

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 127 (2006) 966-972

www.elsevier.com/locate/fluor

Highly stereoselective one-pot synthesis of tetrasubstituted alkenes via carbopalladation reaction of fluorine-containing acetylene derivatives

Tsutomu Konno*, Ken-ichi Taku, Takashi Ishihara

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan Received 22 March 2006; received in revised form 27 April 2006; accepted 27 April 2006 Available online 2 May 2006

Abstract

Treatment of fluoroalkylated alkynes with various aryl halides and arylboronic acids in the presence of Pd(0) in DMF/H₂O at 100 °C for 2 h led to the smooth three-component coupling reaction, the corresponding tetrasubstituted alkenes being obtained in high yields stereoselectively. © 2006 Elsevier B.V. All rights reserved.

Keywords: A fluoroalkyl group; Carbopalladation; One-pot reaction; Tetrasubstituted alkenes; Fluorine-containing alkynes

1. Introduction

Partially fluorinated organic molecules often possess properties that make them suitable for diverse applications in the area of materials science, agrochemistry, and pharmaceutical industry [1]. Consequently, much attention has been focused on the development of the efficient and practical synthetic methods for the preparation of such molecules [2].

Among various types of fluorinated compounds, tetrasubstituted alkenes **1** possessing a fluoroalkyl group, shown in Fig. 1, are recognized as one of the most important synthetic targets because of their physically as well as chemically unique properties [3]. Although several synthetic approaches to the fluoroalkylated alkenes have been reported thus far, they sometimes suffer from multi-step manipulations, low stereoselectivities, harsh reaction conditions, etc [4].

Recently, we have developed highly regio- and stereoselective hydrostannation [5], hydroboration [6], carbocupration [7], and carbostannylation reactions [8] of fluoroalkylated acetylene derivatives 2, which realized the efficient as well as practical approaches to 1 [9]. Herein we wish to describe the practical one-step coupling reaction of three components, such as aryl iodides, fluoroalkylated alkynes, and arylboronic acids,

0022-1139/\$ – see front matter O 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2006.04.012

leading to the corresponding tetrasubstituted alkenes stereo-selectively.

2. Results and discussion

2.1. One-pot synthesis of fluorine-containing tetrasubstituted alkenes

Initially, the reaction of trifluoromethylated internal alkyne **2a** [10] with iodobenzene and phenylboronic acid in the presence of palladium catalyst was examined (Table 1) [11]. Thus, treatment of **2a** with 2.0 equiv. of PhI and 3.0 equiv. of PhB(OH)₂ in DMF/ H₂O in the presence of 10 mol% of PdCl₂(PhCN)₂ and 3.0 equiv. of K₂CO₃ at 100 °C for 2 h gave the corresponding tetrasubstituted alkene **1a** in 73% yield as a sole product (Entry 1). In this case, neither stereoisomer **3** nor the Suzuki-Miyaura cross-coupling product **4** was detected at all (Fig. 2). Reducing the amount of the catalyst from 10 mol% to 5 mol% led to an increase of the yield as shown in Entry 2. Additionally, the reaction with 2.0 equiv. each of PhI and PhB(OH)₂ gave **1a** in 93% yield (Entry 3). The use of 1.2 equiv. of PhI, on the other hand, resulted in an appreciable decrease of the yield (Entry 4).

With this optimized reaction conditions, we next examined the reaction with various fluoroalkylated alkynes, aryl iodides and arylboronic acids as summarized in Table 2.

As shown in Entries 1-3, various aryl halides or arylboronic acids, such as *p*-methoxyphenyl, *p*-methylphenyl iodides or

^{*} Corresponding author. Tel.: +81 75 724 7517; fax: +81 75 724 7580. *E-mail address:* konno@chem.kit.ac.jp (T. Konno).

$$\overset{\mathsf{Rf}}{\underset{\mathsf{R}^{1}}{\overset{\mathsf{R}^{2}}{\underset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}^{3}}}}{\overset{\mathsf{R}^{3}}}{\overset{\mathsf{R}^{3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

$$Rf = CHF_2$$
, CF_3 , etc.
 R^1 , R^2 , $R^3 = Aryl$, Alkyl, etc.

Fig. 1. Fluoroalkylated tetrasubstituted alkenes.

Table 1

Investigation of the reaction conditions for three-component coupling

	P K ₂ C cat.	hl, PhB(OH) ₂ CO ₃ (3.0 equiv.) . PdCl ₂ (PhCN) ₂ F ₃ (C R ¹	
F_3C 2a $R^1 = p$ -CIC	—R' D ₆ H ₄	DMF/H ₂ O (v/v = 4/1) 100 °C, 2 h Ph Ph 1a		
Entry	Phl/equiv.	PhB(OH) ₂ /equiv.	Pd/mol%	Yield ^a /%
1	2.0	3.0	10	73
2	2.0	3.0	5	84
3	2.0	2.0	5	93 (85)
4	1.2	2.0	5	80

^a Determined by ¹⁹F NMR. Value in parentheses is of isolated yield.

Fig. 2. A stereoisomer 3 and biphenyl (4).

boronic acids could participate nicely in the coupling reaction to give the corresponding tetrasubstituted alkenes in high yields. Various substituents on the benzene ring of **2**, such as a chloro, methoxy, methyl and ethoxycarbonyl group, did not influence the reaction at all (Entries 1, 4–6). Additionally, the alkynes having an *ortho*-or *meta*-substituted aromatic ring as R¹ were also applied for the coupling reaction successfully

Table 2

Three-component coupling reaction using various fluoroalkylated alkynes

	— p1	R ² I (2.0 equiv.), R ² B(OH) ₂ (2.0 equiv.), K ₂ CO ₃ (3.0 equiv.) 5 mol% PdCl ₂ (PhCN) ₂		R^1
HI-	——————————————————————————————————————	DMF/H ₂ O (v/v = 4/1), 100 °C, 2 h		1
	2		R²	R ²
	-			

Table 3

Examination of the regioselectivity

$F_3C \longrightarrow 2$ $R^1 = p - C$	$= -R^{1} 1000000000000000000000000000000000000$	(2.0 equiv.) H) ₂ (2.0 equiv.) ₃ (3.0 equiv.) PdCl ₂ (PhCN) ₂ $I_{2}O$ (v/v = 4/1) 0° C, 2 h	$F_{3}C \qquad R^{1}$ $R^{3} \qquad R^{2}$ $+$ $F_{3}C \qquad R^{1}$ $R^{2} \qquad R^{3}$ $R^{2} \qquad R^{3}$ $1'$	
Entry	R ²	R ³	Yield ^a of $(1 + 1')/\%$	Ratio (1:1') ^a
1	Ph	<i>p</i> -MeOC ₆ H ₄	76 (A)	40:60
2	<i>p</i> -MeOC ₆ H ₄	Ph	80	63: 37 ^b
3	p-MeC ₆ H ₄	Ph	89 (B)	39:61
4	p-EtO ₂ CC ₆ H ₄	Ph	76 (C)	71:29
5	m-MeOC ₆ H ₄	Ph	84 (D)	57:43
6	o-MeOC ₆ H ₄	Ph	60 (E)	62:38

^a Determined by ¹⁹F NMR.

^b Ratio = 1A:1'A.

(Entries 4, 7, 8). The alkyne having an alkyl group as R^1 was also found to be effective for the reaction (Entry 9), though the benzyl group as R^1 did not give any desired product (Entry 10). Switching a fluoroalkyl group from a trifluoromethyl to a difluoromethyl or hexafluoropropyl group did not cause any significant change for the reaction (Entries 11 and 12).

We next examined the regioselectivity in this threecomponent coupling reaction as described in Table 3.

Even when R^2 and R^3 were different, the reaction proceeded smoothly in a highly *cis*-selective manner, giving the corresponding tetrasubstituted alkenes 1 and 1' in high yields. However, the regioselectivity was found to be substantially low. Changing R^2 from an electron-donating group to an electronwithdrawing group did not lead to a high regioselectivity (Entry 4). Additionally, no influence of the position of the substituent

Entry	Rf	R^1	Substrate	\mathbb{R}^2	Product	Yield ^a /%
1	CF ₃	p-ClC ₆ H ₄	2a	Ph	1a	93 (85)
2	CF_3	$p-ClC_6H_4$	2a	<i>p</i> -MeOC ₆ H ₄	1b	86
3	CF ₃	p-ClC ₆ H ₄	2a	<i>p</i> -MeC ₆ H ₄	1c	85 (82)
4	CF ₃	p-MeOC ₆ H ₄	2b	Ph	1d	88
5	CF_3	p-MeC ₆ H ₄	2c	Ph	1e	85 (81)
6	CF ₃	p-EtO ₂ CC ₆ H ₄	2d	Ph	1f	69
7	CF_3	m-MeOC ₆ H ₄	2e	Ph	1g	87(71)
8	CF ₃	o-MeOC ₆ H ₄	2f	Ph	1h	85
9	CF_3	$Ph(CH_2)_3$	2g	Ph	1i	83
10	CF ₃	p-MeOC ₆ H ₄ CH ₂	2h	Ph	-	0
11	CHF ₂	$p-ClC_6H_4$	2i	Ph	1j	81 (80)
12	CHF ₂ CF ₂ CF ₂	<i>p</i> -C1C ₆ H ₄	2j	Ph	1k	87 (73)

^a Determined by ¹⁹F NMR. Values in parentheses are of isolated yield.

Scheme 1. Stereochemical assignment of 1A.

on R^2 was observed (Entries 5 and 6). In order to improve the regioselectivity, we examined various types of catalysts, such as PdCl₂(PPh₃)₂, Pd(OAc)₂, Pd₂(dba)₃ + P(*o*-Tol)₃, Pd₂(dba)₃ + P(*c*-Hex)₃, Pd₂(dba)₃ + dppe, and so on. All reactions took place smoothly to give the corresponding tetrasubstituted alkenes in good to high yields but with low regioselectivity (ca. 60:40). On the other hand, the use of other metal catalyst, such as Ni(COD)₂, RhCl(PPh₃)₃, and Rh(COD)₂BF₄ did not give the desired compounds at all.

2.2. Stereochemistry

The stereochemical outcome of the reactions in Table 3 was determined as follows. Thus, treatment of **2a** with $Ph_2Cu(CN)Li_2$ in THF at -45 °C for 4 h followed by the addition of an excess amount of I₂ gave the corresponding vinyl iodide **5a** (Scheme 1). The subsequent Suzuki-Miyaura cross-coupling reaction of **5a** proceeded smoothly to afford the corresponding tetrasubstituted alkene. This alkene was found to be totally identical to the minor

Scheme 2. Stereochemical assignment of 1'A.

isomer 1A in the three-component coupling reaction of 2a with PhI and $(p-MeOC_6H_4)B(OH)_2$, on the basis of ¹H and ¹⁹F NMR analysis. On the other hand, the reaction of 2a with $(p-MeOC_6H_4)_2Cu(CN)(MgBr)_2$ in THF at -45 °C for 2 h followed by the addition of an excess amount of I₂ afforded the vinyl iodide 6a (Scheme 2). The following Suzuki-Miyaura cross-coupling reaction gave the corresponding tetrasubstituted alkene in 82% yield. ¹H and ¹⁹F NMR analyses showed that the alkene derived from 2a via carbocupration was totally identical to the 1'A. The stereochemical assignments of the other products were determined with the comparison of the chemical shift in ¹⁹F NMR.

3. Conclusion

In summary, we have developed the practical one-pot method for the preparation of fluoroalkylated tetrasubstituted alkenes, starting from a variety of fluoroalkylated alkynes. Various types of alkynes were demonstrated to be suitable for the present reaction, affording the desired compounds in high yields. In all cases, a complete stereoselectivity was observed.

4. Experimental

4.1. General experimental procedures

¹H NMR spectra were measured with a Bruker DRX (500.13 MHz) spectrometer in a chloroform-*d* (CDCl₃) solution with tetramethylsilane (Me₄Si) as an internal reference. ¹³C NMR spectra were recorded on a Bruker DRX (125.77 MHz). A JEOL JNM-EX90F (84.21 MHz, FT) spectrometer was used for determining ¹⁹F NMR yield with internal C₆F₆. It was also used for determining regioselectivity and stereoselectivity and for taking ¹⁹F NMR spectra in a CDCl₃ solution with internal CFCl₃. CFCl₃ was used ($\delta_F = 0$) as an internal standard for ¹⁹F NMR. Infrared spectra (IR) were recorded on a Shimadzu FTIR-8200A (PC) spectrophotometer. Mass spectra (MS) were taken on a JEOL JMS-700.

4.2. Materials

Tetrahydrofuran (THF) and copper cyanide were commercially available from Wako chemicals Co. All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use. Thin layer chromatography (TLC) was done with Merck silica gel 60 F_{254} plates and column chromatography was carried out with Wako gel C-200. All acetylenes were prepared according to the previous literature procedure [10].

4.3. Typical procedure for the Palladium-catalyzed reaction of fluoroalkylated acetylene derivatives with arylboronic acid and aryl iodide

To a solution of K_2CO_3 (104 mg, 0.75 mmol), PhI (102 mg, 0.50 mmol), PhB(OH)₂ (61 mg, 0.50 mmol) and PdCl₂(PhCN)₂ (5 mg, 0.05 mmol) in DMF (2 mL)/H₂O (1 mL) was added a solution of 1-(4-chlorophenyl)-3,3,3-trifluoropropyne (51 mg,

0.25 mmol) in DMF (2 mL) at room temperature. The whole was heated at 100 °C for 2 h, and allowed to cool to room temperature. The reaction mixture was poured into sat. NH₄Cl aq. and the whole was extracted with ether three times. The combined organic layers were washed with sat. NaCl aq., dried over anhydrous Na₂SO₄, and then concentrated in vacuo. The residue was purified by silica gel column chromatography to give the corresponding (*Z*)-1-(4-chlorophenyl)-1,2-diphenyl-3,3,3-trifluoropropene (**1a**) (83 mg, 0.21 mmol, 85% yield).

4.3.1. (Z)-1-(4-Chlorophenyl)-1,2-diphenyl-3,3,3trifluoropropene (1a)

Yield: 85%; M.P. 92–94 °C; ¹H NMR (CDCl₃) δ = 6.87– 6.89 (m, 2H), 7.04–7.05 (m, 3H), 7.19–7.25 (m, 7H), 7.34 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ = 123.5 (q, J = 275.5 Hz), 127.6, 127.8, 128.0, 128.3, 129.6, 129.93, 129.94, 130.1 (q, J = 28.9 Hz), 131.3, 134.0, 134.7, 138.9, 140.5, 149.1 (q, J = 3.4 Hz); ¹⁹F NMR (CDCl₃) δ = –55.8 (s, 3F); IR (KBr) 1606, 1490, 1444, 1326, 1309 cm⁻¹; HRMS calcd. for C₂₁H₁₄ClF₃ (M⁺) 358.0736; found, 358.0743.

4.3.2. (*Z*)-1-(4-Chlorophenyl)-1,2-bis(4-methoxyphenyl)-3,3,3-trifluoropropene (1b)

Yield: 86% (Determined by ¹⁹F NMR); M.P. 99–101 °C; ¹H NMR (CDCl₃) δ = 3.69 (s, 3H), 3.76 (s, 3H), 6.58 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ = 55.05, 55.12, 113.2, 113.6, 123.7 (q, *J* = 275.3 Hz), 127.3, 128.2, 128.5 (q, *J* = 28.7 Hz), 130.2, 131.5, 132.7, 133.0, 133.8, 139.5, 148.1 (q, *J* = 3.4 Hz), 158.8, 159.1; ¹⁹F NMR (CDCl₃) δ = -56.1 (s, 3F); IR (KBr) 2835, 1606, 1571, 1510, 1461 cm⁻¹; HRMS calcd. for C₂₃H₁₈ClF₃O₂ (*M*⁺) 418.0947; found, 418.0947.

4.3.3. (*Z*)-1-(4-Chlorophenyl)-1,2-bis(4-methylphenyl)-3,3,3-trifluoropropene (1c)

Yield: 82%; ¹H NMR (CDCl₃) δ = 2.20 (s, 3H), 2.30 (s, 3H), 6.79 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 7.9 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ = 55.05, 55.12, 113.15, 113.56, 123.72 (q, *J* = 275.3 Hz), 127.32, 128.18, 128.51 (q, *J* = 28.7 Hz), 130.15, 131.46, 132.66, 133.01, 133.78, 139.46, 148.14 (q, *J* = 3.4 Hz), 158.76, 159.10; ¹⁹F NMR (CDCl₃) δ = -56.12 (s, 3F); IR (neat) 3028, 2922, 2868, 1905, 1610, 1593 cm⁻¹; HRMS calcd. for C₂₃H₁₈ClF₃ (*M*⁺) 386.1049; found, 386.1048.

4.3.4. (Z)-1-(4-Methoxyphenyl)-1,2-diphenyl-3,3,3trifluoropropene (1d)

Yield: 88% (Determined by ¹⁹F NMR); ¹H NMR (CDCl₃) $\delta = 3.83$ (s, 3H), 6.88–6.92 (m, 4H), 7.03–7.04 (m, 3H), 7.18– 7.30 (m, 7H); ¹³C NMR (CDCl₃) $\delta = 55.2$, 113.4, 123.7 (q, J = 275.1 Hz), 127.3, 127.6, 127.7, 127.8, 128.8 (q, J = 28.5 Hz), 129.8, 130.0, 131.5, 132.8, 135.3, 141.4, 150.2 (q, J = 3.0 Hz), 159.3; ¹⁹F NMR (CDCl₃) $\delta = -56.2$ (s, 3F); IR (KBr) 3003, 2908, 2837, 1608, 1573, 1510 cm⁻¹; HRMS calcd. for C₂₂H₁₇F₃O (M^+) 354.1232; found, 354.1228.

4.3.5. (Z)-1-(4-Methylphenyl)-1,2-diphenyl-3,3,3trifluoropropene (**1e**)

Yield: 81%; M.P. 118–120 °C; ¹H NMR (CDCl₃) δ = 2.37 (s, 3H), 6.90–6.92 (m, 2H), 7.02–7.04 (m, 3H); ¹³C NMR (CDCl₃) δ = 21.3, 123.5 (q, *J* = 275.6 Hz), 127.2, 127.6, 127.7, 127.9, 128.5, 128.7, 129.1 (q, *J* = 28.7 Hz), 129.7, 131.5, 135.1, 137.6, 137.7, 141.2, 150.5 (q, *J* = 3.2 Hz); ¹⁹F NMR (CDCl₃) δ = -56.2 (s, 3F); IR (KBr) 3082, 3020, 2914, 2866, 1606 cm⁻¹; HRMS calcd. for C₂₂H₁₇F₃ (*M*⁺) 338.1282; found, 338.1284.

4.3.6. *Ethyl* 4-((Z)-1,2-*diphenyl*-3,3,3*trifluoropropenyl*)*benzoate* (**1***f*)

Yield: 69% (Determined by ¹⁹F NMR); M.P. 93–95 °C; ¹H NMR (CDCl₃) δ = 1.40 (t, *J* = 7.1 Hz, 3H), 4.39 (q, *J* = 7.1 Hz, 2H), 6.89–6.90 (m, 2H), 7.04–7.05 (m, 3H), 7.21–7.23 (m, 5H), 7.39 (d, *J* = 8.2 Hz, 2H), 8.05 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ = 14.3, 61.1, 123.4 (q, *J* = 275.7 Hz), 127.6, 127.8, 128.00, 128.03, 128.5, 129.3, 129.6, 129.9, 130.1 (q, *J* = 29.4 Hz), 131.2, 134.5, 140.1, 145.0, 149.2 (q, *J* = 3.4 Hz), 166.2; ¹⁹F NMR (CDCl₃) δ = -56.2 (s, 3F); IR (KBr) 2981, 1714, 1606, 1490, 1463 cm⁻¹; HRMS calcd. for C₂₄H₁₉F₃O₂ (*M*⁺) 396.1337; found, 396.1330.

4.3.7. (Z)-1-(3-Methoxyphenyl)-1,2-diphenyl-3,3,3trifluoropropene (**1g**)

Yield: 71%; M.P. 91–93 °C; ¹H NMR (CDCl₃) δ = 3.81 (s, 3H), 6.87–6.96 (m, 5H), 7.04–7.05 (m, 3H), 7.20–7.26 (m, 5H), 7.29 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (CDCl₃) δ = 55.2, 113.2, 114.3, 121.0, 123.6 (q, *J* = 275.3 Hz), 127.3, 127.7, 127.8, 127.9, 129.0, 129.4 (q, *J* = 29.7 Hz), 129.5, 131.4, 134.9, 140.7, 141.7, 150.1 (q, *J* = 3.4 Hz), 159.2; ¹⁹F NMR (CDCl₃) δ = -56.4 (s, 3F); IR (KBr) 1575, 1487, 1458, 1446, 1429 cm⁻¹; HRMS calcd. for C₂₂H₁₈F₃O (M + H) 355.1310; found, 355.1315.

4.3.8. (Z)-1-(2-Methoxyphenyl)-1,2-diphenyl-3,3,3trifluoropropene (**1h**)

Yield: 85% (Determined by ¹⁹F NMR); M.P. 91–93 °C; ¹H NMR (CDCl₃) δ = 3.75 (s, 3H), 6.90 (d, *J* = 8.3 Hz, 1H), 6.95–6.97 (m, 1H), 6.98–7.32 (m, 12H); ¹³C NMR (CDCl₃) δ = 55.6, 111.1, 120.2, 123.6 (q, *J* = 275.2 Hz), 127.0, 127.4, 127.7, 127.8, 129.2, 129.3, 129.4, 129.76, 130.3 (q, *J* = 28.7 Hz), 131.3, 134.9, 140.5, 146.1 (q, *J* = 3.5 Hz), 156.1; ¹⁹F NMR (CDCl₃) δ = -58.8 (s, 3F); IR (KBr) 3003, 2837, 1596, 1583, 1490 cm⁻¹; HRMS calcd. for C₂₂H₁₇F₃O (*M*⁺) 354.1232; found, 354.1223.

4.3.9. (Z)-2,3,6-Triphenyl-1,1,1-trifluoro-2-hexene (1i)

Yield: 83% (Determined by ¹⁹F NMR); ¹H NMR (CDCl₃) δ = 1.64 (m, 2H), 2.62 (t, *J* = 7.9 Hz, 2H), 2.78–2.82 (m, 2H), 6.89–6.91 (m, 2H), 6.97–6.99 (m, 2H), 7.05–7.10 (m, 7H), 7.15– 7.17 (m, 1H), 7.22–7.25 (m, 3H); ¹³C NMR (CDCl₃) δ = 29.7, 34.9, 35.7, 124.1 (q, *J* = 275.9 Hz), 125.8, 127.0, 127.15, 127.20, 127.23, 127.6, 127.7, 128.26, 128.29, 128.4, 128.7, 129.2 (q, *J* = 29.2 Hz), 130.7, 151.8 (q, *J* = 3.1 Hz); ¹⁹F NMR (CDCl₃) δ = -56.0 (s, 3F); IR (KBr) 3060, 3026, 2939, 2864, 1633 cm⁻¹; HRMS calcd. for C₂₄H₂₁F₃ (*M*⁺) 366.1595; found, 366.1604.

4.3.10. (Z)-1-(4-Chlorophenyl)-1,2-diphenyl-3,3-

difluoropropene (1j)

Yield: 80%; M.P. 126–128 °C; ¹H NMR (CDCl₃) δ = 6.40 (t, *J* = 55.1Hz, 1H), 6.90–6.91 (m, 2H), 7.06–7.09 (m, 3H), 7.21– 7.25 (m, 7H), 7.38–7.40 (m, 2H); ¹³C NMR (CDCl₃) δ = 113.9 (t, *J* = 234.7 Hz), 127.6, 127.8, 127.9, 128.8, 130.2, 131.1, 131.2, 133.2 (t, *J* = 22.5 Hz), 133.4, 134.4, 134.5, 137.8, 140.0, 147.4 (t, *J* = 9.4 Hz); ¹⁹F NMR (CDCl₃) δ = –111.3 (d, *J* = 55.0 Hz, 2F); IR (KBr) 3022, 1591, 1573, 1490, 1442, 1398, 1369 cm⁻¹.; HRMS calcd. for C₂₁H₁₅ClF₂ (*M*⁺) 340.0830; found, 340.0835.

4.3.11. (*Z*)-1-(4-Chlorophenyl)-1,2-diphenyl-3,3,4,4,5,5hexafluoropentene (**1***k*)

Yield: 73%; ¹H NMR (CDCl₃) δ = 5.79 (tt, *J* = 52.3, 5.7 Hz, 1H), 6.90–6.92 (m, 2H), 7.01–7.05 (m, 3H), 7.17–7.18 (m, 3H), 7.23–7.26 (m, 4H), 7.31–7.33 (m, 2H); ¹³C NMR (CDCl₃) δ = 107.8 (tt, *J* = 253.2, 31.0 Hz), 110–120 (m, 2*C*), 127.3, 127.8, 127.9, 128.1, 129.15, 129.18, 131.7, 133.4, 134.9, 139.3, 141.3, 151.6 (t, *J* = 4.1 Hz); ¹⁹F NMR (CDCl₃) δ = –138.0 ~ –137.1 (m. 2F), –126.7 ~ –126.5 (m, 2F), –102.9 ~ –102.8 (m, 2F); IR (neat) 3058, 1492, 1444, 1398, 1271 cm⁻¹; HRMS calcd. for C₂₃H₁₅ClF₆ (*M*⁺) 440.0766; found, 440.0760.

4.3.11.1. (Z)-1-(4-Chlorophenyl)-1-(4-methoxyphenyl)-2-phenyl-3,3,3-trifluoropropene (**1**A') (Z)-1-(4-chlorophenyl)-2-(4methoxyphenyl)-1-phenyl-3,3,3-trifluoropropene (**1**A) (**1**A + **1**A'). Yield: 76% (determined by ¹⁹F NMR); The physical data was described below.

4.3.12. (Z)-1-(4-Chlorophenyl)-2-(4-methylphenyl)-1phenyl-3,3,3-trifluoropropene (**1B**')

¹H NMR (CDCl₃) δ = 2.27 (s, 3H), 7.01 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H); ¹⁹F NMR (CDCl₃) δ = -56.3 (s, 3F); ¹³C NMR (CDCl₃) δ = 21.2, 123.5 (q, *J* = 275.7 Hz), 148.7 (q, *J* = 3.5 Hz).

4.3.13. (Z)-1-(4-Chlorophenyl)-1-(4-methylphenyl)-2-

phenyl-3,3,3-trifluoropropene (1B)

¹H NMR (CDCl₃) δ = 2.17 (s, 3H), 6.75 (d, *J* = 8.2 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 2H); ¹⁹F NMR (CDCl₃) δ = -56.1 (s, 3F); ¹³C NMR (CDCl₃) δ = 21.1, 148.9 (q, *J* = 3.1 Hz).

(1B + 1B'). Yield: 89% (Determined by ¹⁹F NMR); ¹H NMR (CDCl₃) $\delta = 6.88-7.34$ (m, 18H); ¹³C NMR (CDCl₃) $\delta = 127.5$, 127.8, 127.9, 128.0, 128.23, 128.26, 128.29, 128.5, 128.7, 129.66, 129.70, 130.0, 131.1, 131.29, 131.33, 131.7, 133.9, 134.9, 135.6, 137.5, 137.8, 139.1, 139.2, 140.7; IR (neat) 3028, 2923, 2868, 1903, 1593, 1577, 1512 cm⁻¹; HRMS calcd. for C₂₂H₁₆ClF₃ (*M*⁺) 372.0893; found, 372.0888.

4.3.14. Ethyl 4-((Z)-1-(4-chlorophenyl)-2-phenyl-3,3,3trifluoropropenyl)benzoate (1C)

¹H NMR (CDCl₃) δ = 1.36 (t, *J* = 7.2 Hz, 3H), 4.34 (q, *J* = 7.1 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 3H), 7.89 (d, *J* = 8.3 Hz, 2H); ¹⁹F NMR (CDCl₃) δ = -56.0 (s, 3F); ¹³C NMR (CDCl₃) δ = 14.2, 61.1, 123.2 (q, *J* = 275.5 Hz), 129.1 (q, *J* = 28.8 Hz), 150.0 (q, *J* = 3.0 Hz), 166.1.

4.3.15. Ethyl 4-((Z)-2-(4-chlorophenyl)-2-phenyl-1trifluoromethyl-ethenyl)benzoate (**1C**')

¹H NMR (CDCl₃) δ = 1.32 (t, *J* = 7.1 Hz, 3H), 4.28 (q, *J* = 7.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 3H), 7.73 (d, *J* = 8.3 Hz, 2H); ¹⁹F NMR (CDCl₃) δ = -56.6 (s, 3F); ¹³C NMR (CDCl₃) δ = 14.2, 61.0, 123.2 (q, *J* = 276.2 Hz), 148.1 (q, *J* = 3.0 Hz), 165.9.

(1C + 1C'). Yield: 76% (determined by ¹⁹F NMR); ¹H NMR (CDCl₃) $\delta = 6.87-7.25$ (m, 16H); ¹³C NMR (CDCl₃) $\delta = 127.9$, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 129.1, 129.2, 129.4, 129.5, 129.6, 129.82, 129.84, 129.88, 129.90, 131.1, 131.3, 134.1, 134.2, 134.3, 138.1, 138.5, 139.4, 140.0, 145.0; IR (neat) 2983, 2906, 1716, 1608, 1593 cm⁻¹; HRMS calcd. for C₂₄H₁₈O₂ClF₃ (*M*⁺) 430.0947; found, 430.0948.

4.3.16. (Z)-1-(4-Chlorophenyl)-1-(3-methoxyphenyl)-2-phenyl-3,3,3-trifluoropropene (**1D**)

¹H NMR (CDCl₃) δ = 3.69 (s, 3H), 6.81 (d, *J* = 7.6 Hz, 1H); ¹⁹F NMR (CDCl₃) δ = -56.1 (s, 3F); ¹³C NMR (CDCl₃) δ = 55.1, 123.4 (q, *J* = 275.9 Hz), 149.0 (q, *J* = 3.0 Hz), 159.1.

4.3.17. (Z)-1-(4-Chlorophenyl)-2-(3-methoxyphenyl)-1-phenyl-3,3,3-trifluoropropene (**1D**')

¹H NMR (CDCl₃) δ = 3.54 (s, 3H), 6.46 (d, *J* = 7.7 Hz, 1H), 6.59 (dd, *J* = 8.2, 2.5 Hz, 1H), 6.96 (t, *J* = 7.9 Hz, 1H); ¹⁹F NMR (CDCl₃) δ = -56.2 (s, 3F); ¹³C NMR (CDCl₃) δ = 55.0, 123.4 (q, *J* = 275.4 Hz), 148. (q, *J* = 3.4 Hz), 158.8.

(1D + 1D'). Yield: 84% (Determined by ¹⁹F NMR); ¹H NMR (CDCl₃) $\delta = 6.41-7.35$ (m, 22H); ¹³C NMR (CDCl₃) $\delta = 112.8$, 113.4, 113.7, 115.3, 117.0, 122.3, 123.8, 127.6, 127.8, 128.0, 128.3, 128.8, 128.9, 129.4, 129.9, 131.2, 134.0, 134.7, 135.0, 135.8, 138.7, 138.8, 140.5, 141.6; IR (neat) 2914, 2835, 1577, 1488, 1465 cm⁻¹; HRMS calcd. for C₂₂H₁₆OClF₂ (M^+) 388.0842; found, 388.0844.

4.3.18. (Z)-1-(4-Chlorophenyl)-1-(2-methoxyphenyl)-2-phenyl-3,3,3-trifluoropropene (**1E**)

¹H NMR (CDCl₃) δ = 3.65 (s, 3H), 6.61 (d, *J* = 8.3 Hz, 1H), 6.68 (t, *J* = 7.4 Hz, 1H), 6.88 (d, *J* = 7.5 Hz, 1H); ¹⁹F NMR (CDCl₃) δ = -56.4 (s, 3F); ¹³C NMR (CDCl₃) δ = 55.1, 123.3 (q, *J* = 275.5 Hz), 131.2 (q, *J* = 28.8 Hz), 146.5 (q, *J* = 3.5 Hz).

4.3.19. (Z)-1-(4-Chlorophenyl)-2-(2-methoxyphenyl)-1-phenyl-3,3,3-trifluoropropene (**1E**')

¹H NMR (CDCl₃) $\delta = 1.76$ (s, 3H); ¹⁹F NMR (CDCl₃) $\delta = -56.93$ (s, 3F); ¹³C NMR (CDCl₃) $\delta = 55.5$, 131.7 (q, J = 28.4 Hz).

(1E + 1E'). Yield: 60% (determined by ¹⁹F NMR); ¹H NMR (CDCl₃) $\delta = 6.77-7.34$ (m, 23H); ¹³C NMR (CDCl₃) $\delta = 110.6$, 110.8, 120.2, 120.2, 124.1, 127.5, 127.6, 127.8, 127.9, 128.2, 128.5, 129.0, 129.5, 129.9, 130.0, 130.1, 132.1, 133.4, 133.8, 134.8, 138.3, 138.7, 140.8, 155.5, 158.2; IR (neat) 3058, 3026, 3004, 2937, 2837, 1596, 1581, 1487, 981 cm⁻¹; HRMS calcd. for C₂₂H₁₆OClF₃ (*M*⁺) 388.0842; found, 388.0838.

4.4. Determination of the stereochemistry

4.4.1. General procedure for the reaction of

fluoroalkylated acetylene derivatives with organocopper reagents

To a solution of CuCN (94 mg, 1.05 mmol) and 1-(4chlorophenyl)-3,3,3-trifluoropropyne (175 mg, 0.86 mmol) in THF (8 mL) was added Grignard reagent (2.10 mmol) at -45 °C. After stirring for 10 min, the reaction mixture was allowed to warm to -5 °C and then stirred for 30 min. The reaction mixture was again cooled to -45 °C. After stirring at that temperature for 2 h, iodine (533 mg, 2.50 mmol) in THF (4 mL) was added slowly. After 1h, the reaction was quenched with MeOH/NH₃ aq. and a few drops of Na₂SO₃ were added until the color of the reaction mixture changed. The whole was extracted with EtOAc three times. The combined organic layers were washed with NaCl aq., dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give the corresponding vinyl iodide.

4.4.1.1. (*Z*)-1-(4-*Chlorophenyl*)-2-*iodo*-1-*phenyl*-3,3,3-*trifluoropropene* (**5a**). ¹H NMR (CDCl₃) δ = 3.81 (3H, s), 6.87 (2H, d, *J* = 8.2 Hz), 7.13–7.17 (4H, m), 7.30–7.31 (3H, m); ¹⁹F NMR (CDCl₃) δ = -54.21 (3F, s); ¹³C NMR (CDCl₃) δ = 55.2, 85.2 (q, *J* = 34.2 Hz), 113.7, 121.4 (q, *J* = 270.5 Hz), 128.1, 128.1, 129.8, 137.7, 139.7, 158.6 (q, *J* = 3.2 Hz), 160.8; IR (neat) 1604, 1508, 1461 cm⁻¹; HRMS (FAB) calcd. for C₁₆H₁₂F₃IO (*M*⁺) 403.9885; found, 403.9889; Anal. calcd. C, 47.55; H, 2.99; found, C, 47.54; H, 2.71.

4.4.1.2. (Z)-1-(4-Chlorophenyl)-2-iodo-1-(4-methoxyphenyl)-3,3,3-trifluoropropene (**6a**). Yield: 46%; ¹H NMR (CDCl₃) δ = 3.82 (s, 3H), 6.89 (d, *J* = 8.6 Hz, 2H), 7.13 (t, *J* = 8.9 Hz, 4H), 7.30 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ = 55.2, 85.7 (q, *J* = 34.3 Hz), 113.8, 121.3 (q, *J* = 273.9 Hz), 128.4, 129.5, 129.9, 134.6, 137.2, 138.0, 157.3 (q, *J* = 3.4 Hz), 159.9; ¹⁹F NMR (CDCl₃) δ = -54.1 (s, 3F); IR (neat) 2960, 2839, 1604, 1589, 1508, 1487 cm⁻¹; HRMS calcd. for C₁₆H₁₁ClF₃IO (*M*⁺) 437.9495; found, 437.9495.

4.4.2. General procedure for the Suzuki-Miyaura crosscoupling reaction

To a solution of the vinyl iodide (0.37 mmol) and Pd(PPh₃)₄ (45 mg, 0.036 mmol) in benzene (7 mL) was added Na₂CO₃ (97 mg, 0.91 mmol), aryl boronic acid (1.46 mmol), H₂O (0.45 mL), and EtOH (0.45 mL). The reaction mixture was refluxed for 12 h, and then quenched with sat. NH₄Cl aq. The whole was extracted with EtOAc three times. The combined organic layers were washed with NaCl aq., dried over anhydrous Na₂SO₄, and then concentrated in vacuo. The residue was purified by silica gel column chromatography to give the corresponding fluorine-containing tetrasubstituted alkene.

4.4.2.1. (Z)-1-(4-Chlorophenyl)-2-(4-methoxyphenyl)-1-phenyl-3,3,3-trifluoropropene (IA). Yield: 77% (determined by ¹⁹F NMR); M.P. 131–133 °C; ¹H NMR (CDCl₃) δ = 3.75 (s, 3H), 6.74 (d, J = 8.7 Hz, 2H), 6.88–6.91 (m, 2H), 7.05–7.08 (m. 3H), 7.14 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) $\delta = 55.1$, 113.5, 123.6 (q, J = 275.5 Hz), 126.9, 127.4, 127.8, 128. 25, 128.31, 129.5 (q, J = 28.9 Hz), 129.7, 130.0, 132.6, 133.9, 139.1, 140.7, 148.7 (q, J = 3.5 Hz), 159.2; ¹⁹F NMR (CDCl₃) $\delta = -56.4$ (s, 3F); IR (KBr) 3003, 1610, 1577, 1512, 1487, 1465 cm⁻¹; HRMS calcd. for C₂₂H₁₆ClF₃O (M^+) 388.0842; found, 388.0845.

4.4.2.2. (Z)-1-(4-Chlorophenyl)-1-(4-methoxyphenyl)-2-phenyl-3,3,3-trifluoropropene (IA'). Yield: 82%; ¹H NMR (CDCl₃) δ = 3.68 (s, 3H), 6.55 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 7.21–7.23 (m, 7H), 7.33 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ = 55.0, 113.1, 123. (q, J = 275.2 Hz), 127.9, 128.1, 128.2, 128.3, 128.8 (q, J = 28.5 Hz), 130.1, 131.4, 132.7, 133.9, 135.1, 139.3, 148.5 (q, J = 3.0 Hz), 158.9; ¹⁹F NMR (CDCl₃) δ = -55.8 (s, 3F); IR (neat) 2935, 2910, 2839, 1604, 1573 cm⁻¹; HRMS calcd. for C₂₂H₁₆CIF₃O (M⁺) 388.0842; found, 388.0846.

References

- [1] (a) D. O'Hagen, H.S. Rzepa, Chem. Commun. (1997) 645–652;
 (b) J.T. Welch, Tetrahedron 43 (1987) 3123–3197;
 - (c) J. Mann, Chem. Soc. Rev. 16 (1987) 381-436.
- [2] (a) M. Prakesch, D. Grée, S. Chandrasekhar, R. Grée, Eur. J. Org. Chem. (2005) 1211–1232;
 - (b) K. Mikami, Y. Itoh, M. Yamanaka, Chem. Rev. 104 (2004) 1-16;
 - (c) R.P. Singh, J.M. Shreeve, Tetrahedron 56 (2000) 7613–7632;
 - (d) G.K.S. Praakash, A.K. Yudin, Chem. Rev. 97 (1997) 757-786;
 - (e) J.H. Steenis, A. Gen, J. Chem. Soc. Perkin Trans. 1 (2002) 2117-2133;
 - (f) M.A. McClinton, D.A. McClinton, Tetrahedron 48 (1992) 6555-6666;
 - (g) I. Ojima, Chem. Rev. 88 (1988) 1011-1030.
- [3] (a) G. Németh, R. Kapiller-Dezsøofi, G. Lax, G. Simig, Tetrahedron 52 (1996) 12821–12830;

(b) G. ÁbraHám, T. Horváth, L. Toldy, J. Borvendég, E. Csányi, É. Kiss, I. Hermann-Szente, K. Tory (Gyógyszerkuntató Intézet). Hungarian Patent (1979) 17853.

- (c) Drugs Fut. 10 (1985) 395;
- (d) Drugs Fut. 11 (1986) 426;
- (e) Drugs Fut. 12 (1987) 497;
- (f) Drugs Fut. 13 (1988) 480.
- [4] (a) M. Shimizu, T. Fujimoto, H. Minezaki, Takeshi, T. Hata, Hiyama, J. Am. Chem. Soc. 123 (2001) 6947–6948;
 - (b) M.P. Jennings, E.A. Cork, V. Ramachandran, J. Org. Chem. 65 (2000) 8763–8766;
 - (c) S. Peng, F.-L. Qing, Y. Guo, Synlett (1998) 859-860;

(d) F.-L. Qing, W.-Z. Gao, J. Ying, J. Org. Chem. 65 (2000) 2003–2006;
(e) J. Thibonnet, G. Prié, M. Abarbri, A. Duchêne, J.-L. Parrain, Tetrahedron Lett. 40 (1999) 3151–3154;

(f) T.E. Nickson, J. Org. Chem. 53 (1988) 3870-3872.

- [5] J. Chae, T. Konno, M. Kanda, T. Ishihara, H. Yamanaka, J. Fluorine Chem. 120 (2003) 185–193.
- [6] (a) T. Konno, J. Chae, T. Tanaka, T. Ishihara, H. Yamanaka, Chem. Commun. (2004) 690–691;
 (b) T. Konno, J. Chae, T. Tanaka, T. Ishihara, H. Yamanaka, J. Fluorine

Chem. 127 (2006) 36–43. [7] (a) T. Konno, T. Daitoh, A. Noiri, J. Chae, T. Ishihara, H. Yamanaka, Org.

- Lett. 6 (2004) 933–936; (b) T. Konno, T. Daitoh, A. Noiri, J. Chae, T. Ishihara, H. Yamanaka, Tetrahedron 61 (2005) 9391–9404.
- [8] T. Konno, T. Takehana, J. Chae, T. Ishihara, H. Yamanaka, J. Org. Chem. 69 (2004) 2188–2190.
- [9] For other reactions of fluoroalkylated acetylene derivatives, see:
 (a) J. Chae, T. Konno, T. Ishihara, H. Yamanaka, Chem. Lett. (2004) 314– 315;

(b) T. Konno, J. Chae, T. Ishihara, H. Yamanaka, J. Org. Chem. 69 (2004) 8258–8265;

(c) T. Konno, J. Chae, T. Ishihara, H. Yamanaka, Tetrahedron 60 (2004) 11695–11700;

(d) T. Konno, J. Chae, T. Miyabe, T. Ishihara, J. Org. Chem. 74 (2005) 10172–10174.

- [10] T. Konno, J. Chae, M. Kanda, G. Nagai, K. Tamura, T. Ishihara, H. Yamanaka, Tetrahedron 59 (2003) 7571–7580.
- [11] For three component coupling reaction of non-fluorinated counterparts, see:

(a) C. Zhou, D.E. Emrich, R.C. Larock, Org. Lett. 5 (2003) 1582–1679;

- (b) X. Zhang, R.C. Larock, Org. Lett. 5 (2003) 2993-2996;
- (c) A.N. Thadani, V.H. Rawal, Org. Lett. 4 (2002) 4317-4320;
- (d) C. Zhou, R.C. Larock, J. Org. Chem. 70 (2005) 3765-3777.