, the significance level of the procedure is not related in a simple way to that of the Scheffé test itself. Due to the fact that the procedure has a tendency to over-segment, the procedure has been and can be successfully used as an exploratory analysis to determine which series should be studied in a complete trend detection analysis.

Trend Detection Using the DETECT Software

Most of the classical statistical tests and techniques have been developed with restricting hypotheses of normality and independence. It is well known that real-life data diverge from these theoretical considerations. Most natural resource data exhibit distributions that are not normal and generally positively skewed, and they often simultaneously present all three types of persistence: short-term persistence, annual seasonality and eventually some longterm trends. Furthermore, extreme values (such as outliers) have a determining impact on the results of classical parametric procedures.

To deal with this type of "messy" data, which are more the rule than the exception in nature, classical parametric methods exhibit several weaknesses. Montgomery and Loftis (1987) studied the effects of non-normality, unequal variances, temporal persistence, seasonal fluctuations, and unevenly spaced data on the results obtained using the Student's *t*-test, and they showed that this test should not be used if the samples have different distributions, unequal variances, or lengths. In addition, seasonal variations or temporal persistence invalidate the results. Helsel (1987) has also shown that parametric procedures are largely influenced by messy data.

Robust techniques (i.e., techniques that give acceptable results, even if the basic theoretical hypotheses are not fully respected) are largely considered as the best available option. Several robust techniques are available, for example M-Estimators (Huber, 1981) and non-parametric tests. In the present study, only non-parametric robust techniques are discussed and used.

Table 1. Characteristics of the Selected Rivers by Area

# on Fig	l River	Station	Country Code	Latitude	Longitude	Watershed Area	Begin Year	End Year	Percent Missing Data	Dura- tion
1 ig	I River	Siution	Coue	Oceania-	Pacific Area	лгеи	1607	ieur	Duiu	(Teurs)
1	Darling River	Bourke Town	AU	<u> </u>	14594E	386,000	1944	1993	2.9	49
2	Fitzroy	The Gap	AU	2310S	15010E	135,860	1965	1995	2.5	30
3	Daly	Mount Nancar	AU	1383S	13241E	47,000	1970	1995	3.4	25
4	Herbert River	Ingham	AU	1863S	14613E	8,805	1916	1996	1.4	80
5	Mary River (1)	Mount Bundy	AU	1292S	13165E	5,700	1957	1995	0.6	38
6	Mary River (2)	Miva	AU	2595S	15250E	4,830	1910	1995	0	85
7	Mitchell River	Glenaladale	AU	3775S	14737E	3,900	1938	1987	2.4	49
8	Avoca River	Coonooer	AU	3644S	14330E	2,670	1890	1993	1.3	103
9	Huon River	Frying Pan Creek	AU	4304S	14684E	2,097	1949	1994	0.9	45
10	Murrumbidgee	Mittagang Cross.	AU	3618S	14909E	1,891	1927	1993	1.1	66
11	Nymboida	Nymboida	AU	2998S	15272E	1,660	1909	1993	2.6	84
12	Serpentine	Serpent. Falls	AU	32378	11601E	769	1911	1992	0.9	81
13	l ipindje	Ouen-Kout	NC	20788	16499E	247	1956	1984	1.4	28
14	Riviere Des Lacs	Goulet	NC NZ	22238	16685E	69	1958	1984	0	26
15	Mataura	Gore Hbr	NZ	46105	16895E	3,465	1961	1993	0	32
10	Motu	Houpoto	NZ	3/805	17504E	1,393	1958	1990	1./	32
10	Ungarue	Mandamus	NZ NZ	38805	1/524E 17255E	1,075	1963	1994	4.2	22
10	Aburiri	Sth Diadem	NZ	42793	17253E 16073E	1,070	1957	1990	4.2	30
17	Anum	SurDiadem	NZ.	Far Fast	Asia Area	57	1704	1774	0	50
— –										
20	Tone	Kurihashi	JP	3613N	13970E	8,588	1938	1986	6.1	48
21	Ishikari	Ishikari-Ohasha	JP	4312N	14153E	12,697	1954	1986	6.3	32
22	Shinano	Ojiya	JP	3730N	13880E	9,719	1965	1988	4.5	23
23	Yodo	Hırakata	JP	3480N	13563E	7,281	1965	1988	4.2	23
24	Chikugo	Senoshita	JP	3353N	13080E	2,315	1965	1988	4.2	23
25	Changjiang	Hankou		3038N	11428E	1,488,030	1805	1980	1.2	121
20	Songnuajiang	Guanting		4577N 4022N	12038E	391,000	1898	198/	4.4	89 62
21	Tongung	Zhangijashan		4023N 3463N	10860E	42,300	1923	1900	0.0	53
20	Wujiang	Gongtan		2800N	10800E	43,200 58 300	1030	1082	7.0	13
30	Wujialig Huanghe	Huayuankou		2890N 3492N	11365E	730.036	1939	1982	9.1 5.2	43
31	Reijiang	Hengshi		2385N	11305E	34 013	1954	1987	1	33
32	Dongijang	Boluo	CI	2305N	11430F	25 325	1960	1987	0	27
33	Vana	Dzanghky	RS	6967N	13533E	216,000	1938	1984	18	46
34	Penzhina	Kamenskoe	RS	6242N	16603E	71 600	1957	1984	3.6	27
35	Indigirka	Vorontsovo	RS	6958N	14735E	305,000	1937	1994	1	57
36	Lena	Kusur	RS	7070N	12765E	2.430.000	1935	1994	0	59
37	Shilka	Sretensk	RS	5225N	11772E	175.000	1897	1985	1.9	88
38	Kamchatka	Kluchi	RS	5643N	16105E	45,600	1931	1984	0.8	53
39	Amur (1)	Khabarovsk	RS	4843N	13505E	1,630,000	1897	1985	0.9	88
40	Amur (2)	Komsomolsk	RS	5063N	13712E	1,730,000	1933	1990	0	57
41	Li-Wu	Lu-Shui	ΤW	2418N	12150E	435	1960	1993	0	33
42	Yufeng	Dahan	TW	2465N	12118E	335	1964	1989	0	25
43	Sandimen	Ailiao	TW	2270N	12063E	408	1964	1989	0	25
44	Xinfadaqiao	Laonong	TW	2305N	12065E	812	1964	1989	0	25
				Southeas	t Asia Area					
45	Pampanga	San Agustin	- <u>—</u> — — - РН	<u> </u>	12078E	6,487	1946	1974	5.7	28
46	Konga	kangay	PH	1808N	12070E	534	1947	1976	6.1	29
47	Kelatan	Guillemard Bridge	MS	577N	10215E	11,900	1950	1986	7.7	37
48	Mekong (1)	Mukdahan	TH	1653N	10473E	391,000	1925	1991	0.4	66
49	Nam Chi	yasothon	ΤH	1578N	10415E	43,100	1954	1991	0.6	37
50	Nam Mun	Ubon	TH	1522N	10487E	104,000	1956	1991	1.1	35
51	Nan	Sirkit Dam	ΤH	1777N	10055E	13,300	1956	1988	2.9	32
52	Mekong (2)	Chiang Saen	TH	2027N	10010E	189,000	1961	1991	1	30
53	Mekong (3)	Nakhon Phanom	TH	1740N	10480E	373,000	1962	1991	3.3	29

# on Fig. 1	River	Station	Country Code	Latitude	Longitude	Watershed Area	Begin Year	End Year	Percent Missin Data	Dura- g tion (Years)
				Indian Su	bcontinent Ar	ea				
54	Mahaweli Ganga	Peradeniya	SB	727N	8058E	1,189	1950	1984	2.8	34
55	Gin Ganga	Agaliya	SB	618N	8020E	681	1928	1989	1.7	61
56	Karnali River	Chisapani	NE	2864N	8129E	42,890	1962	1993	0	31
57	Kali Gandaki (1)	Setibeni	NE	2801N	8360E	6,630	1964	1993	0.3	29
58	Kali Gandaki (2)	Kotagaon Shringe	NE	2775N	8435E	11,400	1964	1985	4.2	21
59	Tamur River	Mulghat	NE	2693N	8733E	5,640	1965	1986	0	21
60	Ganges R. (1)	Harlinge Bridge	BW	2408N	8903E	846,300	1934	1989	2.1	55
61	Ganges R. (2)	Farakka	IN	2500N	8792E	935,000	1949	1985	0	36
62	Sapt Kosi	Barashetra	NE	-	-	-	1947	1978	0	31
63	Godavari	Polavaram	IN	1692N	8178E	299,320	1902	1979	7	77
64	Krishna	Vijayawada	IN	1652N	8062E	251,355	1901	1979	6.3	78
64	Narmada	Jamtara	IN	2302N	7993E	16,576	1949	1974	0.3	25
				Central A	lsia Area					
66	Amu-Darya	Chatly	UZ	4228N	5970E	450,000	1931	1973	2.1	42
67	Zaravchan	Dupuli	TA	3938N	6777E	10,200	1932	1994	1.3	62
68	Gunt	Khorog	TA	3753N	7152E	13,700	1940	1985	0	45
69	Vakhsh	Tutkaul	TA	3833N	6930E	31,200	1932	1967	1.6	35
70	Biya	Biysk	RS	5252N	8527E	36,900	1895	1985	0	90
71	Ob	Salekhard	RS	6657N	6653E	2,949,998	1930	1994	0	64
72	Tom (1)	Novokuznetsk	RS	5375N	8710E	29,800	1894	1985	0	91
-73	Tom (2)	Tomsk	RS	5658N	8487E	57,000	1965	1990	0	25
74	Tura	Tiumen	RS	5715N	6553E	58,500	1896	1985	0	89
75	Yenisei	Igarka	RS	6748N	8650E	2,440,000	1936	1995	0	59
76	Syr-Darya	Tyumen-Aryk	ΚZ	4405N	6705E	219,000	1930	1984	7	54
77	Ural	Kushum	ΚZ	5085N	5128E	190,000	1915	1984	4.3	69
78	Naryn	Uch-Kurgan	KG	4117N	7210E	58,400	1933	1990	0	57

Table 1. Characteristics of the Selected Rivers by Area (continued)

Non-parametric techniques are based on the ranks of the data within the sample. As such, they are unaffected by the shape of the distribution and are also robust to outliers, as extreme values are limited to the maximum ranks even if they are very far from the bulk of the data. Although classical non-parametric trend tests such as the Mann-Whitney and the Spearman tests are very useful for the detection of monotonic or stepwise trends, they do not address the problems of temporal persistence and of seasonal fluctuations often found in hydrological data.

The main developments in non-parametric procedures adapted to messy data were obtained during the last 25 years (Lettenmaier, 1976; Hirsch et al., 1982; Hirsch and Slack, 1984) to exploit the water quality data bases resulting from monitoring programs established as a result of environmental concerns; these data bases were the archetype of messy data since they exhibited all characteristics associated to messy data. It was thus quite difficult to answer the very practical question as to whether the state of the environment was improving or deteriorating, which was and still remains, a very pertinent question. In these developments, authors have adapted non-parametric tests to allow for trend detection, without being influenced by other types of short-term interdependence (autocorrelation and seasons).

Non-parametric Tests Adapted to Autocorrelation and Seasonal Dependence

The adapted non-parametric techniques consider two particular types of trends: (1) a stepwise (or jump-in-themean) trend where, at some point in time, a sudden change of levels occurs as the result of some intervention; mean levels before and after this date are compared using an adaptation of the Mann-Whitney test, to test if they are significantly different; and (2) a progressive, monotonic evolution of the series level over time. In this case, adaptation of the Spearman's or Kendall's test can be applied, using time as the independent variable.

The statistics of tests for trend include a level or location parameter estimate (mean, median, slope, etc.) and a scale estimate for the level or location estimate (variance, standard deviation, etc.). The scale estimate for the level or location estimate is generally related to the number of observations and to the variance of the sample. The observations in a sample are autocorrelated when successive observations in time are correlated meaning that each observation contains some part of the information already available in the previous and following observations. If the number of autocorrelated samples rises for a fixed and given period, then the sampled observations become more and more autocorrelated and the variance of the mean more and more underestimated. An equivalent number of independent observations, n^* , lower than the actual number of dependent observations, (n), can be defined to obtain an adequate estimate of the variance of the sample mean. Each (dependent) observation has an information content I = n^*/n .

Lettenmaier (1976), using results from Matalas and Langbein (1962), presents the relationship between n and n^* for a general autocorrelation structure and for a simple lag-1 autoregressive Markovian (AR(1)) process. The latter process is important, as most natural processes locally follow a Markovian-type structure reflecting the progressive loss of memory of the phenomenon.

In Table 2, the effective number of independent observations (n^*) is presented for some combinations of lag-1 autocorrelation coefficients r_1 and series lengths nassuming that the underlying process is an AR(1). For example, a series of length 100 and of correlation coefficient of 0.3 is equivalent, for application of trend detection tests, to a series of only 54 independent observations.

Lettenmaier (1976) studied, using Monte-Carlo simulations, the power of Spearman's Rho test against linear monotonic trends, and the power of the Mann-Whitney test against step trends for series presenting an AR(1) persistence structure. This author found that the documented power curves obtained in the case of independent samples were relevant for the dependent sample case if an equivalent number of independent observations n^* was used, instead of the actual length n of the sample.

After this breakthrough, Hirsch et al. (1982) investigated the case of the seasonal fluctuations present in the vast majority of hydrological series. Kendall's test (Lehman and D'Abrera, 1975) is used for each recognized seasonal sub-series, and the resulting statistics were added together. This property was exploited to assess if a global trend was present. Unfortunately this test could not be applied if both persistence and seasonality were simultaneously present in the series. Hirsch and Slack (1984) investigated this last problem. In addition, Van Belle and Hughes (1984), presented a new method for determining if a trend was caused by a particular season.

At this point, a complete set of non-parametric tests for monotonic and stepwise trend detection was available for independent/autocorrelated, seasonal/non-seasonal time series. The decision tree for choosing the appropriate test according to the structure of the series and to the type of trend is presented in Table 3. This set of non-parametric tests is well adapted to the real structure of hydrological data, but as they have been developed only recently, their power has only been partially established (Berryman et al., 1988) and they often rely on Monte-Carlo simulations to validate performances. Nevertheless, Bradley (1968) demonstrated that even under the worst case situations,

Table 2. Effective Number of Independent Observationsfor Various Combinations of AutocorrelationCoefficients r_i and Series Lengths n

<i>r</i> ₁	n=10	n=25	n=50	n=75	n=100	n=200
0,1	8,4	21	41	62	82	164
0,2	7	17	34	50	67	134
0,3	5,8	14	27	41	54	108
0,4	4,7	11	21	33	43	86
0,5	3,9	8,8	17	25	34	67
0,6	3,1	6,8	13	19	25	50
0,7	2,4	5	9,3	14	18	36
0,8	1,8	3,4	6,1	8,9	12	23
0,9	1,4	2	3,2	4,5	5,8	11
0,95	1,2	1,5	2	2,6	3,2	5,7

the power of non-parametric procedures varied between 85 percent and 96 percent of that of their parametric counterparts. In fact, when tested with a whole range of asymmetrical distributions, their power generally exceeded that of traditional parametric techniques.

To exploit the new, previously described non-parametric tests in a practical way, interactive software has been written (Cluis, 1988; Cluis et al., 1989) and accepted as a Canadian contribution to the HOMS program (module K55.2.01) of the World Meteorological Organization (WMO). This software, written in Fortran 77, is composed of stand-alone modules which are executed in succession, using a series of intermediate data files to transfer interim results downstream from the first modules. It performs the following operations:

- Reading of the input data in an appropriate format; display of the time-series; interactive appraisal and elimination of obvious outliers.
- Analysis of the frequency of sampling; ANOVA on months; interactive grouping of months into seasons and test the equality of the means of the selected seasons (groupings of months).
- Choice of an equi-spaced working interval, seasonal or non-seasonal, with several options for filling-in missing data; analysis of the persistence structure of the working series using significance levels for the sampled autocorrelation coefficient.
- Analysis with inertia graphics (Mass-curves and CUSUM functions, Cluis; 1983; Doerffet et al., 1991) in order to assess the nature of a possible trend (stepwise or monotonic) and also its eventual time of occurrence.

Given the above information, the software performs the trend test adapted to the data, tests the significance of the results and calculates the parametric values pertaining to each segment. The correspondence between the trend model and the data is computed as an RMSE (Root Mean Square Error), which has to be minimized in order to retain the best-fitted alternative. In a single time-series, the

 Table 3. Set of Non-parametric Tests for Monotonic and Stepwise

 Trend Detection Available for Independent/Dependent,

 Seasonal/Non-Seasonal Time Series

Type of Trend	Persistence	Seasonality	Appropriate Test
Monotonic	Markovian persistence	No seasons	Lettenmaier/Spearman
trend		With seasons	Hirsh and Slack
	No	No seasons	Spearman/Kendall
	persistence	With seasons	Kendall seasonal
Stepwise trend	Markovian persistence	No seasons With seasons	Lettenmaier/ Mann-Whitney Hirsch and Slack
	No	No seasons	Mann-Whitney
	persistence	With seasons	Kendall seasonal

software may have to be rerun several times if there was more than one change in level during the length of the record or if computing for either monotonic or stepwise structures lead to non-clearly discriminating RMSE. All the choices made by the user are written in a report file for further analysis of the statistical results related to the different options run for the same series.

Results

The results presented here constitute a fraction of the actual work done with the GRDC databank. The reader interested in more detailed results should refer to Cluis (1998).

Hubert's Segmentation Procedure

We used the segmentation software developed and provided by Hubert et al. (1989) and ran it on the three yearly series of interest, i.e., the mean, maximum, and minimum monthly series. It was applied to the discharge data of the selected rivers of the Asia-Pacific region as described in Table 1. For these 234 runs, the significance level of 0.01 for the Scheffé test was used and, in addition, we limited the investigation to a maximum of three segmentations per record.

The summary results are presented in Table 4. Figure 2 presents the results for each station, indicating whether a segmentation is significant for one, two or three of the series (minimum, mean and maximum). Table 4 and Figure 2 show that about 32 percent of the stations (and 60 percent of the series) are not segmented at all during their record periods, and only 22 percent of the stations are segmented for all three series (minimum, mean, and maximum). The least segmented series is the yearly series of monthly maximums, which generally presents the relatively larger standard deviations, followed by the series of yearly means and then by the series of monthly minimums. One can note that, from the three studied yearly series (yearly means, monthly minimum, and monthly minimum), the series of monthly minimums are the most highly truncated

into segments. This makes sense, since low flow values are most likely to reflect local anthropic interventions as flow diversions for irrigation purposes take place in the dry season.

Trend Detection Using the DETECT Software

All series that had been segmented by Hubert's procedure were submitted to the specialized non-parametric tests included in the DETECT software (Table 3). As already discussed, this software takes into account the seasonal and/or persistence structures of the series and redirects the treated series towards the adequate adapted test. In fact, these characteristics (reduced seasonal sub-series lengths, effective number of independent observations n^*) are at the root of the recognized over-segmentation properties (falsely rejecting the stationarity

Table 4. Summary Results, for Each Area, of the Segmentation and

 Trend Analyses Applied to the ThreeTypes of Series Investigated

 (mean yearly, monthly maximum, and minimum discharge series)

		Segm	entation	Tre	Trend Detectio			
				Down-				
	Type of			ward	Upwar	d No		
Region	Series	Yes	No	Trend	Trend	Trend		
Oceania	mean	4	15	3	1	15		
Pacific	maximum	3	16	2	1	16		
(19 rivers)	minimum	7	12	2	1	16		
Far East	mean	11	14	6	4	15		
Asia	maximum	6	19	4	1	20		
(25 rivers)	minimum	18	7	5	10	10		
Southeast	mean	3	6	3	0	6		
Asia	maximum	4	5	3	1	5		
(9 rivers)	minimum	8	1	3	4	2		
Indian	mean	4	8	3	1	8		
Subcontinent	maximum	4	8	1	2	9		
(12 rivers)	minimum	5	7	2	2	8		
Central Asia	mean	5	8	3	2	8		
	maximum	4	9	3	0	10		
(13 rivers)	minimum	10	3	2	6	5		
Total	mean	27	51	18	8	52		
	maximum	21	57	13	5	60		
	minimum	48	30	14	23	41		

hypothesis) of the procedure developed by Hubert et al. (1989).

The summary results of trend detection are presented in Table 4 and Figure 3, and specific results for each region are presented in the following sections.

Oceania-Pacific

The results pertaining to each station within the Oceania-Pacific area are presented in Table 5; one can see that four minimum monthly discharge series that had been previously segmented, when revisited by this actual

Figure 2. Representation of the segmentation results for all studied rivers. The size of the dots indicates the number of series segmented among the monthly minimum, monthly maximum, and yearly mean series.

step, exhibited no trend (in the mean) after having been submitted to the non-parametric tests. Further investigation of Table 5 and Figure 3 shows that all stations with downward trends showed changes in the 1960s and early 1970s while all stations with upward trends showed changes in the late 1970s, and 1980s. These results suggest that the opposite directions in trends for the Oceania-Pacific area could be time related rather than spatially related if a regional pattern can be deduced for this area. Only two stations showed significant trends in all three series (minimum, mean, and maximum): the Avoca River with upward step trends in 1988 and the Murrumbidgee River with downward step trends in 1961.

Far-East Asia

The results for Far East Asia presented in Table 6 show that three minimum monthly discharge series and one mean monthly series that had been previously segmented exhibited no trend when revisited with the DE-TECT software. Further investigation of Table 6 and Figure 3 illustrates that all northern stations exhibited upward trends taking place between 1960 and 1985. In the center of the area, a majority of the stations showed downward trends with changes in the 1960s, 1970s, and early 1980s, the main exception being the Songhuajiang River which showed upward step trends in all three series but the changes in mean appeared in the 1930s and 1940s. Finally, three stations in the south of the area show upward step trends in the minimum series with changes in the 1960s and 1970s. These results suggest that the opposite directions in trends for the Far East Asia area could be explained by regional patterns since adjacent rivers tend to produce similar trend patterns. Only three stations showed

	Mini	mum Mo	nthly Discha	irges		Mean	Yearly Dischar	rges	Maximum Monthly Discharges				
River	Pe	eriod	Trend Type	Period Level*		Period	Trend Type	Period Level*	Pe	eriod	Trend Type	Period Level*	
Daly	1970 1974	1973 1995	- Step	8.9 17.9	No seg	mentation	nidentified		No segmentatior		identified		
Herbert	1916	1996	No trend	5.4	1916 1961 1971	1960 1970 1996	- Step Monotic	113 76 171-39	No seg	mentation	identified		
Mitchell	1938	1987	No trend	2.24	No segmentation identified			No seg	mentation	identified			
Avoca	1890 1988	1987 1993	- Step	0.19 5.7	1890 1896 1988	1895 1987 1993	- Step Step	316 6.4 378	1890 1896 1988	1895 1987 1993	- Step Step	1240 32.6 2010	
Huon	1949	1994	No trend	18.3	No seg	mentation	nidentified		No seg	mentation	identified		
Murrumbidgee	1927 1961	1960 1993	Step	113 55	1927 1961	1960 1993	Step	1190 457	1927 1961	1960 1993	Step	3730 1480	
Serpentine	1911	1992	No trend	6.2	1911 1971	1970 1992	- Step	6.2 0.49	1911 1971	1970 1992	- Step	29.1 2.19	

 Table 5. Trend Detection Analysis Results for the Yearly Mean,

 the Minimum and Maximum Monthly Discharges in the Oceania-Pacific Area

*For monotonic trends, period level represents the value estimated for the first and last year in the period.

Table 6. Trend Detection Analysis Results for the Yearly Mean,
the Minimum and Maximum Monthly Discharges in the Far East Asia Area

	М	inimun	n Monthly Disc	charges	Mean Yearly Discharges				Maximum Monthly Discharges			
River	Pe	riod	Trend Type	Period Level*	Per	riod	Trend Type	Period Level*	Per	riod	Trend Type	Period Level*
Tone	1938 1948 1974	1947 1973 1985	No trend Step	94 112 79	1938 1961	1960 1985	Step	288 222	1938 1963	1962 1985	Step	742 535
Shinano	1965	1988	Monotonic	295-207	1965	1988	No trend	530	No se	gmentat	ion identified	
Yodo	1965 1984	1983 1988	Step	127 86	1965 1977	1976 1988	Step	316 234	No se	gmentat	ion identified	
Chikugo	1965 1975	1974 1988	Step	36 45.3	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Changjiang	1865 1905	1904 1985	Step	6,370 7,230	1865 1954	1953 1985	Step	23,700 22,300	No se	gmentat	ion identified	
Songhuajiang	1898 1947	1946 1987	Step	108 302	1898 1929	1928 1987	Step	895 1360	1898 1932	1931 1987	Step	2,500 3,580
Yongding	1925 1943 1971	1942 1970 1988	No trend Step	9.5 15.4 9.3	1925 1950 1965	1949 1964 1988	Step Step	39 50.3 21.1	1925 1963	1962 1988	Step	126 58.6
Jinghe	1933	1986	No trend	17.2	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Huanghe	1947 1956	1955 1988	Step	576 385	1947 1967	1966 1988	Step	1,610 1,260	No se	gmentat	ion identified	
Beijang	1954 1970	1969 1969	Step	201 268	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Dongjiang	1960 1974	1973 1987	Step	208 351	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Yana	1938	1984	No trend	0.42	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Indigirka	1937 1985	1984 1994	Step	7.1 10.2	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Lena	1935 1979	1978 1994	Step	1.1 1.9	No seg	gmentati	ion identified		No se	gmentat	ion identified	
Shilka	1897	1985	No trend	3.63	1898 1984	1982 1095	Step	398 627	No se	gmentat	ion identified	
Kamchatka	1931	1984	Monotonic	323-438	1931 1960	1959 1984	Step	736 826	1931 1960	1959 1984	Step	1780 1990
Amur (1)	1897 1947	1946 1985	Step	486 765	1897 1956	1955 1985	No trend Monotonic	8370 10600-6640	1897 1954	1953 1985	No trend Monotonic	20800 25300- 16900
Amur (2)	1933 1979	1978 1990	Step	877 1660	No segmentation identified			No segmentation identified				
Yufeng	No se	gmenta	ation identified	1	1964 1967 1968 1989 Step 1964 1989 Monotonic			1110 1780 1430-1980	No segmentation identified			

*For monotonic trends, period level reprsents the value estimated for the first and last year in the period.

Figure 3. Representation of the trend detection results for all the studied rivers. The size of the arrows indicates the number of series segmented among the monthly minimum, monthly maximum, and yearly mean series. the direction of the arrows indicates The direction of the trend.

significant trends in all three series (minimum, mean, and maximum): the Tone and Yongding Rivers with downward step trends in the 1960s and 1970s, and the Songhuajiang River with upward step trends in 1930s and 1940s.

Southeast Asia

The results for Southeast Asia are presented in Table 7. Only one minimum monthly discharge series that had been previously segmented exhibited no trend when revisited with the DETECT software. Further investigation of Table 7 and Figure 3 shows that all trends take place between 1960 and 1982. In general, the stations showed downward step trends, with almost all exceptions being in minimum monthly discharge series: the Nam Chi, Nam Mun, and Nan Rivers showing upward step trends in the 1960s but no trends in the mean and maximum series, and the Mekong (2) River showing an upward step trend in the 1970s but downward trends in the mean and maximum series. These results suggest that the trends in the South East Asia area could be explained by regional patterns since a vast majority of stations produce similar trend patterns.

Indian Subcontinent

The results for the Indian Subcontinent Area are pre-

	Mir	nimum M	lonthly Dis	scharges	_	Mean 1	Yearly Discharg	es	Maximum Monthly Discharges				
River	Per	riod	Trend Type	Period Level*	Per	riod	Trend Type	Period Level*	Period		Trend Type	Period Level*	
Bonga	1947 1967	1966 1976	Step Step	1.9 0.9	1947 1960	1959 1976	No trend Monotonic	26.3 42.8-4.2	1947 1959	1958 1976	No trend Monotonic	98.6 163-358	
Kelantan	1950 1962	1961 1986	Step	317 231	No seg	mentatio	n identified		No seg	gmentati	on identified		
Mekong (1)	1925 1951	1950 1991	Step	1550 1410	1925 1967	1966 1991	Step	8350 7270	1925 1974	1973 1991	Step	24400 20500	
Nam Chi	1954 1967	1966 1991	Step	5.83 37.8	No seg	mentatio	n identified		No seg	gmentati	on identified		
Nam Mun	1956 1967	1966 1991	Step	18.4 62	No seg	mentatio	n identified		No seg	gmentati	on identified		
Nan	1956 1968	1967 1988	Step	16.5 27.8	No seg	mentatio	n identified		No seg	gmentati	on identified		
Mekong (2)	1961 1972	1971 1991	Step	764 839	1961 1972	1971 1991	Step	2950 2600	1961 1972	1971 1991	Step	8080 6400	
Mekong (3)	1962	1991	No trei	nd 1440	No seg	mentatio	n identified		1962 1982	1981 1991	Step	21400 17800	

 Table 7. Trend Detection Analysis Results for the Yearly Mean,

 the Minimum and Maximum Monthly Discharges in the Southeast Area

*For monotonic trends, period level represents the value estimated for the first and last year of the period.

	Min	imum M	onthly Dischar	ges	М	lean Yea	rly Discha	rges	Maximum Monthly Discharges			
River	Per	riod	Trend Type	Period Level*	Period evel* Period		Trend Type	Period Level*	Perioa	!	Trend Type	Period Level*
Gin Ganga	1928 1958	1957 1989	No trend Monotonic	19.5 26.3-11.3	No seg	gmentati	on identifie	ed	No seg	gmentati	on identified	
Kali Gandaki (1)1964	1993	Monotonic	31.2-55.7	1964 1977	1976 1993	Step	284 247	No seg	gmentati	on identified	
Kali Gandaki (1964 1969	1968 1985	Step	530 457	No seg	gmentati	on identified				
Sapt Kosi	No seg	gmentati	ion identified		1947 1961	1969 1979	Step	1540 1250	1947 1970	1969 1979	Step	4510 5440
Krishna	1901	1979	No trend	21.7	1901 1961	1960 1979	Step	1780 1250	1901	1960	Monotonic	9590-3960
Ganges R. (1)	1934 1975	1974 1989	Step	1950 1130	No seg	gmentati	on identifie	ed	1934 1946	1945 1989	Step	35200 42500
Godavari	1902	1979	Monotonic	23.7-1	20	No seg	gmentation	identified				
Narmada	Narmada No segmentation identified				No segmentation identified				1949	1974	No trend	1730

 Table 8. Trend Detection Analyses Results for the Yearly Mean,

 the Minimum and Maximum Monthly Discharges in the Indian Subcontinent

*For monotonic trends, period level represents the value estimated for the first and last year of the period.

sented in Table 8. Only one minimum monthly discharge and one maximum monthly discharge series that had been previously segmented exhibited no trend according to the nonparametric tests. Further investigation of Table 8 and Figure 3 shows that almost all trends taking place between 1960 and 1975 are downward trends. These results suggest that the trends in the Indian Subcontinent area could be explained by regional patterns since a vast majority of stations produce similar trend patterns and these trend patterns are very similar to those of the adjacent Southeast Asia region.

Central Asia

The results for the Central Asia area are very similar to those observed in the Far East Asia area: The northern stations (between the 55th and 75th parallels) exhibiting upward trends and southern stations (around the 45th parallel) showing downward trends. These results, added to the results of the adjacent Far East Asia area, suggest the presence of a regional trend pattern.

Discussion

Tables 4, 5, 6, 7, 8, and 9 show that about 65 percent of the studied series exhibited no change in their mean, minimum, or maximum levels during their record period. One can also see that the runoff of rivers in Southeast Asia have exhibited decreasing trends with time. For all the regions, it is also clear that minimum monthly runoffs were much more prone to changing levels than the mean and maximum ones. This reflects the fact that even small impoundments constructed for various water uses such as irrigation, municipal or industrial uses can significantly change the levels of the low flows. Conversely, dams and reservoirs can be managed and operated in such a way to guarantee a residual minimal flow in the river at all times, for navigation or ecological purposes.

Also to be noted is the large magnitude of the historical changes in levels demonstrated during the analysis by some Australian rivers. It is also apparent that on the Indian Subcontinent and in Southeast Asia, many rivers have exhibited a steady downward trend starting at the end of the 1960s until now, possibly reflecting increased water use for irrigation, industrialization, or municipal uses. Also, one can clearly appreciate the historical fate of the rivers Amu-Darya and Syr-Darya flowing into the Aral sea, but largely diverted in recent times for widespread irrigation of cotton fields

Table 10 synthesizes, by region, the number of occurrences of shifts in levels by decades, as compounded for all the considered series (mean yearly, maximum monthly, and minimum monthly discharges). It provides the count of series for which levels shifted during a given decade. One can see that most of the changes occurred during the 1960s and 1970s, a period of rapid demographic expansion, and, consequently, of the development of irrigation, especially in tropical regions.

During the same period, a large number of dams and

	Mi	nimum N	Ionthly Discha	rges	Λ	Aean Year	rly Discha	rges	Ι	Maximun	n Monthly Disc	charges
	Pe	riod	Trend Type	Period Level*	P	eriod	Trend Type	Period Level*	P	Period	Trend Type	Period Level*
Amu-Darya	rya 1931 1957 Step 51 1958 1973 Step 18		516 180	1931 1958	1973	Step	1520 1150	1931 1961	1973	Step	3540 2730	
Biya	1895	1985	Monotonic	46-62	1895 1911	1910 1984	Step	425 489	No seg	gmentati	on identified	
Ob	1930	1994	Monotonic	2530-3970	No segmentation identified			No seg	gmentati	on identified		
Tom (1)	1894	1985	Monotonic	56.7-80.8	No segmentation identified			No seg	gmentati	on identified		
Tom (2)	1965 1980	1979 1990	Step	112 149	No segmentation identified			1965	1990	No trend	4620	
Tura	1896	1985	No trend	24.1	No seg	gmentatio	n identifie	d	No seg	gmentati	on identified	
Yenisei	1936 1970	1969 1995	Step	3.92 6.6	1936 1973	1972 1995	Step	17.7 18.6	No seg	gmentati	on identified	
Syr-Darya	1930 1965	1964 1984	Step	334 133	1930 1961	1960 1984	Step	673 384	1930 1961	1960 1984	Step	1310 761
Ural	1915 1954	1953 1981	Step	38 57.4	No segmentation identified			No seg	gmentati	on identified		
Naryn	1933	1990	No trend	136	1933 1971	1970 1990	Step	393 316	1933 1974	1973 1990	Step	1010 703

Table 9. Trend Detection Analysis Results for the Yearly Mean,

 the Minimum and Maximum Monthly Discharges in Central Asia

*For monotonic trends, period level represents the value estimated for the first and last year of the period.

	Trend	Decade										
Region		<i>`00</i>	<i>`10</i>	<i>`20</i>	<i>'30</i>	<i>`40</i>	<i>`50</i>	<i>'60</i>	<i>'70</i>	<i>'80</i>	<i>'90</i>	
Oceania Pacific	Downs Ups	2						4	3 1	3		
Far East Asia	Downs Ups	1		1	1	2	4 1	6 2	3 6	1 2		
Southeast Asia	Downs Ups						2	4 3	3 1	1		
Indian Subcontinent	Downs Ups	1 1				1	1	2 2	2 1	1		
Central Asia	Downs Ups	2	1		1		2 1	4	2 2	1		

Table 10. Counts per Decade of the Occurrence of Upward and Downward Trends in Each of the Five Areas

reservoirs were completed (Vörösmarty et al., 1997; ICOLD, 1984, 1988), modifying the historical regimes of rivers. This has been the case within the watersheds of some of the larger rivers studied here, such as the Murrumbidgee (1956) and Darling Rivers (1960) in Australia, the Nan River (1972) in Thailand, the Godavari (1976) and Krishna Rivers (1974, 1982, 1984) in India, the Syrdaria (1957, 1965) and Ural Rivers (1958) in Kazakhstan, the Yenisei (1967) and the Ob Rivers (1957) in Russia, the Narin River (1978) in Kirghiztan, and the Beijiang (1973) Dongjiang (1974) and Yellow or Huanghe River (1960 and 1968) in China. Some of these impoundments could be at the origin of the results presented here.

In a future study, it would be interesting to submit the same data set to new statistical analyses in order to assess a possible regional change over time in the internal variability of the runoff series as suggested by some studies on the "El Niño" phenomenon. Such a study could attempt to relate monthly or seasonal runoff values to the lagged values of the Southern Oscillation Index (SOI), whose frequency occurrence of low and high extreme values appears to be closely related to climate change.

Acknowledgements

The authors wish to express gratitude to Dr. W. Grabs, Director of the Global Runoff Data Center at Koblenz, Germany for his warm reception and to the GRDC staff for facilitating access to its database and helping adapt its format to the statistical softwares used in this study and for the scientific discussion with regards to the methods used and the interpretation of the results. Also, heartfelt thanks are extended to Drs. D. Kraemer and A. Askew of the Hydrology and Water Resources Department of the World Meteorological Organization in Geneva, Switzerland. This work was conducted during part of a sabbatical leave of absence from the water research centre INRS-EAU, University of Quebec, Canada and was made possible by the financial support of the World Meteorological Organization (WMO).

About the Authors

Daniel Cluis earned an engineering degree in hydraulics and a doctorate in fluid mechanics from the University of Grenoble (France). Since 1970, he has taken part in the development of the water research center of the University of Québec (INRS-Eau). His fields of interest include the mathematical modelling

of contaminant transportation at the watershed scale and the adaptation of statistical methods to practical environmental problems. Dr. Cluis can be contacted at INRS-Eau, University of Québec, P.O. Box 7500 Sainte-Foy, Québec, Canada, G1V 4C7. Email daniel_cluis@inrs-eau. uquebec.ca.

Claude Laberge earned a bachelor's degree in statistics and a master's degree in mathematics (statistics option) from Université Laval and completed his Ph. D. in water science at INRS-Eau (branch of the Université du Québec). He founded STATEX, a statistical consultant firm, in 1990. His domains of specialization are the application of sta-

tistics in environmental studies and in trend detection in time series. Dr. Laberge can be contacted at STATEX, 3332 de la Paix, Sainte-Foy, Québec, Canada, G1X 3W6. Email: claude.laberge@sympatico.ca

Discussions open until March 1, 2002.

References

- Berryman, D., B. Bobee, D. Cluis, and J. Haemmerli. 1988. "Nonparametric Tests for Trend Detection in Water Time Series." *Water Resources Bulletin* 24, No. 3: 545–556.
- Bradley, J. V. 1968: *Distribution-free Statistical Tests*. Englewood Cliffs, New Jersey, USA: Prentice-Hall.
- Cluis, D. 1983: "Visual Techniques for the Detection of Water Quality Trends: Double-mass Curves and Cusum Functions." *Environmental Monitoring Assessment* 3: 173–184.
- Cluis, D. 1988: "Environmental Follow-up: A Mixed Parametric and Non-parametric Approach." *Environmental Software* 3, No. 3: 117–121.
- Cluis, D., C. Langlois, R. Van Coillie, and C. Laberge. 1989. "Development of a Software Package on Trend Detection in Temporal Series." *Statistical Methods for the Assessment of Point Source Pollution*. Chapman and El Shaarawi, eds. CCIW: 329–341.
- Cluis, D. 1998. "Analysis of Long Runoff Series of Selected Rivers of the Asia-Pacific Region in Relation with Climate Change and El Ninõ Effects." *GRDC Report* No.21, Koblenz, Germany.
- Doerffel, K., G. Herfurth, V. Liebich, and E. Wendlandt. 1991. "The Shape of CUSUM - An Indicator for Tendencies in Time Series." *Fresenius Journal Analytic Chemistry* 341: 519–523.
- Dagnelie P. 1970. *Théorie et méthodes Statistiques, Vol 1 and 2.* Gembloux: Pages 378 and 451.
- Folland, C.K., T.R. Karl, and K. Ya. Vinnikov. 1990. "Observed Climate Variations and Changes." *Climate Change: the IPCC* (Intergovernmental Panel on Climate Change) Scientific Assessment. Cambridge: Cambridge University Press: 195–238.
- Helsel, D.R. 1987. "Advantages of Non-parametric Procedures for Analysis of Water Quality Data." *Journal of Hydrological Sciences* 32, No.2: 179–190.
- Hirsch, R.M., and J.R. Slack. 1984. "A Non-parametric Trend Test for Seasonal Data with Serial Dependence." *Water Re*sources Research 20, No, 6: 727–732.
- Hirsch, D.R., J.R. Slack, and R.A Smith. 1982. "Techniques for Trend Analysis for Monthly Water Quality Data." *Water Resources Research* 18, No. 1: 107–121.
- Huber, P.J. 1981. *Robust Statistics*. New York, New York, USA: Wiley.
- Hubert, P., J.P. Carbonnel, and A. Chaouche. 1989. Segmentation des séries hydrometeorologiques. Application à des séries de précipitations et de débits de l'Afrique de l'Ouest. *Journal of Hydrol*. 100: 349–367.
- ICOLD. 1984,1988. World Register of Dams. First edition and updating. International Commission on Large Dams, Paris.

- IPCC. 1996. "Climate Change 1995." The IPCC second scientific assessment. J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, K. Maskell, eds. Cambridge: Cambridge University Press: 572 pages.
- Lehman, E.L. and H. D'Abrera. 1975. *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco, California, USA: Holden Day.
- Leith, R.M.M. and P.H. Wakefield. 1998. "Evidence of Climate Change Effects on the Hydrology of Streams in South-central British-Columbia." *Canadian Water Resources Journal* 23, No. 3: 219–230.
- Lettenmaier, D.P. 1976. "Detection of Trends in Water Quality Data from Records with Dependents Observations." *Water Resources Research* 12, No. 5: 1037–1046.
- Matalas, N.C. and W. B. Langbein. 1962. "Information Content of the Mean." *Journal of Geophysical Research* 67, No. 9: 3441–3448.
- Mann, M.E., R.S. Bradley, and M.K. Hughes. 1999. "Northern Hemisphere Temperature During the Past Millennium: Infer-

ences, Uncertainties, and Limitations." *Geophysical Research Letters* 26, No. 6: 759–762.

- Montgomery, R.H. and J.C. Loftis. 1987. "Applicability of the *t*test for Detecting Trends in Water Quality Variables." *Water Resources Bulletin* 23, No. 4: 653–662.
- Scheffé, M. 1959. *The Analysis of Variance*. New York, New York, USA: Wiley.
- Van Belle, G. and J.P. Hughes. 1984. "Non-parametric Tests for Trend in Water Quality." *Water Resources Research* 20, No. 1:127–136.
- Vörösmarty, C.J., K. Sharma, B. Fekete, A.H. Copeland, J. Holden, J. Marble, and J.A. Lough. 1997. "The Storage and Aging of Continental Runoff in Large Reservoir Systems of the World." *Ambio* 26: 210–219.
- Wald, A. and J. Wolfowitz. 1943. "An Exact Test for Randomness in the Non-parametric Case Based on Serial Correlation." *Annual of Mathematic Statistics* 14: 378–388.
- Zhang, Z., K.D. Harvey, W.D. Hogg, and T.R. Yuzyk. In press. "Trends in Canadian Streamflow." *Water Resources Research*.