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The copper-catalyzed addition of LiAlH4 to cyclopropenyl-

carbinol leads to an easy and straightforward preparation of

alkylidenecyclopropane derivative.

Over the past few decades, racemic cyclopropene and alkyl-

idenecyclopropane (ACP) derivatives have been established as

powerful tools in synthetic chemistry. Indeed, on one hand,

cyclopropene derivatives can easily be transformed into more

complex molecules by hydro- or carbometallation reactions1

of the internal strained double bond2 whereas alkylidenecyclo-

propane derivatives have proved their usefulness by their

unique reactivity with transition-metal catalysts.3 These

catalyzed transformations, also based on the release of the

high level of strain, can be performed either on the distal or

proximal bonds of the three-membered ring as well as on the

exoalkylidene moiety.4 However, in the last few years, using

strain as design principle for asymmetric reaction led to a

complete renaissance of the field.5 In this context, we have

recently reported the straightforward preparation of enantio-

merically pure cyclopropenylcarbinols 3 in excellent yields for

a kinetic resolution upon Sharpless epoxidation (Scheme 1).6

Racemic 3 is easily prepared by a two step sequence: reaction

of substituted vinyl bromide derivatives 1 with bromoform in

the presence of cetrimide as phase-transfer catalyst,7 followed

by treatment of the resulting 1,1,2-tribromocyclopropanes 2

with n-BuLi and reaction with various aldehydes. Then,

starting from enantiomerically pure 3, the synthesis of alkyl-

idenecyclopropanes 4 was readily achieved by a simple

combined copper-catalyzed carbomagnesiation followed by a

syn-b-elimination reaction in excellent yields and enantiomeric

excess.

Secondary allyl alcohol derivatives 3 led to alkylidenecyclo-

propanes 4 with a quaternary all-carbon stereocenter with a

complete transfer of chirality, regardless of the nature of the

alkylmagnesium halide. Moreover, in all these experiments,

the unique or major isomer detected had E-configuration.

To extend this methodology, and particularly if aiming to

prepare alkylidenecyclopropanes 4 possessing a tertiary stereo-

center (R1 = H, R3 = alkyl, aryl), the more challenging

gaseous bromoethene 1 (R1 = H) has to be used to obtain 2.

Despite many attempts, the reaction of bromoform to

bromoethene in the presence of phase transfer catalyst, as

described in Scheme 1, constantly led to very low yields of

tribromocyclopropane 2 (R1 = H). Therefore, we thought to

develop an alternative strategy for the obtention of 4 (R1 =H)

using our easily prepared precursor 3 (R1 = alkyl). In such

case, the formal SN2
0 addition of a hydride to the cyclo-

propenylcarbinol 3 should be the relevant strategy for the

formation of the expected alkylidenecyclopropane derivative.

The copper (I)-catalyzed hydride transfer is known to be a mild

and often selective reducing agent, and among the most

extensively studied and routinely used is the phosphine-

stabilized hexameric complex [{CuH(PPh3)}6], commonly

referred to as Stryker’s reagent.8 It smoothly effects conjugate

reductions of various a,b-unsaturated compounds.9 More

recently, alternatives such as stannanes,10 boranes,11 and in

particular silanes12 have been developed as hydrogen equiva-

lents in CuH chemistry. Interestingly, since the initial report of

Whitesides that reported the preparation of copper hydride via

treatment of i-Bu2AlH with CuBr,13 the use of HCu generated

from aluminium species has never been really developed.

We have recently reported that LiAlH4 could be success-

fully used to reduce cyclopropenylcarbinols 3 into the corres-

ponding anti-cyclopropylcarbinols 5 in excellent yield and

diastereoselectivity (Scheme 2, Path A).14

Although the regiochemistry of the hydroalumination reac-

tion leads to the carbon–aluminium bond in a g-position
(as determined by treatment with D3O

+ and exemplified in

the formation of the deuteriocyclopropane derivative 5), we

envisaged that the addition of a catalytic amount of copper(I)

salt to LiAlH4 should reverse the chemical outcome of the

reaction via a postulated copper hydride species. Thus, a
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formal SN2
0 reaction should now be expected and lead to new

alkylidenecyclopropane derivatives 6 possessing the desired

hydrogen atom in the allylic position. We were pleased to find

that indeed the addition of LiAlH4 in Et2O to a solution of

20 mol% of CuI and cyclopropenylcarbinol 3 at �50 1C and

slow warming to room temperature overnight gives the

expected alkylidenecyclopropanes 6 in very good yield as

described in Table 1.

Tertiary and secondary alcohol derivatives (Table 1, entries

1 to 4 and 5 to 9 respectively) led similarly to alkylidenecyclo-

propane derivatives via the formal SN2
0 reaction (the low yield

observed for 6c is most probably due to the volatile nature of

the final product, Table, entry 4). When commercially

available LiAlD4 was used as reducing agent, the alkylidene-

cyclopropane deuterated in the allylic position was obtained in

good yields with 495% deuterium incorporation (Table 1,

entries 2 and 8). Substituents on the double bond of the

cyclopropenyl ring (R1) can be either methyl or butyl.

Substituents R2 and R3 can be either alkyl, aryl or hydrogen

groups. When secondary alcohols are used (R2 = alkyl or

aryl, R3 = H, Table 1, entries 5 to 9), the fate of the

stereochemistry of the double bond is raised and in all the

tested experiments, we always found that the major isomer was

of (E)-configuration.

In conclusion, the addition of a catalytic amount of copper

salt such CuI to cyclopropenylcarbinol and LiAlH4 reverses

the chemical outcome of the reaction and a formal SN2
0

reaction proceeds without any trace of hydroalumination

reaction of the strained double bond. It is interesting to note

that the rarely used lithium aluminium hydride could be an

excellent source of copper hydride.
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