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Abstract: Brønsted acids catalyze the addition of
enolizable b-keto esters to a,b-unsaturated alde-
hydes leading to substituted 2H-pyrans in good
yields under mild conditions via a formal [3+3] cy-
cloaddition.
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1,3-Dicarbonyl derivatives constitute important syn-
thetic intermediates as they incorporate electrophilic
or nucleophilic functionalities.[1] Rodriguez and col-
leagues developed anionic methodologies based on
the reactivity of stabilized carbanions for the stereose-
lective synthesis of bicycloACHTUNGTRENNUNG[3.2.1]octanols,[2a] arylidene-
cycloalkanones,[2b] cycloheptanols,[2c] and cyclooctane
derivatives[2d] as well as functionalized cyclic enol
ethers.[2e] These 1,3-dicarbonyl compounds, in the
presence of a,b-unsaturated aldehydes, can also lead
to pyrans and oxodecalins via a formal [3+3] cycload-
dition (Scheme 1).[3] Such derivatives are common
motives and are present in numerous natural prod-
ucts.[4] Elegant approaches to these intermediates, and
their use in synthesis, were described by several
groups using either a,b-unsaturated iminium salts as

activated electrophiles,[5] Lewis acids as catalysts,[6]

and tandem Stille-oxo-electrocyclization reaction.[7–10]

Electrophilic activation by small-molecule chiral H-
bond donors has emerged as an important tool for
enantioselective catalysis, with new applications and
developments appearing at a rapidly increasing
pace.[11] Such organocatalysts do not contain any
metals and, therefore, are advantageous from envi-
ronmental perspectives. Compared to Lewis acid,
they are less expensive, stable and moisture insensi-
tive. Among the known carbonyl activators, Brønsted
acids have recently demonstrated their potential to
serve as active catalysts for a variety of synthetically
useful reactions in organic chemistry.[12]

We report here our preliminary results on the syn-
thesis of pyran compounds by a cascade reaction in-
volving diketones 2 and conjugated enals in the pres-
ence of a catalytic amount of a Brønsted acid under
mild conditions. For this work, the phosphoric acids 4
and 5 were prepared following known procedures,[13]

and isolated in good yields (69% and quantitatively,
respectively, Scheme 2).[14]

3,3-Dimethyl-1,5-cyclohexanedione 2a has been
used as the starting material to synthesize substituted
pyrans. A blank reaction carried out at room temper-Scheme 1.

Scheme 2.
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ature in dichloromethane overnight with 2a and 3-
methylbut-2-enal 3a, without any catalyst, did not
lead to the desired pyran and only the starting sub-
strates were isolated. We therefore searched for the
optimized conditions for this reaction with 3-methyl-
2-butenal 3a in the presence of a catalytic amount of
different Brønsted acids (Table 1). As shown in the
table, pyran 1a was isolated in good yield (59 to 73%)
whatever the acid used. However, it is worth mention-
ing that the phosphoric acids 4 and 5 appeared to be
the most efficient as only 5 mol% of them were re-
quired to ensure complete conversions and good
yields. With the other catalysts, the reaction went to
completion with a 15 mol% loading. Using the phos-
phoric acid 4, the conversion was slightly lower than
those obtained with 5.
Having established the high potential of this cata-

lytic reaction, we extended it to various a,b-unsaturat-
ed carbonyl compounds (Figure 1). Thus 3,3-dimeth-
yl-1,5-cyclohexanedione 2a reacted with cinnamalde-
hyde 3b or nitrocinnamaldehyde 3c for 48 h to give
the pyrans 1b and 1c in good yields at room tempera-
ture in the presence of 15 mol% of the phosphoric

acid 5. Alkyl-substituted enals, such as 2-methylbut-2-
enal 3d or citral 3e, were also reactive and the corre-
sponding pyrans 1d and 1e were isolated in the pres-
ence of 5 mol% of 5 in 73% and 95% yield, respec-
tively.
This protocol proved to be general for the prepara-

tion of pyran derivatives and it is worth to mention
that the use of Brønsted acids led in high yields to the
same 2H-pyrans as when iminium salts[5] and Lewis
acids[6] but in milder reaction conditions (lower catalyst
loading, lower temperature). With 6-methyl-4-hy-
droxy-2-pyrone or 4-hydroxycoumarin, similar results
were obtained after optimization of the reaction con-
ditions as these derivatives are less soluble in di-
chloromethane at room temperature and led to more
sluggish reactions. Thus with alkyl-substituted enals,
pyrans 1f–p (Figure 2) were isolated in good yields in
toluene at 60 8C.[15,16]

In conclusion, we have described a Brønsted acid-
catalyzed pyran synthesis from a,b-unsaturated alde-

Table 1. Synthesis of 1a catalyzed by Brønsted acids.

Catalyst Conversions [%] Yields [%]

4[a] 100 70
5[a] 96 73
HBF4

[b] 96 70
PTSA[b] 97 66
PPTS[ab 60 59

[a] Reaction conditions: 0.75 mmol of aldehyde 3a, 0.5 mmol
of b-diketone 2a, 0.025 mmol of Brønsted acid (5 mol%)
in 5 mL of CH2Cl2, 150 mg of Na2SO4 (1.05 mmol).

[b] 15 mol% of catalyst were used.

Figure 1.

Figure 2.
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hydes and 1,3-diketones, 4-hydroxycoumarin or 6-
methyl-4-hydroxy-2-pyrone in mild conditions. This
simple procedure using stable, moisture insensitive
and not expensive catalysts should open new opportu-
nities in organic chemistry and applications in synthe-
sis.

Experimental Section

General Procedure for the Synthesis of the 2H-
Pyrans

To previously dried sodium sulfate (150 mg) were succes-
sively added under argon, phosphoric acid 4 or 5 (5 mol%),
dichloromethane or toluene (10 mLmmol�1), the diketone
(1 equiv.) and the unsaturated aldehyde (1.5 equivs.). The
solution was stirred at room temperature in dichlorome-
thane or at 60 8C in toluene until completion by TLC analy-
sis. The solution was then filtered through Celite, and con-
centrated under vacuum. The crude mixture was purified on
silica gel by flash chromatography (eluent: heptane/ethyl
ether, 9/1).

Supporting Information

Experimental details, NMR spectral characterization data
for all compounds are given in the Supporting Information.
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