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A b s t r a c t  With the development of network applications, touters must support such 
functions as firewalls, provision of QoS, traffic billing, etc. All these functions need the classifi- 
cation of IP packets, according to how different the packets are processed subsequently, which 
is determined, in this article, a novel IP classification algorithm is proposed based on the Grid 
of Tries algorithm. The new algorithm not only eliminates original l imitations in the case of 
multiple fields but also shows better performance in regard to both time and space. It has 
better overall performance than many other algorithms. 

K e y w o r d s  IP classification, hash, Trie-tree 

1 I n t r o d u c t i o n  

Future IP  network must  provide more service types and be t te r  quali ty of service [51, including 
different iated service [1], firewalls[2], policy-based rout ing [3], vir tual  private network, traffic billing [41, 
etc. All these functions need the classification of IP  packets. 

In this paper ,  we first provide the mathemat ica l  model  of the I P  classification problem. Then  we 
present a novel IP  classification algori thm applying to multiple fields based on the two-dimension IP  
classification. We also compare  our new algor i thm with others.  The  s imulat ion result shows tha t  our  
a lgor i thm has the best  overati performance. 

2 M a t h e m a t i c a l  M o d e l  of  IP Class i f i cat ion  

2.1 T e r m i n o l o g y  Def in i t ions  [s] 

An address D is a bit s tr ing of W bits in length. 
A prefix P is a bit str ing of the length between 0 and W. We use length (P) to denote the number  

of bits in a prefix. 
A header H has K fields, which are denoted by H[1], H [ 2 ] , . . . ,  H[K] respectively. Each field is a 

string of binary bits. 
A filter F also has K fields. Each field F[i] in a filter can specify any of the three kinds of matches:  

exact match,  prefix match,  or range match. 
It  is called an  exact match iff a single value is specified for the i th  filter field (i.e., F[i]) and the 

header field H[i] is equal to F[i]. 
It is called a prefix match iff a prefix is specified for the i th  filter field and the first length(F[i]) 

binary bits of the  header field H[i] are the same as those of F[i]. 
It  is called a range match iff a range of values F[i] = vall . . .  val2 is specified for the i th  filter field 

and the header field H[i] falls into tha t  range, i.e., vall < H[i] <_ vaI2. 
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National Natural Science Foundation of China (No.90104002). 
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A filter F is said to be a matching filter for a header H iff each field H[i] of H matches the 
corresponding field F[i] of F.  The type of match is specified by F[i] and could be an exact match, a 
prefix match or a range match. 

A set of N filters is called a filter database, which is denoted by FS.  
Each filter F has a cost property denoted by cost(F). For WF1,F2 E FS, if cost(F1) = cost(F2 

then F1 - - / '2 .  We use the cost property to assure that  there is at most one matching filter. 

2.2 Best  M a t c h i n g  Filter Prob lem and IP Classif ication 

We define the following problem as the best matching filter problem: 
Given a filter database FS ~ ~ and a header H,  find the best matching filter fbe~t, which meets 

the following conditions: 
(1) fbe~, e FS 
(2) fb~t matches H 
(3) Vf  C FS, f # fbr if f matches H, then cost(fb~t) < cost(f). 
IP classification is an instance of the best matching filter problem. In theory, seven fields can be 

used for the filter: the destination/source IP address (32 bits each), the destination/source transport 
port  (16 bits each), the type of service (8 bits), the protocol type (8 bits) and the flag of transport 
layer (8 bits). The sum of bits of these fields is 120 (we assume that  all the seven fields reside in 
the IP packet header for the sake of convenience, although some fields are in T C P  header actually). 
Statistical results of some actual filter databases used by ISPs show that  17% of the filters specify 
only one field, 2370 specify three fields, and 6070 specify four fields [6]. 

3 R e l a t e d  W o r k  

The packet classification based on patterns [7] is used in the operating system when dispatching data 
packets of the input queue to different process spaces. It is the first algorithm avoiding linear lookup. 
Its performance has direct proportion to the number of fields and is independent of the number of 
filters. But this algorithm has very strong limitations on filters, thus it is not suitable for IP routers. 

The crossproducting algorithm [s] is based on caches. For bigger classifiers, the authors propose a 
caching technique (on-demand crossproducting) with a non-deterministic classification time. 

The modular algorithm [9] is an IP classification algorithm based on statistics. It may optimize the 
lookup data structure according to the distribution of filter matching ratio and IP traffic. Without 
enough effective statistic parameters, this algorithm cannot be practically used for IP routers now. 

The RFC (Recursive Flow Classification) algorithm[ 6] is a simple multi-stage classification algo- 
rithm, which maps the S-bit header to the T-bit ClassID (T << S) step by step. It is the fastest 
algorithm ever known, but it needs a lot of pre-computation (usually more than ten seconds) and it 
may suffer from space explosion. 

A solution called Grid of Tries is proposed in [8]. In this scheme, the Trie-tree data structure is 
extended to two dimensions. This is a good solution if the filters are restricted to only two fields, but 
it is difficult to extend it to apply to more fields. 

A hardware-oniy algorithm can employ a ternary CAM (content-addressable memory). Ternary 
CAMs store words with three-valued digits: '0', '1' or '*' (wildcard). The rules are stored in the 
CAM array in the order of decreasing priority. Given a packet-header to classify, the CAM performs 
a comparison against all of its entries in parallel, and a priority encoder selects the first matching 
rule. While simple and flexible, CAMs are currently suitable only for small tables; they are too 
expensive, and consume too much power for large classifiers. Furthermore, some operators are not 
directly supported, and so the memory array may be used very inefficiently. 

In this paper, we propose a novel lookup algorithm called non-collision hash Trie-tree algorithm, 
which is based on the Grid of Tries algorithm. The average time consumed and the space requirement 
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of this algorithm are less than those of Grid of Tries, and it gets rid of the l imitation of filters in Grid 
of Tries. It  is the most at tractive candidate algorithm if implemented by means of software. 

4 N o n - C o l l i s i o n  H a s h  T r i e - T r e e  A l g o r i t h m  

4.1 Bas i c  A l g o r i t h m  

We mentioned that  seven fields in IP packets might" be the candidate fields of the filter. But actual 
filter databases usually use only five fields: destination/source IP addresses, destination/source ports 
and protocol type. The width of the protocol type field is 8 bits. To program conveniently, we extend 
the protocol type field to 16 bits. 

The values of the destination port, the source port  and the protocol type range from 0 to 65535, but 
in actual filters they only use a very small part  of the whole range. Currently, the value of the protocol 
field is limited to TCP, UDP, ICMP, IGMP and (E)IGRP. In most Client/Server software architectures, 
ports can be roughly divided into two classes [1~ One is the reserved port  which numbers in 1-1023, 
the other is the ephemeral port  which numbers larger than  1023. Ephemeral  ports  are usually used 
in client software and are usually assigned by the operating system kernel. They  are nothing but to 
identify an endpoint of a connection. It is almost impossible that  a filter would specify a specific port 
larger than 1023. Usually, filters specify a range such as gt1023 meaning all ports  larger than 1023 
(but less than 65535). The most widely used reserved ports are 20, 21 (FTP)  and 80 (www), other 
ports are used less frequently. 

Our analysis above shows that  the number of combinations of dest ination/source ports and protocol 
values in actual filters is very small. Based on this observation, we construct a two-stage look up table 
that  can be used to lookup without collision at all. We take Table 1 as an example to illustrate our 
idea. 

T a b l e  1. An E x a m p l e  D a t a b a s e  of F i l te rs  
CI~sID Dest-IP Src-IP 

0 10.1.*.* 10.2.*.* 
1 10.3.*.* 10.4.*.* 
2 10.5.*.* 10.6.*.* 
3 10.5.*.* 10.6.*.* 
4 10.7.*.* 10.7.*.* 
5 * * 

Des t -por t  Src-por t  

80 * 
80 �9 

[20, 211 * 
�9 gt 1023 

Pro t  

17 
17 
6 

6 

Table 1 is a filter database that  contains six filters. We assume ClasslD is the same as the filter 
cost in this database. Take the destination port as an example. We assign each port  in 0-65535 
a bitmap. This bi tmap denotes the filters the port  matches (the length of b i tmap is equal to the 
number of filters). For example, the bi tmaps of ports 21 and 22 are both  100111, which means they 
match filters 0, 3, 4 and 5. According to these bitmaps, we classify all possible destination ports into 
different equivalent classes. The ports with the same bi tmap belong to the same class. The bi tmap 
of equivalent class A is denoted by bmp(A). The set of all such destination port  equivalent classes is 
denoted by D_Set. And the total number of destination port  equivalent classes is denoted by D. For 
example, the D_Set of Table 1 is {{80}, [20,21], {0-65535 except 20, 21, 80}}. In the same manner,  
we construct the set of source port equivalent classes S_Set and that  of protocol equivalent classes 
P_Set, whose element numbers are S and P respectively. 

If a E D_Set, b E S_Set, c E P_Set then the 3-tuple (a, b, c) is called a cross-combination. 
Now we further divide the set of all the cross-combinations into different equivalent classes called 

DSP_Set. We do it as follows. 
Consider two cross-combinations (a, b, c) and (d, e, f) .  If bmp(a) & bmp(b) & bmp(c) = bmp(d) gz bmp 

(e) & bmp(f) then (a,b, c) and (d, e, f )  belong to the same class, otherwise they belong to different 
classes ("&=" denotes logic "and" operation bit by bit). 

Each element of the DSP_Set (a cross-combination equivalent class, notice tha t  it is a set itself) 
has a corresponding set of destination and source IP prefix pairs. These IP prefix pairs are those of 
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the filters whose 3-tupte dest inat ion port,  source por t  and pro tocol  number  belongs to the element. 
The  cross-combinations tha t  belong to the same element of  D S P _ S e t  share the same pointer  to a 
dest inat ion and source IP  prefix set. The non-collision hash Trie-tree a lgor i thm first finds out the 
pointer  to the dest inat ion and source prefix pair set by looking up a non-collision hash table according 
to the dest ination port ,  the source port  and the protocol  number .  T h e n  we per form a two-dimension 
Trie-tree lookup in the dest inat ion and source IP  prefix pairs to ob ta in  the final ClassID. 

4.2 Non-Coll is ion Hash Lookup 

W h e n  classifying a packet with its header H(dport, spor~ , proto) (representing the dest inat ion port ,  

dport sport proto 

[- 

Fig.1. Non-collision hash Trie-tree algorithm. 

the source por t  and the protocol  respectively, we do not con- 
sider IP  address fields in this step), we first look up three 
tables using dport, sport and proto as the indices respec- 
tively. We use a funct ion of these lookup result g(fd(dport), 
fs(sport), fp(proto)) as the index to per form another  lookup. 
The result is h(g(fd(dport),  fs(sport),  fp(proto))),  which is 
the pointer  to a set of des t inat ion and source IP  prefix 
pairs. We number  the D equivalent classes' IDs of  D_Set  
as 0, 1 , 2 , . . .  , D -  1 and define fd(dport)  as the equivalent 
CtassID of dport. And  it is the same with fs  and fp. 

Fig. t  shows the lookup process s ta ted  above. The  rect- 
angle represents a lookup table and g is a hash function. 
The  b o t t o m  of Fig.1 is the src-dest Trie tree tha t  is used to 
took up with the source IP  address and the dest ination IP  
address. We choose g ( d , s , p )  = P S d  + Ps  + p. According 
to our definitions of  fd, fs and fp, we have 0 < d < D - 1, 
0 < s < S - l ,  0 _ < p  < P - 1 .  Now we prove g will not  
cause any collision. 

T h e o r e m .  Define g ( d , s , p )  = PSd  + Ps + p ( d , s , p , D , S ,  P C Z ) ,  O < d < D -  l ,  O < s < S - 1 ,  
0 <_ p <_ P -  1, i f g ( d l , s l , p t )  = g(d2,s2,p2),  then dl = d2, sl  = s2 ,p t  = p 2 .  

Proof. Because P S d l  + Ps i  +Pt  = PSd2 + Ps2 +p2, p2 - P l  = PSd~ + P s t  - PSd2 - Ps2 = P[S(dI  - 
d2) + st  - s2]. Taking the absolute values of bo th  sides, we have ]P2 - P t ]  = PIS(d~ - d2) + sl - s~_[. 
Because Pl,P2 C [0, P - 1], [p2 - p l [  < P .  Since [S(dl - d2) + st  - s21 is an integer, we conclude tha t  
P2 - Pl = 0, i.e., P2 = Pt. For the same reason, we have s2 = s~, dt = d2. [] 

Now we have proved tha t  g is a non-collision function. The const ruct ion of these tables and 
the two-dimension Trie-tree is completed by reading the filter da tabase  during the  pre-computa t ion  
stage. Thus,  we can find the pointer  to the set of dest ination-source IP  prefix pairs with four memory  
accesses. The  next  s tep is to look up through the two-dimension Trie-tree using dest inat ion and source 
IP  addresses in the packet  header. Algorithms 1 and 2 are the setup algori thms of  these tables. 

A l g o r i t h m  1. Cons t ruc t ion  of fd( fs ,  fp) Table 

*table_fx table_fx~setup0 
{ 

/*allocate memory and initialization*/ 
p = new_table_fx0; 
for (n = 0;n < 65536, n + +) 
{ 

Get bmp(n); 
eq = search_in_equivalence_class_x_set (bmp(n)); 
if (eq = =  N U L L ) / *  new bmp */ 
{ 

eq = new_equivalence_class_x(bmp (n)); 
add eq into x_set; 

Table 2. A n  Example of 
Source-Destination IP Pairs 
ClassID Dest-IP Src-IP 

0 0* 10" 
1 0* 01" 
2 0* 1" 
3 00" 1" 
4 00" 11" 
5 10" I* 
6 * 00" 
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} 
p -~ table[n].ID=eq -+ ID; 

} 
return p; 

} 
A l g o r i t h m  2. Construction of h Table 

*tab|e_h table_h_setup0 
{ 

indx = 0; 
/*allocate memory and initialization*/ 
p = new_table_h(D, S, P); 
for eqd in d_set, eqs in s_set, eqp in p_set 
{ 

bmp = eqd --+ bmp&eqs -+ bmp&eqp --+ bmp; 
eq = search_equivalence_class_dsp(bmp); 
if (eq is null) /*new bmp*/ 
{ 

eq = new_equivalence_class_dsp(bmp); 
add eq into dsp_set; 

} 
p --~ table[indx++].ID=eq -+ ID; 

4.3 L o o k u p  in D e s t i n a t i o n - S o u r c e  I P  P re f ix  P a i r s  

In this section, we introduce a simplified Grid-of-Tries lookup algorithm. Extending the Trie-tree 
data structure from one-dimension to two-dimension, we have the two-dimension Trie-tree. We take 
the filter database in Table 2 as an example to show this process (assume that the width of IP address 
in the table is 2). 

We first build up a Trie-tree (denoted by Dest-Trie tree) according to the destination IP prefxes. 
For each node in Dest-Trie tree, if there exists the corresponding destination IP prefix, it points to 
a source IP prefix Trie-tree (denoted by Src-Trie), otherwise the pointer is null. A Dest-Trie node 
not only contains the corresponding source IP prefixes but Mso those of its ancestors in Dest-Trie. In 
that case, time complexity of lookup in the two-dimension Trie tree is O(W), but since each Dest-Trie 
node stores both the pair source IP prefixes of its own and those of its ancestors, the space compexity 
turns out to be @(N2). 

We can get rid of the redundant copies. Every Dest-Trie node only contains the corresponding 
source IP prefixes in the database. But in this case, in order to find out the final ClassID with the least 
cost, we need to search not only the Src-Trie but also that of its ancestors. Thus the time complexity 
rises up to O(W2), although we need less space. 

The solution is to introduce a switch pointer. In the process of pre-computation, we direct the 
nulI pointer of the Src-Trie node to art Src-Trie node of one of its Dest-Trie ancestors' so that we can 
proceed further when we go along the longest matching path. In addition, we must make sure that 
the longer a destination-source prefix pair is, the lower its cost is. Take filters 2, 3 and 4 of Table 2 
as an example, filter 2 is shorter than filter 3 in destination-source pair length, and filter 3 is shorter 
than filter 4. But the fact is that filter 2's cost is lower than filter 3 and filter 3's cost is lower than 
filter 4's. So they do not accord with our principle of a longer pair with a lower cost. However, we 
observe that if we remove filters 3 and 4 from the table, our lookup result does not change. That is 
because a header matching filter 3 and filter 4 will surely match filter 2, and filter 2 has a lower cost. 
In other words, filter 3 and filter 4 are redundant. There are two ways to deal with the problem. The 
first one is to guarantee that there is no redundancy at all when building up our filter database; the 
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other  is to change both  filters 3's and 4's ClassID to 2 in the p re -computa t ion  stage to guarantee the 
correctness of  the algorithm. 

D e s t : P r i e ~  

/ 1  ~ 
Scr-Trie. .... "~ / /" 

............. 0 . . . . .  0 ........ 
f2�82 0 ~~. 0 /,J2 ~? .~ 

I\ ......... .~ "".-/ U/ J5 - \  -~. ......... ~y 

5 fl .:o :~ 

Fig.2. Improved data structure 
of the 2-dimension Trie-tree. 

The  ul t imate  two dimension Trie tree is shown as Fig.2, 
where the number  beside the letter " f "  denotes the cor- 
responding ClassID (it is also the sequence number  of the 
filter and its cost). Given this figure, we look up the 
matching  filter with the lowest cost for a coming header 
as follows. 

First perform the longest dest inat ion IP  prefix match- 
ing process ending at some node in Dest-Trie. Then  go 
along the 0 or 1 pointer  (or if null, a switch pointer) of 
the corresponding Src-Trie to perform the longest source 
IP  prefix matching  according to the header 's  destination 
and source IPs. We go as far ther  as we can, and the Clas- 
sID of the filter with the lowest cost is the final result we 
want. 

Algor i thm 3 is the construct ion algori thm of the Src-Dest Trie tree. 
A l g o r i t h m  3. Const ruc t ion  of  Src-Dest Trie Tree 

void insertJp_pair(dst_trie_node *root, ip dip, ip sip) 
{ 

/*insert destination IP address into dst-trie node*/ 
dp = dst_trieAnsert (root,,dip); 
/*insert source IP address into src-trie node */ 
sp = src_trie_insert (&:dp -~ psrc, srcJp); 
insert information of the rule into sp node; 

} 
/*set up dest_ip nodes*/ 
dest_trie_node* dest_trieJnsert(dest_trie_node *root, ip destAp) 
{ 

if (!dest_ip) return NULL; 
if (strlen (dest_ip)>NMAXtPWIDTH) return NULL; 
it (!(*root)) 
( 

*root = new dst_trie; 
initialize root; 

} 
set up dest_trie nodes according to string dest_ip; 
continue until we meet 0 or * in dest_ip; 
return the pointer to the last dest_trie node; 

} 
src_trie_node* src_trieJnsert(src_trie_node *root, ip srcAp) 
( 

if ([srcAp) return NULL; 
if (strlen (src_ip)>NMAXIPWIDTH) return NULL; 
if (!(*root)) 
( 

*root = new src_trie; 
initialize root; 

} 
set up src_trie nodes according to string srcAp, 
continue until we meet 0 or * in src__ip; 
return the pointer to the last src_trie node; 

} 
Algor i thm 4 is the  pre-compute  procedure of the src-dest Trie tree. 
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} 
The 

steps. 

A l g o r i t h m  4. Pre-Computation of Src-Dest Trie Tree 
void pre_compute(dst_trie_node *root) 
{ 

if (root ==  null) return; 
p = pointer to the lowest src_trie of root's ancestors; 
if (root --~ src_trie == null) 

root --+ src_trie = p; 
else 

if (p is not null and has less cost) 
*root --+ src_trie = *p; 

search root --+ src_trie, be sure the cost of src_ip is less than its prefix; 
} 
/*search left sub-tree*/ 
pre_compute (root-+ child[0]); 
/*search right sub-tree*/ 
pre_compute (root --+ child[l]); 

whole working procedure of the non-collision hash Trie-tree algorithm is divided into two 

The first step is the pre-computation of four hash tables (fd, fs, fp and h) and src-dest Trie-tree 
according to the filter database. The construction algorithms of these tables are shown in Algorithm 
1 through Algorithm 4. 

After establishing these tables and the Trie tree, the second step is the lookup procedure. 

5 Lookup Performance 

In the worst case, it takes four serial lookups to obtain the pointer to the two-dimension Trie-tree, 
i.e., the lookups in tables fd, fs, fp and h. Lookup through the two-dimension Trie-tree needs to visit 
2W nodes in the worst case. So the total number of memory accesses is 2W + 4 in the worst case.  
What is more, the consumed time is irrelevant to the number of filters. In contrast, even with a hash 
function without collision, Grid-of-Tries needs 4(1 + 2W) memory accesses. 

It is a little more complicated as for the space complexity of the non-collision hash algorithm. The 
numbers of entries of the fs, fd and fp tables are all 65536 and the number of entries of table h is 
D • S • P.  Theoretically speaking, the number of table h's entries could be up to 65536 x 65536 • 65536. 
However, as analyzed above, D, S and P are rather small in normal cases, so we expect that the number 
of table h's entries is quite small. As for the two-dimension Trie-tree, since a filter needs 2W Trie 
nodes at most and there are N filters altogether, the space needed is about 2 N W .  Thus we could 
estimate that the total space is Table_Size+2NW in the worst case, while Grid-of-Tries for multi-fields 
also needs about Hash_Size+2NW, where Hash_Size denotes the space for the hash table. In order 
to gain higher time efficiency, the hash table usually consumes a lot of memory. In our test, the 
non-collision hash Trie-tree algorithm also shows better performance in space. 

It is difficult to analyze the average performance of both time and space. Even worse, little is 
done in sampling for both filters and IP flow in the real Internet. Because of that,  we design a 
virtual environment to perform a testing. Our concern focuses on the relative performance between 
the non-collision hash Trie-tree and Grid-of-Tries, so the virtual environment will be sufficient. We 
make reasonable assumptions about IP flows and filters and generate IP packet flow and filters from 
a random number generator. For the sake of comparability, we add the same limitations needed by 
the Grid-of-Tries algorithm. We observe that even our assumptions favor the Grid-of-Tries, the non- 
collision hash algorithm still shows better performance in both time and space. So we expect the 
difference will be more obvious in practice. Testing results are shown in Fig.3 and Fig.4. 
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Fig.3. Comparison of time performance between non- 

conllision Trie-tree (denoted by Nonco[) and 
Grid-of-Tries (denoted by Grid), where x-axis 
plots the number of filters and y-axis plots the 
total seconds consumed while processing 107 
packets. 
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Fig.4. Comparison of space performance between 
non-collision Trie-tree (denoted by .Noneol) 
and Grid-of-Tries (denoted by Grid), ~vhere x- 
axis plots the number of filters and y-axis plots 
the maximum memory (MB) consumed. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this article, a novel IP classification algorithm is presented based on the Grid-of-Tries algorithm. 
The new algorithm not only eliminates original limitations in the case of multiple fields but also shows 
bet ter  performance in regard to both time and space. It has better overall performance than many 
other algorithms. 

We have implemented the algorithm in the "High-Performance Security Router",  a key project of 
the High Technology Research and Development Program of China. The "High-Performance Security 
Router" implements packet filter and IPSec. tt  may support  four Gigabit Ethernet  interfaces at most, 
so traditional classification algorithms cannot keep up with the speed of interface. Our new algorithm 
meets the performance requirement of IP packet classification in the "High Performance Security 
Router".  

The algorithm we presented can be improved further. In the process of lookup through the two- 
dimension Trie-tree, our algorithm will go one step according to a bit of the header. If it can look up 
several bits at a time, the depth of the Trie-tree will reduce greatly and the performance will improve. 
Future work is to explore the distribution of IP prefixes [11], by which we hope that  we can select the 
depth of Trie-tree and decide which bits to look at when going down the Trie-tree. 
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