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Abstract In this study, we developed a rhodium(l)-catalyzed spiro-
cyclization. The reaction includes 1,4-rhodium migration and provides a
route for forming spirocyclic 1-indanones.
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1,4-Rhodium migration is an effective intramolecular
C-H bond-activation process,'-> which has been used in the
formation of carbo- and heterocyclic frameworks.? Recent-
ly, we reported that 1,1'-spirobi[indan]-3-ones were syn-
thesized using the rhodium-catalyzed addition-ring-
expansion reaction of (3-arylcyclobutylidene)acetates in-
volving successive 1,4-rhodium migration tandem (Scheme
1).4 The second 1,4-rhodium migration in this reaction oc-
curred with (1-phenylindan-1-ylmethyl)rhodium(I) species
A to generate 2-(indan-1-yl)phenylrhodium(l) B, which
subsequently reacted with the ester group to provide a
spirocyclic structure.’

Rhodium(I)-catalyzed cyclization reactions of arylbo-
ronic acids and esters bearing electrophilic functionalities
have been extensively studied.”® In 2012, Sarpong et al. re-
ported rhodium(I)-catalyzed asymmetric cyclization of ar-
ylboronic esters bearing a pendant ketone group (Scheme 2,
a).® The reaction produced tertiary 1-indanols in good
yields and enantioselectivities. We anticipated that the re-
placement of the ketone group with a B-aryl a,B-unsaturat-
ed ester group would cause spirocyclization through a
mechanism analogous to our previous addition-ring-
expansion of (3-arylcyclobutylidene)acetates (Scheme 2, b).
Herein, we report rhodium(I)-catalyzed addition-spirocy-
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Scheme 1

clization of arylboronic esters containing a pendant B-aryl
o,B-unsaturated ester moiety that produces 1,1'-spirobi[in-
dan]-3-ones through 1,4-rhodium migration.
Phenylboronic pinacol ester 1a'® bearing a B-phenyl
o,B-unsaturated ester with E stereochemistry was heated in
refluxing toluene in the presence of 5 mol% [Rh(OH)(cod)],
(cod = cycloocta-1,5-diene; Table 1, entry 1). Spirobiinda-
none 2a was formed, as expected, in 52% yield, with an ac-
companying 24% yield of indanylacetate 3a, derived from
the protonation of organorhodium(I) species C or D. The ad-
dition of base was subsequently investigated to facilitate
the conversion of the rather robust pinacol ester. After
screening several organic and inorganic bases, higher con-
version of (E)-1a was achieved when two equivalents of te-
tramethylethylenediamine (TMEDA) was added to the reac-
tion, albeit with a worse 2a/3a ratio (Table 1, entry 2). Fur-
ther, we examined the effects of phosphine ligands on the
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rhodium-catalyzed cyclization of (E)-1a. The addition of
DPPE [1,2-bis(diphenylphosphino)ethane] to the reaction
improved the 2a/3a ratio to 69:31 (Table 1, entry 3). The
use of 2,2"-bis(diphenylphosphino)-1,1’-binaphthyl (BINAP)
caused 76% total yield, with a 2a/3a ratio of 59:41 (Table 1,
entry 4). Among the diphosphine ligands investigated, 1,2-
bis(diphenylphosphino)benzene (DPPBZ) exhibited superi-
or activity in the reaction, producing 2a in 63% yield
(2a/3a=70:30, Table 1, entry 5). In contrast, the reaction of
(2)-1a was significantly sluggish under the reaction condi-
tions; 2a was observed only in trace amounts in the crude
reaction mixture (Table 1, entry 6). The unsatisfactory re-
sults with pinacol ester 1a led us to utilize neopentyl glycol
ester 4a, since neopentyl glycol esters exhibit a greater re-
activity relative to pinacol esters.!! Although almost identi-
cal results were obtained when 4a was subjected to the re-
action conditions optimized for 1a (Table 1, entry 7), the re-

action of 4a proceeded efficiently with a reduced amount of
rhodium(I) catalyst without adding TMEDA, affording 78%
yield of 2a (2a/3a =91:9, Table 1, entry 8). Gratifyingly, the
suppression of the indane byproduct formation was finally
possible when heated in refluxing xylene, providing 84%
yield of 2a, without any detectable formation of 3a (Table 1,
entry 9).12

Next, we examined the spirocyclization of various aryl-
boronic neopentyl glycol esters 1 under the conditions with
or without DPPBZ (Table 2). Phenylboronic ester 4b-d con-
taining 4-methylphenyl, 4-chlorophenyl and 4-methoxy-
phenyl groups at the B position of the o,B-unsaturated ester
moiety produced spirobiindanones 2b-d in good yields (Ta-
ble 2, entries 1-3). The addition of DPPBZ as the ligand was
found to be harmful to substrate 4e having an aryl group
with strong electron-withdrawing CF; substituent; trifluo-
romethyl-substituted products 2e was obtained in 69%
yield without using DPPBZ (Table 2, entry 4). For the reac-
tion of 2-naphthyl derivative 4f, 1,4-rhodium migration oc-
curred selectively at the more sterically accessible site of
the aromatic ring to provide the sole product 2f in 65% yield
(Table 2, entry 5), and 3-methoxyphenyl derivative 4g simi-
larly reacted to afford 6-methoxyspirobiindanone 2g (Table
2, entry 6). The reaction of the 4-methoxyphenylboronic
ester derivative 4h produced an isomeric 5’-methoxyspiro-
biindanone 2h in 74% yield (Table 2, entry 7). Substrates 4i
and 4j, with one atom longer tethers, also participated in
the spirocyclization, producing [5.6]-spirocyclic ketones 2i
and 2j in modest yields (Table 2, entries 8 and 9).

With successful demonstration of this new spiroannula-
tion reaction, the asymmetric version of this process was
examined (Scheme 3). The reaction of 4a employing (R)-
BINAP as the ligand afforded 2a in 43% yield with 52% ee.®

In summary, a spirocyclization reaction synthesizing
spirocyclic 1-indanones from phenylboronic esters, con-
taining a pendant B-phenyl a,B-unsaturated ester moiety,
was developed. The rhodium(I)-catalyzed reaction in-
volved, in sequence, transmetalation, intramolecular addi-
tion to a C=C bond, 1,4-rhodium migration, intramolecular
addition to a C=0 bond, and B-oxygen elimination. We are
currently focused on further exploration and exploitation
of the migration of rhodium in synthesis toward complex
cyclic structures.

=
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Table 1 Optimization of the Reaction Conditions for Rhodium-Catalyzed Addition-Spirocyclization?

Ph Ph Ph

AN X -COMe ©f\)\ Rh(l) catalyst ‘ < |
5O CO.Me 5O B/o COMe — o~ .O + Ph
\O C‘) 6\ 4 COo,Me
(E)-1a (2-1a 4a 2a 3a
Entry lord [Rh(OH)(cod)], (mol%) Phosphine ligand (mol%)  Additive (equiv) Solvent Yield of 2a (%)*  VYield of 3a (%)°

1 (E)-1a 5 none none toluene 52 24
2 (E)-1a 5 none TMEDA (2) toluene 46 50
3 (B)-1a 5 DPPE (10) TMEDA (2) toluene 60 27
4 (B)-1a 5 BINAP (10) TMEDA (2) toluene 45 31
5 (E)-1a 5 DPPBZ (10) TMEDA (2) toluene 63 27
6 (2)-1a 5 DPPBZ (10) TMEDA (2) toluene trace -
7 4a 5 DPPBZ (10) TMEDA (2) toluene 63 30
8 4a 2.5 DPPBZ (5) none toluene 78 8
9 4a 2.5 DPPBZ (5) none xylene 84 -

2 Conditions: 1a or 4a (0.10 mmol) was heated in toluene or xylene (1.0 mL) for 1-8 h in the presence of Rh catalyst.
b Isolated yield.
¢ Determined by 'H NMR.

Table 2 Synthesis of Spirocyclic 1-Indanones through Rhodium-Catalyzed Addition-Spirocyclization of 4

R

Yield (%)> with DPPBZ  Yield (%)® without DPPBZ

Entr
Y X
B/O CO.Me

|
O

~
4 2

1 4bR=Me 2b 76¢ 70

2 4cR=Cl 2c 68de 63

3 4dR=0Me 2d 73 7

4 4eR=CF, 2e (36) 69de

2
SN

© Georg Thieme Verlag Stuttgart - New York — Synlett 2015, 26, 1233-1237

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



1236

Synlett T. Matsuda et al.

Table 2 (continued)

Entry Yield (%)> with DPPBZ  Yield (%) without DPPBZ
OgMe
2
6
O OMe
e ool TE
OgMe
(0]
29
7

_f 749
8 4i X = CH, 2i -f 42
9 4jhx =0 2j -f (40)¢

2 Arylboronic ester 4 was reacted in the presence of 5 mol% Rh catalyst in xylene (0.1 M) at 140 °C.

b Isolated yield. Yields in parentheses indicate yields determined by "H NMR spectroscopy.

€ 44% yield with the corresponding pinacol ester {5 mol% [Rh(OH)(cod)],, toluene, reflux].

4 The reaction produced mixtures of spirobiindanones 2 and indane byproducts 3 (2¢/3c = 3:1, 2e[3e = 5:1, 2j/3j = 3:1).
€ Pure products of 2 were obtained after the hydrolysis of esters 3 with a base.

fNot examined.

946% yield with the corresponding pinacol ester {5 mol% [Rh(OH)(cod)],, toluene, reflux}.

" Used as a mixture of stereoisomers (E/Z = 78:22).
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(12) (E)-Methyl 5-[2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)phe-

nyl]-3-phenylpent-2-enoate (4a): White solid; mp 104-105
°C; 'H NMR (CDCls, 301 MHz): & = 0.98 (s, 6 H), 3.01-3.09 (m, 2
H), 3.31-3.40 (m, 2 H), 3.65 (s, 4 H), 3.78 (s, 3 H), 6.08 (s, 1 H),
7.15-7.22 (m, 1 H), 7.32-7.42 (m, 5 H), 7.51-7.57 (m, 2 H),
7.71-7.76 (m, 1 H). 3C NMR (CDCl,, 75.6 MHz): & = 21.8, 31.5,
34.8, 35.2, 51.1, 72.0, 116.9, 125.1, 126.9, 128.4, 128.7, 129.9,
130.3, 134.8, 141.6, 147.6, 160.8, 166.7. HRMS (ESI) calcd for
CpHy,BNaO, [M + Na]* 401.1895; found: 401.1895. IR: 2960,
1712,1301, 1161, 766 cm™.
General Procedure for Rhodium-Catalyzed Spirocyclization
of Arylboronic Esters: To a Schlenk tube under nitrogen were
added [Rh(OH)(cod)], (1.2 mg, 2.6 umol, 5 mol% Rh), 1,2-
bis(diphenylphosphino)benzene (DPPBZ, 2.3 mg, 5.2 pmol),
arylboronic ester 4 (0.100 mmol), and xylene (1.0 mL). The
solution was stirred for 5 min. at rt, and the mixture was heated
at 140 °C for 2 h. After cooling to r.t., the reaction mixture was
filtered through a plug of Florisil® washing with hexane-EtOAc
(3:1), and the filtrate was concentrated. The residue was puri-
fied by preparative TLC on silica gel (hexane-EtOAc) to afford 2.
1,1’-Spirobi[indan]-3-one (2a): According to the general pro-
cedure, 4a (37.9 mg, 0.100 mmol), [Rh(OH)(cod)], (1.2 mg, 2.6
pmol), and DPPBZ (2.3 mg, 5.2 pmol) were treated in xylene (1.0
mL). Purification by preparative TLC on silica gel afforded 2a
(19.7 mg, 0.084 mmol, 84%) as a colorless oil. "H NMR (CDCl;,
300 MHz): & = 2.37 (ddd, J = 12.7, 7.0, 5.5 Hz, 1 H), .52 (dt, ] =
12.8,8.2 Hz, 1 H), 2.85(d,J = 18.9 Hz, 1 H), 3.00 (d, ] = 18.9 Hz, 1
H), 3.10-3.20 (m, 2 H), 6.78 (d, J = 7.2 Hz, 1 H), 7.14 (dt,J = 0.8,
7.4 Hz, 1 H), 7.21 (dd, J = 7.3, 1.0 Hz, 1 H), 7.23-7.29 (m, 1 H),
7.32(d,J = 7.2 Hz, 1 H), 7.37-7.46 (m, 1 H), 7.54- 7.62 (m, 1 H),
7.75-7.82 (m, 1 H); *C NMR (CDCl;, 75.5 MHz): 6 = 31.3, 42.9,
52.4,54.5,122.8,123.1, 124.6, 125.1, 127.2, 127.3, 127.9, 135 .4,
136.1, 143.3, 148.9, 161.5, 205.7. HRMS (ESI) calcd for
C7H4,NaO [M + NaJ* 257.0937; found: 257.0937. IR: 2948,
1716, 1602, 1236, 758 cm™".

(13) Asymmetric reaction: 4a (37.8 mg, 0.100 mmol),
[Rh(OH)(cod)], (1.1 mg, 2.4 umol), and (R)-BINAP (3.1 mg, 5.0
umol) were reacted in xylene (1.0 mL) at 140 °C. Purification by
preparative TLC on silica gel yielded 2a (10.1 mg, 0.043 mmol,
43%); 52% ee determined by HPLC analysis (CHIRALCEL® OJ-H
column, hexane-i-PrOH (90:10), 1.0 mL/min, ty;o = 7.7 min,
Emajor = 10.0 min).
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