LETTER

97

Palladium-Catalysed Cascades Triggered by Dehydrogenation of Secondary
or Tertiary Amines: Access to Bridged- and Fused-Ring Heterocycles
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Abstract: Palladium-catalysed cascades triggered by dehydrogena-
tion of secondary or tertiary amines and trapping the intermediate
imines with cycloadditions and Mannich reactions result in a range
of bridged- and fused-ring heterocyclic motifs in moderate to good
yields.

Key words: cascade reaction, hydrogen transfer, Mannich reaction,
dipolar cycloaddition

To increase the molecular complexity of a simple organic
substrate using efficient (high atom economy), selective,
high-yielding, and environmentally benign methods is
one of the contemporary challenges for synthetic organic
chemists.! Carbon—carbon bond formation is a pivotal
method for achieving this goal. We have been involved in
generating azomethine ylides and azomethine imines via
catalytic dehydrogenation methods utilizing either palla-
dium black, ruthenium black, or Wilkinson’s catalyst.>3
Recently Beller et al. have reported dehydrogenation of
primary amines using Shvo’s catalyst* whilst Blacker et
al. have reported dehydrogenation of secondary amines
utilizing an Ir(II) catalyst.’ Palladium catalysts have long
been known to dealkylate tertiary amines via an interme-
diate iminium species followed by hydrolysis
(Scheme 1).°
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In this communication we report two novel catalytic cas-
cade combinations (i) palladium-catalysed cascade dehy-
drogenation of cyclic secondary a-amino acid esters —
azomethine ylides — 1,3-dipolar cycloaddition generat-
ing bridged-ring heterocycles with formation of two new
bonds, and 3/4 stereocentres [Scheme 2 (a)] (ii) palladi-
um-catalysed cascade dehydrogenation of tertiary amines
— iminium ion — intramolecular Mannich reaction —
fused ring heterocycle [Scheme 2 (b)].

In Scheme 2 (b) N-methylmaleimide (NMM) is also used
to regenerate the active palladium catalyst by acting as a
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Scheme 2

recipient for the hydrogen removed from the tertiary
amine in the dehydrogenation process.

For our initial studies, we selected cyclic secondary a-
amino acid esters 1 and 2 as precursors (Figure 1). Thus 1
(1 mmol) reacted with NMM (2 mmol) in boiling toluene
in the presence of 10 mol% Pd black over 13 hours to af-
ford the bridged ring compound 5 in 82% yield
(Scheme 3). The initial regioselective dehydrogenation of
1 leads to the formation of cyclic imine 3 followed by 1,2-
prototropy to the azomethine ylide 4. Trapping of 4 with
NMM via an endo transition state (with respect to the NH
bridge) then affords 5. In the NMR spectrum of 5 the
bridgehead hydrogen H, appears as a singlet at § = 4.75
ppm indicating that H, and Hy, are orthogonal. In an anal-
ogous fashion, 2 afforded 6 (Figure 2) in 68% yield. We
and others have reported a related cycloaddition process
on the preformed cyclic imines.’
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We briefly studied the stereo- and regioselectivity of the
1,3-dipolar cycloaddition reactions using benzyl acrylate
and phenyl vinyl sulfone as dipolarophiles. Thus second-
ary amine 1 (1 mmol) reacted regio- and stereospecifically
with benzyl acrylate (2 mmol) in the presence of 10 mol%
Pd black in boiling toluene for 15 hours to afford 7 (50%)
together with a small amount of 8 (10%, Figure 3). The
stereochemistry of 7 was assigned on the basis of 'H NMR
data. In particular the bridgehead hydrogen H, appears as
a singlet at 6 = 4.57 ppm. In contrast 1 (1 mmol) reacted
regioselectively with phenyl vinyl sulfone (2 mmol) in the
presence of 10 mol% Pd black in boiling toluene over 20
hours to afford a 1:2.5 mixture of 9 and 10 (40%) together
with 8 (30%). The stereochemistries of 9 and 10 were as-
signed from their "H NMR spectra. The bridgehead hy-
drogen H, of 9 appears as a singlet at 6 = 4.74 ppm
indicating it is an endo cycloadduct with respect to the NH
bridge. The signal for proton H, of 10 appears as a doublet
at 8 = 3.95 ppm with a coupling constant of 6.2 Hz which
confirms both the regio-and stereochemistry of the
cycloadduct. In contrast to the previous observations, 10
is the major product. This stereoselectivity may reflect
equilibrium between 9 and 10 over the longer reaction
time.

In the reactions with less active dipolarophiles than
NMM, the aromatized product 8 is also formed. That is,
when the cycloaddition step is slow, aromatization of the
imine begins to compete. The trend of increasing amounts
of 8 reflects the observed reactivity rate of the dipolaro-
philes: NMM > benzyl acrylate > phenyl vinyl sulfone.
The latter order has been established in our extensive
work on cycloaddition reactions of azomethine ylides.®

Next we extended the dehydrogenation methodology to
intramolecular Mannich reactions. The tertiary amine 12
(1 mmol) with a tethered malonate was synthesized by re-
ductive amination of tetrahydroisoquinoline and aldehyde
11 (Figure 4). When 12 (1 mol equiv) reacted with 10
mol% Pd black in the presence of NMM (1 mol equiv) in
DMF at 120 °C, it afforded the tricyclic amine 15 in 60%
yield (Scheme 4). In an analogous fashion, 16 afforded 17
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in 40% yield. When 18 (1 mol equiv) was allowed to react
in the presence of Pd black (DMF, 120 °C) and NMM
(2 mol equiv), the reaction furnished the cycloadduct 22
in 45% yield (Scheme 5). Note that 22 can be regarded as
an endo cycloadduct of the 1,3-dipole 20 or an exo-Diels—
Alder cycloadduct of the isoindole 21. The absence of any
23 indicates that conversion of 19 into 21 is significantly
faster than the Mannich cyclisation 19 — 23. In the NMR
spectrum of 22 the bridgehead hydrogen H, appears as a
singlet at & = 4.48 ppm indicating that H, and H, are or-
thogonal.
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In conclusion we have developed two novel cascade com-
binations triggered by initial Pd-catalysed dehydrogena-
tion. Overall these cascades result in the formation of 1-2
new bonds, 1-4 new stereocentres, and one new ring. A
typical experimental protocol is appended.’
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1,2-Benzo-4,7-imino-4-methoxycarbonyl-exo-6-benzyl-
oxycarbonylcyclohept-1-ene (7)

Methyl 1,2,3,4-tetrahydroisoquinoline-3-carboxylate (1, 0.1
g, 0.5 mmol), benzyl acrylate (0.17 g, 1.0 mmol), and Pd
black (0.0055 g, 0.05 mmol) were mixed in toluene (15 mL)
and heated at 110 °C for 15 h. After removal of the solvent
the residue was purified by column chromatography eluting
with Et,O-PE (1:1, v/v) to afford 7 (0.091 g, 50%) as a
colourless semisolid and 8 (10%). Anal. Calcd (%) for
C,,H,;NO,: C,71.79; H, 5.98; N, 3.99. Found: C, 71.70; H,
6.20; N, 4.05. '"H NMR (300 MHz, CDCl,): 6 = 7.15-7.07
(m, 4 H, ArH), 5.12 (s, 2 H, CH,Ph), 4.57 (s, | H, H,), 3.79
(s, 3 H, CO,Me), 3.26 (d, 1 H, J = 16.60 Hz, ArCHH), 3.14
(dd, 1 H, J =8.85,2.60 Hz H,), 3.02 (d, 1 H, J=16.60 Hz,
ArCHH), 2.47 (dd, 1 H, J=13.75, 2.60 Hz, H,), 2.22 (dd,

1 H,J=13.75, 8.85 Hz, Hy). MS: m/z (%) = 351 (0.2) [M*],
292 (3), 260 (0.4), 189 (100), 157 (18).

Synlett 2009, No. 1,97-99 © Thieme Stuttgart - New York



Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.



