
Vol.17 No.2 J. Comput. Sci. & TechnoI. Mar. 2002

A Non-Col l i s ion Hash Trie-Tree B a s e d Fast
IP Classif icat ion A l g o r i t h m

XU Ke (~. '~) , W U Jianping (~ s] z) , YU Zhongchao (~NI~,I@~) and XU Mingwei (~ . N f ~)

Department of Computer Science and Technology, Tsinghua University
Beijing 100084, P.R. China

E-mail: {xuke,yzc,xmw}@csnetl.cs.tsinghua.edu.cn; jianping@cernet.edu.cn

Received August 29, 2000; revised June 4, 2001.

A b s t r a c t With the development of network applications, touters must support such
functions as firewalls, provision of QoS, traffic billing, etc. All these functions need the classifi-
cation of IP packets, according to how different the packets are processed subsequently, which
is determined, in this article, a novel IP classification algorithm is proposed based on the Grid
of Tries algorithm. The new algorithm not only eliminates original l imitations in the case of
multiple fields but also shows better performance in regard to both time and space. It has
better overall performance than many other algorithms.

K e y w o r d s IP classification, hash, Trie-tree

1 I n t r o d u c t i o n

Future IP network must provide more service types and be t te r quali ty of service [51, including
different iated service [1], firewalls[2], policy-based rout ing [3], vir tual private network, traffic billing [41,
etc. All these functions need the classification of IP packets.

In this paper , we first provide the mathemat ica l model of the I P classification problem. Then we
present a novel IP classification algori thm applying to multiple fields based on the two-dimension IP
classification. We also compare our new algor i thm with others. The s imulat ion result shows tha t our
a lgor i thm has the best overati performance.

2 M a t h e m a t i c a l M o d e l of IP Class i f i cat ion

2.1 T e r m i n o l o g y Def in i t ions [s]

An address D is a bit s tr ing of W bits in length.
A prefix P is a bit str ing of the length between 0 and W. We use length (P) to denote the number

of bits in a prefix.
A header H has K fields, which are denoted by H[1], H [2] , . . . , H[K] respectively. Each field is a

string of binary bits.
A filter F also has K fields. Each field F[i] in a filter can specify any of the three kinds of matches:

exact match, prefix match, or range match.
It is called an exact match iff a single value is specified for the i th filter field (i.e., F[i]) and the

header field H[i] is equal to F[i].
It is called a prefix match iff a prefix is specified for the i th filter field and the first length(F[i])

binary bits of the header field H[i] are the same as those of F[i].
It is called a range match iff a range of values F[i] = vall . . . val2 is specified for the i th filter field

and the header field H[i] falls into tha t range, i.e., vall < H[i] <_ vaI2.

This work is supported by the National "863" High-Tech Programme of China (No.863-306-ZD-0%01) and the
National Natural Science Foundation of China (No.90104002).

220 XU Ke, WU Jianping et al. Vol.17

A filter F is said to be a matching filter for a header H iff each field H[i] of H matches the
corresponding field F[i] of F. The type of match is specified by F[i] and could be an exact match, a
prefix match or a range match.

A set of N filters is called a filter database, which is denoted by FS.
Each filter F has a cost property denoted by cost(F). For WF1,F2 E FS, if cost(F1) = cost(F2

then F1 - - / '2 . We use the cost property to assure that there is at most one matching filter.

2.2 Best M a t c h i n g Filter Prob lem and IP Classif ication

We define the following problem as the best matching filter problem:
Given a filter database FS ~ ~ and a header H, find the best matching filter fbe~t, which meets

the following conditions:
(1) fbe~, e FS
(2) fb~t matches H
(3) Vf C FS, f # fbr if f matches H, then cost(fb~t) < cost(f).
IP classification is an instance of the best matching filter problem. In theory, seven fields can be

used for the filter: the destination/source IP address (32 bits each), the destination/source transport
port (16 bits each), the type of service (8 bits), the protocol type (8 bits) and the flag of transport
layer (8 bits). The sum of bits of these fields is 120 (we assume that all the seven fields reside in
the IP packet header for the sake of convenience, although some fields are in T C P header actually).
Statistical results of some actual filter databases used by ISPs show that 17% of the filters specify
only one field, 2370 specify three fields, and 6070 specify four fields [6].

3 R e l a t e d W o r k

The packet classification based on patterns [7] is used in the operating system when dispatching data
packets of the input queue to different process spaces. It is the first algorithm avoiding linear lookup.
Its performance has direct proportion to the number of fields and is independent of the number of
filters. But this algorithm has very strong limitations on filters, thus it is not suitable for IP routers.

The crossproducting algorithm [s] is based on caches. For bigger classifiers, the authors propose a
caching technique (on-demand crossproducting) with a non-deterministic classification time.

The modular algorithm [9] is an IP classification algorithm based on statistics. It may optimize the
lookup data structure according to the distribution of filter matching ratio and IP traffic. Without
enough effective statistic parameters, this algorithm cannot be practically used for IP routers now.

The RFC (Recursive Flow Classification) algorithm[6] is a simple multi-stage classification algo-
rithm, which maps the S-bit header to the T-bit ClassID (T << S) step by step. It is the fastest
algorithm ever known, but it needs a lot of pre-computation (usually more than ten seconds) and it
may suffer from space explosion.

A solution called Grid of Tries is proposed in [8]. In this scheme, the Trie-tree data structure is
extended to two dimensions. This is a good solution if the filters are restricted to only two fields, but
it is difficult to extend it to apply to more fields.

A hardware-oniy algorithm can employ a ternary CAM (content-addressable memory). Ternary
CAMs store words with three-valued digits: '0', '1' or '*' (wildcard). The rules are stored in the
CAM array in the order of decreasing priority. Given a packet-header to classify, the CAM performs
a comparison against all of its entries in parallel, and a priority encoder selects the first matching
rule. While simple and flexible, CAMs are currently suitable only for small tables; they are too
expensive, and consume too much power for large classifiers. Furthermore, some operators are not
directly supported, and so the memory array may be used very inefficiently.

In this paper, we propose a novel lookup algorithm called non-collision hash Trie-tree algorithm,
which is based on the Grid of Tries algorithm. The average time consumed and the space requirement

No.2 A Non-Collision Hash Trie-Tree Based Fast IP Classification Algorithm 221

of this algorithm are less than those of Grid of Tries, and it gets rid of the l imitation of filters in Grid
of Tries. It is the most at tractive candidate algorithm if implemented by means of software.

4 N o n - C o l l i s i o n H a s h T r i e - T r e e A l g o r i t h m

4.1 Bas i c A l g o r i t h m

We mentioned that seven fields in IP packets might" be the candidate fields of the filter. But actual
filter databases usually use only five fields: destination/source IP addresses, destination/source ports
and protocol type. The width of the protocol type field is 8 bits. To program conveniently, we extend
the protocol type field to 16 bits.

The values of the destination port, the source port and the protocol type range from 0 to 65535, but
in actual filters they only use a very small part of the whole range. Currently, the value of the protocol
field is limited to TCP, UDP, ICMP, IGMP and (E)IGRP. In most Client/Server software architectures,
ports can be roughly divided into two classes [1~ One is the reserved port which numbers in 1-1023,
the other is the ephemeral port which numbers larger than 1023. Ephemeral ports are usually used
in client software and are usually assigned by the operating system kernel. They are nothing but to
identify an endpoint of a connection. It is almost impossible that a filter would specify a specific port
larger than 1023. Usually, filters specify a range such as gt1023 meaning all ports larger than 1023
(but less than 65535). The most widely used reserved ports are 20, 21 (FTP) and 80 (www), other
ports are used less frequently.

Our analysis above shows that the number of combinations of dest ination/source ports and protocol
values in actual filters is very small. Based on this observation, we construct a two-stage look up table
that can be used to lookup without collision at all. We take Table 1 as an example to illustrate our
idea.

T a b l e 1. An E x a m p l e D a t a b a s e of F i l te rs
CI~sID Dest-IP Src-IP

0 10.1.*.* 10.2.*.*
1 10.3.*.* 10.4.*.*
2 10.5.*.* 10.6.*.*
3 10.5.*.* 10.6.*.*
4 10.7.*.* 10.7.*.*
5 * *

Des t -por t Src-por t

80 *
80 �9

[20, 211 *
�9 gt 1023

Pro t

17
17
6

6

Table 1 is a filter database that contains six filters. We assume ClasslD is the same as the filter
cost in this database. Take the destination port as an example. We assign each port in 0-65535
a bitmap. This bi tmap denotes the filters the port matches (the length of b i tmap is equal to the
number of filters). For example, the bi tmaps of ports 21 and 22 are both 100111, which means they
match filters 0, 3, 4 and 5. According to these bitmaps, we classify all possible destination ports into
different equivalent classes. The ports with the same bi tmap belong to the same class. The bi tmap
of equivalent class A is denoted by bmp(A). The set of all such destination port equivalent classes is
denoted by D_Set. And the total number of destination port equivalent classes is denoted by D. For
example, the D_Set of Table 1 is {{80}, [20,21], {0-65535 except 20, 21, 80}}. In the same manner,
we construct the set of source port equivalent classes S_Set and that of protocol equivalent classes
P_Set, whose element numbers are S and P respectively.

If a E D_Set, b E S_Set, c E P_Set then the 3-tuple (a, b, c) is called a cross-combination.
Now we further divide the set of all the cross-combinations into different equivalent classes called

DSP_Set. We do it as follows.
Consider two cross-combinations (a, b, c) and (d, e, f) . If bmp(a) & bmp(b) & bmp(c) = bmp(d) gz bmp

(e) & bmp(f) then (a,b, c) and (d, e, f) belong to the same class, otherwise they belong to different
classes ("&=" denotes logic "and" operation bit by bit).

Each element of the DSP_Set (a cross-combination equivalent class, notice tha t it is a set itself)
has a corresponding set of destination and source IP prefix pairs. These IP prefix pairs are those of

222 XU Ke, WU Jianping et al. Vol.17

the filters whose 3-tupte dest inat ion port, source por t and pro tocol number belongs to the element.
The cross-combinations tha t belong to the same element of D S P _ S e t share the same pointer to a
dest inat ion and source IP prefix set. The non-collision hash Trie-tree a lgor i thm first finds out the
pointer to the dest inat ion and source prefix pair set by looking up a non-collision hash table according
to the dest ination port , the source port and the protocol number . T h e n we per form a two-dimension
Trie-tree lookup in the dest inat ion and source IP prefix pairs to ob ta in the final ClassID.

4.2 Non-Coll is ion Hash Lookup

W h e n classifying a packet with its header H(dport, spor~ , proto) (representing the dest inat ion port ,

dport sport proto

[-

Fig.1. Non-collision hash Trie-tree algorithm.

the source por t and the protocol respectively, we do not con-
sider IP address fields in this step), we first look up three
tables using dport, sport and proto as the indices respec-
tively. We use a funct ion of these lookup result g(fd(dport),
fs(sport), fp(proto)) as the index to per form another lookup.
The result is h(g(fd(dport), fs(sport), fp(proto))), which is
the pointer to a set of des t inat ion and source IP prefix
pairs. We number the D equivalent classes' IDs of D_Set
as 0, 1 , 2 , . . . , D - 1 and define fd(dport) as the equivalent
CtassID of dport. And it is the same with fs and fp.

Fig. t shows the lookup process s ta ted above. The rect-
angle represents a lookup table and g is a hash function.
The b o t t o m of Fig.1 is the src-dest Trie tree tha t is used to
took up with the source IP address and the dest ination IP
address. We choose g (d , s , p) = P S d + Ps + p. According
to our definitions of fd, fs and fp, we have 0 < d < D - 1,
0 < s < S - l , 0 _ < p < P - 1 . Now we prove g will not
cause any collision.

T h e o r e m . Define g (d , s , p) = PSd + Ps + p (d , s , p , D , S , P C Z) , O < d < D - l , O < s < S - 1 ,
0 <_ p <_ P - 1, i f g (d l , s l , p t) = g(d2,s2,p2), then dl = d2, sl = s2 ,p t = p 2 .

Proof. Because P S d l + Ps i +Pt = PSd2 + Ps2 +p2, p2 - P l = PSd~ + P s t - PSd2 - Ps2 = P[S(dI -
d2) + st - s2]. Taking the absolute values of bo th sides, we have]P2 - P t] = PIS(d~ - d2) + sl - s~_[.
Because Pl,P2 C [0, P - 1], [p2 - p l [< P . Since [S(dl - d2) + st - s21 is an integer, we conclude tha t
P2 - Pl = 0, i.e., P2 = Pt. For the same reason, we have s2 = s~, dt = d2. []

Now we have proved tha t g is a non-collision function. The const ruct ion of these tables and
the two-dimension Trie-tree is completed by reading the filter da tabase during the pre-computa t ion
stage. Thus, we can find the pointer to the set of dest ination-source IP prefix pairs with four memory
accesses. The next s tep is to look up through the two-dimension Trie-tree using dest inat ion and source
IP addresses in the packet header. Algorithms 1 and 2 are the setup algori thms of these tables.

A l g o r i t h m 1. Cons t ruc t ion of fd(fs , fp) Table

*table_fx table_fx~setup0
{

/*allocate memory and initialization*/
p = new_table_fx0;
for (n = 0;n < 65536, n + +)
{

Get bmp(n);
eq = search_in_equivalence_class_x_set (bmp(n));
if (eq = = N U L L) / * new bmp */
{

eq = new_equivalence_class_x(bmp (n));
add eq into x_set;

Table 2. A n Example of
Source-Destination IP Pairs
ClassID Dest-IP Src-IP

0 0* 10"
1 0* 01"
2 0* 1"
3 00" 1"
4 00" 11"
5 10" I*
6 * 00"

No.2 A Non-Collision Hash Trie-Tree Based Fast IP Classification Algorithm 223

}
p -~ table[n].ID=eq -+ ID;

}
return p;

}
A l g o r i t h m 2. Construction of h Table

*tab|e_h table_h_setup0
{

indx = 0;
/*allocate memory and initialization*/
p = new_table_h(D, S, P);
for eqd in d_set, eqs in s_set, eqp in p_set
{

bmp = eqd --+ bmp&eqs -+ bmp&eqp --+ bmp;
eq = search_equivalence_class_dsp(bmp);
if (eq is null) /*new bmp*/
{

eq = new_equivalence_class_dsp(bmp);
add eq into dsp_set;

}
p --~ table[indx++].ID=eq -+ ID;

4.3 L o o k u p in D e s t i n a t i o n - S o u r c e I P P re f ix P a i r s

In this section, we introduce a simplified Grid-of-Tries lookup algorithm. Extending the Trie-tree
data structure from one-dimension to two-dimension, we have the two-dimension Trie-tree. We take
the filter database in Table 2 as an example to show this process (assume that the width of IP address
in the table is 2).

We first build up a Trie-tree (denoted by Dest-Trie tree) according to the destination IP prefxes.
For each node in Dest-Trie tree, if there exists the corresponding destination IP prefix, it points to
a source IP prefix Trie-tree (denoted by Src-Trie), otherwise the pointer is null. A Dest-Trie node
not only contains the corresponding source IP prefixes but Mso those of its ancestors in Dest-Trie. In
that case, time complexity of lookup in the two-dimension Trie tree is O(W), but since each Dest-Trie
node stores both the pair source IP prefixes of its own and those of its ancestors, the space compexity
turns out to be @(N2).

We can get rid of the redundant copies. Every Dest-Trie node only contains the corresponding
source IP prefixes in the database. But in this case, in order to find out the final ClassID with the least
cost, we need to search not only the Src-Trie but also that of its ancestors. Thus the time complexity
rises up to O(W2), although we need less space.

The solution is to introduce a switch pointer. In the process of pre-computation, we direct the
nulI pointer of the Src-Trie node to art Src-Trie node of one of its Dest-Trie ancestors' so that we can
proceed further when we go along the longest matching path. In addition, we must make sure that
the longer a destination-source prefix pair is, the lower its cost is. Take filters 2, 3 and 4 of Table 2
as an example, filter 2 is shorter than filter 3 in destination-source pair length, and filter 3 is shorter
than filter 4. But the fact is that filter 2's cost is lower than filter 3 and filter 3's cost is lower than
filter 4's. So they do not accord with our principle of a longer pair with a lower cost. However, we
observe that if we remove filters 3 and 4 from the table, our lookup result does not change. That is
because a header matching filter 3 and filter 4 will surely match filter 2, and filter 2 has a lower cost.
In other words, filter 3 and filter 4 are redundant. There are two ways to deal with the problem. The
first one is to guarantee that there is no redundancy at all when building up our filter database; the

224 XU Ke, WU Jianping et al. Vol.17

other is to change both filters 3's and 4's ClassID to 2 in the p re -computa t ion stage to guarantee the
correctness of the algorithm.

D e s t : P r i e ~

/ 1 ~
Scr-Trie. "~ / /"

............. 0 0
f2�82 0 ~~. 0 /,J2 ~? .~

I\~ "".-/ U/ J5 - \ -~. ~y

5 fl .:o :~

Fig.2. Improved data structure
of the 2-dimension Trie-tree.

The ul t imate two dimension Trie tree is shown as Fig.2,
where the number beside the letter " f " denotes the cor-
responding ClassID (it is also the sequence number of the
filter and its cost). Given this figure, we look up the
matching filter with the lowest cost for a coming header
as follows.

First perform the longest dest inat ion IP prefix match-
ing process ending at some node in Dest-Trie. Then go
along the 0 or 1 pointer (or if null, a switch pointer) of
the corresponding Src-Trie to perform the longest source
IP prefix matching according to the header 's destination
and source IPs. We go as far ther as we can, and the Clas-
sID of the filter with the lowest cost is the final result we
want.

Algor i thm 3 is the construct ion algori thm of the Src-Dest Trie tree.
A l g o r i t h m 3. Const ruc t ion of Src-Dest Trie Tree

void insertJp_pair(dst_trie_node *root, ip dip, ip sip)
{

/*insert destination IP address into dst-trie node*/
dp = dst_trieAnsert (root,,dip);
/*insert source IP address into src-trie node */
sp = src_trie_insert (&:dp -~ psrc, srcJp);
insert information of the rule into sp node;

}
/*set up dest_ip nodes*/
dest_trie_node* dest_trieJnsert(dest_trie_node *root, ip destAp)
{

if (!dest_ip) return NULL;
if (strlen (dest_ip)>NMAXtPWIDTH) return NULL;
it (!(*root))
(

*root = new dst_trie;
initialize root;

}
set up dest_trie nodes according to string dest_ip;
continue until we meet 0 or * in dest_ip;
return the pointer to the last dest_trie node;

}
src_trie_node* src_trieJnsert(src_trie_node *root, ip srcAp)
(

if ([srcAp) return NULL;
if (strlen (src_ip)>NMAXIPWIDTH) return NULL;
if (!(*root))
(

*root = new src_trie;
initialize root;

}
set up src_trie nodes according to string srcAp,
continue until we meet 0 or * in src__ip;
return the pointer to the last src_trie node;

}
Algor i thm 4 is the pre-compute procedure of the src-dest Trie tree.

No.2 A Non-Collision Hash Trie-Tree Based Fast IP Classification Algorithm 225

}
The

steps.

A l g o r i t h m 4. Pre-Computation of Src-Dest Trie Tree
void pre_compute(dst_trie_node *root)
{

if (root == null) return;
p = pointer to the lowest src_trie of root's ancestors;
if (root --~ src_trie == null)

root --+ src_trie = p;
else

if (p is not null and has less cost)
*root --+ src_trie = *p;

search root --+ src_trie, be sure the cost of src_ip is less than its prefix;
}
/*search left sub-tree*/
pre_compute (root-+ child[0]);
/*search right sub-tree*/
pre_compute (root --+ child[l]);

whole working procedure of the non-collision hash Trie-tree algorithm is divided into two

The first step is the pre-computation of four hash tables (fd, fs, fp and h) and src-dest Trie-tree
according to the filter database. The construction algorithms of these tables are shown in Algorithm
1 through Algorithm 4.

After establishing these tables and the Trie tree, the second step is the lookup procedure.

5 Lookup Performance

In the worst case, it takes four serial lookups to obtain the pointer to the two-dimension Trie-tree,
i.e., the lookups in tables fd, fs, fp and h. Lookup through the two-dimension Trie-tree needs to visit
2W nodes in the worst case. So the total number of memory accesses is 2W + 4 in the worst case.
What is more, the consumed time is irrelevant to the number of filters. In contrast, even with a hash
function without collision, Grid-of-Tries needs 4(1 + 2W) memory accesses.

It is a little more complicated as for the space complexity of the non-collision hash algorithm. The
numbers of entries of the fs, fd and fp tables are all 65536 and the number of entries of table h is
D • S • P. Theoretically speaking, the number of table h's entries could be up to 65536 x 65536 • 65536.
However, as analyzed above, D, S and P are rather small in normal cases, so we expect that the number
of table h's entries is quite small. As for the two-dimension Trie-tree, since a filter needs 2W Trie
nodes at most and there are N filters altogether, the space needed is about 2 N W . Thus we could
estimate that the total space is Table_Size+2NW in the worst case, while Grid-of-Tries for multi-fields
also needs about Hash_Size+2NW, where Hash_Size denotes the space for the hash table. In order
to gain higher time efficiency, the hash table usually consumes a lot of memory. In our test, the
non-collision hash Trie-tree algorithm also shows better performance in space.

It is difficult to analyze the average performance of both time and space. Even worse, little is
done in sampling for both filters and IP flow in the real Internet. Because of that, we design a
virtual environment to perform a testing. Our concern focuses on the relative performance between
the non-collision hash Trie-tree and Grid-of-Tries, so the virtual environment will be sufficient. We
make reasonable assumptions about IP flows and filters and generate IP packet flow and filters from
a random number generator. For the sake of comparability, we add the same limitations needed by
the Grid-of-Tries algorithm. We observe that even our assumptions favor the Grid-of-Tries, the non-
collision hash algorithm still shows better performance in both time and space. So we expect the
difference will be more obvious in practice. Testing results are shown in Fig.3 and Fig.4.

226 XU Ke, W U J ianping et al. Vol.17

60 J I
An I ~ [
~1 ' ~ - ' - ' - ' ~ " ~ - - - - I

Noncol~
20 ~ Grid

0 i i /

1000 3000 5000 7000 9000
Fig.3. Comparison of time performance between non-

conllision Trie-tree (denoted by Nonco[) and
Grid-of-Tries (denoted by Grid), where x-axis
plots the number of filters and y-axis plots the
total seconds consumed while processing 107
packets.

I
I . - 7 - , , , . , , t-

4

0
1000 3000 5000 7000 9000

Fig.4. Comparison of space performance between
non-collision Trie-tree (denoted by .Noneol)
and Grid-of-Tries (denoted by Grid), ~vhere x-
axis plots the number of filters and y-axis plots
the maximum memory (MB) consumed.

6 C o n c l u s i o n s a n d F u t u r e W o r k

In this article, a novel IP classification algorithm is presented based on the Grid-of-Tries algorithm.
The new algorithm not only eliminates original limitations in the case of multiple fields but also shows
bet ter performance in regard to both time and space. It has better overall performance than many
other algorithms.

We have implemented the algorithm in the "High-Performance Security Router", a key project of
the High Technology Research and Development Program of China. The "High-Performance Security
Router" implements packet filter and IPSec. tt may support four Gigabit Ethernet interfaces at most,
so traditional classification algorithms cannot keep up with the speed of interface. Our new algorithm
meets the performance requirement of IP packet classification in the "High Performance Security
Router".

The algorithm we presented can be improved further. In the process of lookup through the two-
dimension Trie-tree, our algorithm will go one step according to a bit of the header. If it can look up
several bits at a time, the depth of the Trie-tree will reduce greatly and the performance will improve.
Future work is to explore the distribution of IP prefixes [11], by which we hope that we can select the
depth of Trie-tree and decide which bits to look at when going down the Trie-tree.

R e f e r e n c e s

[1] Weiss W. QoS with differentiated services. Technical Journal, 1998, 3(4): 48-62.
[2] Bellovin S, Cheswick W. Network firewalls. IEEE Communications Magazine, 1994, 32(9): 50-57.
[3] Jyh-haw Y, Randy C, Richard N W. Interdomain access control with policy routing. In Proceedings of the IEEE

Computer Society Workshop on Future Trends of Distributed Computing Systems, Oct., 1997, pp.46-52.
[4] Richard Edell, Nick McKeown, Pravin Varaiya. Billing users and pricing for TCP. IEEE Journal on Selected Areas

in Communications, Sept., 1995, 13(7): 1162-1175.
[5] Xu Ke, Xiong Yong-qiang, Wu Jian-ping. Analysis of broadband IP router architecture. Journal of Software, 2000,

11(2): 179-186.
[6] Gupta P, McKeown N. Packet classification on multiple fields. ACM Computer Communication Review, 1999,

29(4): 146-160.
[7] Bailey M L, Gopal B, Pagels M A, Peterson L L. PATHFINDER: A pattern-based packet classifier. In Proceedings

of the 1st Symposium on Operating System Design and Implementation. Usenix Association, 1994, pp.95-104.
[8] Srinivasn V, Varghese G, Suri S et al. Fast scalable level four switching. ACM Computer Communication Review,

1998, 28(4): 191-205.
[9] ~Voo T Y C. A modular approach to packet classification: Algorithms and results. In Proceedings of IEEE Info-

corn'2000, 2000.
[10] Stevens W R. UNIX Networking Programming (2nd Edition). Prentice Hail, Inc. 1998, Vol.1.
[11] Merit Inc. IPMA Statistics. http://nic.merit .edu/ipma.

