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Abstract In this study, we developed a rhodium(I)-catalyzed spiro-
cyclization. The reaction includes 1,4-rhodium migration and provides a
route for forming spirocyclic 1-indanones.
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1,4-Rhodium migration is an effective intramolecular
C–H bond-activation process,1–5 which has been used in the
formation of carbo- and heterocyclic frameworks.3 Recent-
ly, we reported that 1,1′-spirobi[indan]-3-ones were syn-
thesized using the rhodium-catalyzed addition–ring-
expansion reaction of (3-arylcyclobutylidene)acetates in-
volving successive 1,4-rhodium migration tandem (Scheme
1).4 The second 1,4-rhodium migration in this reaction oc-
curred with (1-phenylindan-1-ylmethyl)rhodium(I) species
A to generate 2-(indan-1-yl)phenylrhodium(I) B, which
subsequently reacted with the ester group to provide a
spirocyclic structure.6

Rhodium(I)-catalyzed cyclization reactions of arylbo-
ronic acids and esters bearing electrophilic functionalities
have been extensively studied.7–9 In 2012, Sarpong et al. re-
ported rhodium(I)-catalyzed asymmetric cyclization of ar-
ylboronic esters bearing a pendant ketone group (Scheme 2,
a).9 The reaction produced tertiary 1-indanols in good
yields and enantioselectivities. We anticipated that the re-
placement of the ketone group with a β-aryl α,β-unsaturat-
ed ester group would cause spirocyclization through a
mechanism analogous to our previous addition–ring-
expansion of (3-arylcyclobutylidene)acetates (Scheme 2, b).
Herein, we report rhodium(I)-catalyzed addition–spirocy-

clization of arylboronic esters containing a pendant β-aryl
α,β-unsaturated ester moiety that produces 1,1′-spirobi[in-
dan]-3-ones through 1,4-rhodium migration.

Phenylboronic pinacol ester 1a10 bearing a β-phenyl
α,β-unsaturated ester with E stereochemistry was heated in
refluxing toluene in the presence of 5 mol% [Rh(OH)(cod)]2
(cod = cycloocta-1,5-diene; Table 1, entry 1). Spirobiinda-
none 2a was formed, as expected, in 52% yield, with an ac-
companying 24% yield of indanylacetate 3a, derived from
the protonation of organorhodium(I) species C or D. The ad-
dition of base was subsequently investigated to facilitate
the conversion of the rather robust pinacol ester. After
screening several organic and inorganic bases, higher con-
version of (E)-1a was achieved when two equivalents of te-
tramethylethylenediamine (TMEDA) was added to the reac-
tion, albeit with a worse 2a/3a ratio (Table 1, entry 2). Fur-
ther, we examined the effects of phosphine ligands on the
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rhodium-catalyzed cyclization of (E)-1a. The addition of
DPPE [1,2-bis(diphenylphosphino)ethane] to the reaction
improved the 2a/3a ratio to 69:31 (Table 1, entry 3). The
use of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP)
caused 76% total yield, with a 2a/3a ratio of 59:41 (Table 1,
entry 4). Among the diphosphine ligands investigated, 1,2-
bis(diphenylphosphino)benzene (DPPBZ) exhibited superi-
or activity in the reaction, producing 2a in 63% yield
(2a/3a = 70:30, Table 1, entry 5). In contrast, the reaction of
(Z)-1a was significantly sluggish under the reaction condi-
tions; 2a was observed only in trace amounts in the crude
reaction mixture (Table 1, entry 6). The unsatisfactory re-
sults with pinacol ester 1a led us to utilize neopentyl glycol
ester 4a, since neopentyl glycol esters exhibit a greater re-
activity relative to pinacol esters.11 Although almost identi-
cal results were obtained when 4a was subjected to the re-
action conditions optimized for 1a (Table 1, entry 7), the re-

action of 4a proceeded efficiently with a reduced amount of
rhodium(I) catalyst without adding TMEDA, affording 78%
yield of 2a (2a/3a = 91:9, Table 1, entry 8). Gratifyingly, the
suppression of the indane byproduct formation was finally
possible when heated in refluxing xylene, providing 84%
yield of 2a, without any detectable formation of 3a (Table 1,
entry 9).12

Next, we examined the spirocyclization of various aryl-
boronic neopentyl glycol esters 1 under the conditions with
or without DPPBZ (Table 2). Phenylboronic ester 4b–d con-
taining 4-methylphenyl, 4-chlorophenyl and 4-methoxy-
phenyl groups at the β position of the α,β-unsaturated ester
moiety produced spirobiindanones 2b–d in good yields (Ta-
ble 2, entries 1–3). The addition of DPPBZ as the ligand was
found to be harmful to substrate 4e having an aryl group
with strong electron-withdrawing CF3 substituent; trifluo-
romethyl-substituted products 2e was obtained in 69%
yield without using DPPBZ (Table 2, entry 4). For the reac-
tion of 2-naphthyl derivative 4f, 1,4-rhodium migration oc-
curred selectively at the more sterically accessible site of
the aromatic ring to provide the sole product 2f in 65% yield
(Table 2, entry 5), and 3-methoxyphenyl derivative 4g simi-
larly reacted to afford 6-methoxyspirobiindanone 2g (Table
2, entry 6). The reaction of the 4-methoxyphenylboronic
ester derivative 4h produced an isomeric 5′-methoxyspiro-
biindanone 2h in 74% yield (Table 2, entry 7). Substrates 4i
and 4j, with one atom longer tethers, also participated in
the spirocyclization, producing [5.6]-spirocyclic ketones 2i
and 2j in modest yields (Table 2, entries 8 and 9).

With successful demonstration of this new spiroannula-
tion reaction, the asymmetric version of this process was
examined (Scheme 3). The reaction of 4a employing (R)-
BINAP as the ligand afforded 2a in 43% yield with 52% ee.13

In summary, a spirocyclization reaction synthesizing
spirocyclic 1-indanones from phenylboronic esters, con-
taining a pendant β-phenyl α,β-unsaturated ester moiety,
was developed. The rhodium(I)-catalyzed reaction in-
volved, in sequence, transmetalation, intramolecular addi-
tion to a C=C bond, 1,4-rhodium migration, intramolecular
addition to a C=O bond, and β-oxygen elimination. We are
currently focused on further exploration and exploitation
of the migration of rhodium in synthesis toward complex
cyclic structures.
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Table 2  Synthesis of Spirocyclic 1-Indanones through Rhodium-Catalyzed Addition–Spirocyclization of 4a

Table 1  Optimization of the Reaction Conditions for Rhodium-Catalyzed Addition–Spirocyclizationa

Entry 1 or 4 [Rh(OH)(cod)]2 (mol%) Phosphine ligand (mol%) Additive (equiv) Solvent Yield of 2a (%)b Yield of 3a (%)c

1 (E)-1a 5 none none toluene 52 24

2 (E)-1a 5 none TMEDA (2) toluene 46 50

3 (E)-1a 5 DPPE (10) TMEDA (2) toluene 60 27

4 (E)-1a 5 BINAP (10) TMEDA (2) toluene 45 31

5 (E)-1a 5 DPPBZ (10) TMEDA (2) toluene 63 27

6 (Z)-1a 5 DPPBZ (10) TMEDA (2) toluene trace –

7 4a 5 DPPBZ (10) TMEDA (2) toluene 63 30

8 4a 2.5 DPPBZ (5) none toluene 78  8

9 4a 2.5 DPPBZ (5) none xylene 84 –
a Conditions: 1a or 4a (0.10 mmol) was heated in toluene or xylene (1.0 mL) for 1–8 h in the presence of Rh catalyst.
b Isolated yield.
c Determined by 1H NMR.
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Table 2 (continued)
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