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Abstract: A highly eJicient construction of the 2,8-dioxabicyclo[l2,1]octane core structure of 
zaragozic acids, inhibitors of the enzyme squalene synthase, hns been achieved by exploiting the 
sequence of rhodium(II)-mediated intramolecular carbonyl ylide formation from an a-diazo ester and 
stereocontrolled I.3-dip&r cyclooddition with (El-3-hexene-2.5-dione. 0 1998 Else”& Science Ltd. 
All rights reserved. 

Elevated serum cholesterol levels have been well 
established as a key risk factor for the development of 
atherosclerosis and coronary heart disease.2 In this 

ph 

connection, the discovery of zaragozic acids and 
squalestatins by respective researchers at Merck and Glaxo 
is a notable recent landmark, because this novel family of 

%WPh 

fungal metabolites has been shown to be picomolar 
Zaragozic acid C (1) 

competitive inhibitors of squalene synthase, 2.3 the enzyme involved in the first committed step of the de ~OVO 

cholesterol biosynthetic pathway. Some members of this family have also been found to display Ras famesyl 
transferase inhibitory activity.4 Structurally, these molecules share a 4,6,7-trihydroxy-2,8- 
dioxabicyclo[3.2.l]octane-3,4,5tricarboxylic acid core with an array of six stereogenic centers including 
contiguous quaternary carbons, and represent considerable variations in the Cl alkyl and C6 acyl side chains. 
Not surprisingly, their biomedical significance coupled with the novel molecular architecture has provided a 
powerful incentive for numerous synthetic chemists to embark on the synthesis of zaragozic acids 
(squalestatins) and their analogues. Apart from an enormous amount of synthetic studies, the Nicolaou5 and 
Heathcocke groups have accomplished the total synthesis of zaragozic acid A (squalestatin Sl), while efforts of 
the groups of Carreira7 and Eva& have culminated in the total synthesis of zaragozic acid C (1).9 Recently, 
we also have completed the total synthesis of 1 by a convergent strategy, wherein the key feature is a 
simultaneous creation of the C4 and CS quaternary carbon centers by Sn(OTf)z-promoted aldol coupling 
reaction between an a-keto ester and silyl ketene thioacetal derived from L- and ~tartaric acids, respectively.10 
However, our synthesis incurs a stereochemical problem at C5 in the key fragment assembly aldol process. 
Thus, we have addressed a second-generation synthesis of zaragozic acids, highlighting an alternative 
construction of the 2,8-dioxabicyclo[3.2. lloctane core system via a tandem carbonyl ylide formation and 1,3- 
dipolar cycloaddition sequence. 

A strategic point in the synthesis of zaragozic acids lies in the construction of the fully or partially 
functionalized 2,8-dioxabicyclo[3.2.l]octane core structure .9 The majority of the reported synthetic strategies 
relies on acid-catalyzed internal ketalization of polyhydroxyketones under kinetically or thermodynamically 
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controlled conditions,” wherein, apart from the target bicyclic ketal core, there have often been observed 
variable quantities of the isomeric 6,8-dioxabicyclo[3.2.l]octane ring. Independent of these strategies.12 
Koyama and his coworkers reported a very elegant approach exploiting the tandem cyclization-cycloaddition 
sequence extensively developed by Padwa, l3 wherein Rhz(OAc)q-catalyzed decomposition of methyl 4- 
acetyloxy-2-diazo-3-oxobutyrate in the presence of vinyloxytrimethylsilane or benzyl vinyl ether led to the rapid 
assembly of a simple model of the zaragozic acid core, albeit in poor yields (16% and 9%, respectively).t2a In 
spite of the disappointing precedent, we explored this chemistry with an actual substrate, since assessment of 
the factors responsible for this process seemed to be ambiguous.t4 

Toward this end, the fully functionalized a-diazo ester 7 was prepared from the readily available acetonide 
215 as shown in Scheme 1.16 Deprotection of the isopropylidene acetal group in 2 was followed by selective 
silylation of the primary alcohol and acylation of the secondary alcohol with 3-(methoxymethoxy)propionic acid 
to afford ester 3 in 67% yield. Debenzylation of 3 and subsequent oxidation with the Dess-Martin periodinane 
furnished a-keto ester 4 in 80% yield. Addition of ethyl lithiodiazoacetatet7 to 4 in THF at -78 “C proceeded 
smoothly to give a mixture of adducts 5 and 6 in a 1.5:1 ratio, which was silylated and then separated by 
column chromatography on silica gel to produce the desired a-diazo ester 7 in 40% yield, along with 26% of its 
C4 epimer 8. The stereochemical assignments of 7 and 8 were obtained from tH NOE experiments of the “I- 
lactones 9 and 11 derived from 5 and 6, respectively, via deblocking of the acyl group, 1,2-O-TBDPS group 
migration,18 and ring closure followed by 4-O-silylation (Scheme 2). These assignments were further 
substantiated by the X-ray crystal structure of y-lactone 10 (Fig. 1). 
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Scheme 1. Reagenfs and conditions: (a) 10% aq. HCl-THF (l:l), 0 “C, 12 h, 78%. 6: R’=OH, R2=C02Me 
(b) TBDPSCI. pyridine, DMAP, CHzCl2, 20 h, 96%. (c) MOMO(CH&C02H, 
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EDCI, DMAP, CH2C12, 5 h, 89%. (d) Hz. 20% Pd(OH)z/C, MeOH, reflw, 20 h, 
85%. (e) Des-Mattin periodinane, CHzC12, 8 h, 94%. (f) NZCHC02Et, LiHMDS, 

fk Rt=OTMS, R’=COzMe 

THF, -78 “C, 3 h. (g) HMDS, imidazole, THF, 14 h, 40% of 7 and 26% of 8 (2 
steps). 
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Scheme 2 Figure 1. X-ray crystal structure of 10. 

With convenient access to the carbonyl ylide precursor secured, the stage was now set for the tandem 
cyclization-cycloaddition reaction. The reaction was performed by slowly adding a solution of a-diazo ester 7 
in benzene to a refluxing benzene solution of Rhz(OAc)4 (5 mol %) and a suitable dipolarophile (3 equiv) 
(Scheme 3). However, a most aggressive attempt to trap the carbonyl ylide 13 generated from 7 by the action 
of Rh2(OAc)4 with (E)-vinylene diacetatelo as a 1,2-ethylenediol equivalent met with failure. The use of vinyl 
acetate also gave none of the cycloadducts. With respect to the dipole reactivity of cyclic carbonyl ylides derived 
from the a-diazo ketone or a-diazo P-keto ester, it is documented that the most dominant interaction in the 
former case is between the HOMO of the carbonyl ylide and the LUMO of electron-deficient dipolarophiles,20 
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whereas the most favorable interaction in the latter case is between the LUMO of the carbonyl ylide and the 
HOMO of electron-rich dipolarophiles. 12a While little is known about the reaction tendency of carbonyl ylide 
from a-diazo ester, the above results coupled with the calculations21 suggested that there is no beneficial 
involvement of the LUMO (dipole)-HOMO (dipolarophile) interaction here. On the other hand, the calculations 
predicted that this carbonyl ylide could possess the smallest energy gap between its HOMO and the LUMO of 
the electron-deficient dipolarophile. Thus, we next chose (E)-3-hexene-2.5dione (12)22 as an electron- 
deficient 1,2-ethylenediol equivalent. Indeed, we were delighted to find that 1,3-dipolar cycloaddition of 13 
with 12 afforded the desired cycloadduct 14 as a single diastereomer out of the four possible diastereomers in 
47% yield.23 the stereochemistry of which was rigorously established by 1H NOE experiment. The great 
stereochemical outcome of the cycloaddition can be explained as follows; addition of dipolarophile 12 is 
presumed to proceed exclusively from the p-face of the carbonyl ylide intermediate 13 so as to avoid non- 
bonding interaction with the C4 pseudoaxial trimethylsilyloxy group in 13,u wherein the activating groups in 
12 are nicely accommodated in a less crowded space. In stark contrast, we were surprised to observe that 
treatment of the undesired a-diazo ester 8 with 12 under the foregoing conditions gave no cycloadduct resulting 
from carbonyl ylide formation.25 These results show that the configuration at C4 in a-diazo ester 7 is crucial to 
the success of the present cycloaddition, though the reason is presently not clear. Since 14 was uneventfully 
converted to the triester 15, a remaining key task for the elaboration of the zaragozic acid core system is the 
Baeyer-Villiger oxidation. 
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NOE data for 14 

In summary, we have achieved a highly efficient construction of the 2,8-dioxabicyclo[3.2.l]octane core 
structure of zaragozic acids via a tandem cyclization-cycloaddition sequence with complete stereocontrol. Our 

efforts are currently being focused on the conversion of C6,C7-diacetyl groups to a diol unit.26 
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Table 1. HOMO-LUMO energy separation in 1,3-dipolar cycloaddition of ylide 13’ with dipolarophiles 

Dlpolarophile 
OAc 

&OAC 
0 

# 
Th 

AcO 0 
P O3flro DMm 

[HOMO(dipole) - 
LlJMO(dipolarophile)] (eV) 8.71 8.97 7.33 7.06 7.39 

[HOMO(dipolarophile) - LUMO(dipole)J (eV) 8.36 8.90 9.77 8.06 10.95 ‘OH 

13’ 
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23. Of the dirhodium(I1) catalysts [Rhz(OZCH)q, Rh7_(OAC)4, Rh2(02CC7H15)4, Rh2(02CCPh3)4, Rh2(02CCjF7)4 and 

Rh2(NHCOCH3)4] screened, Rh2(OAc)4 proved to be the catalyst of choice. 

24. Cycloaddition of 13 with electron-deficient dipohuophiles 
such as N-phenylmaleimide or dimethyl acetylenedi- 

carboxylate @MAD) was also found to give cycloadducts i 
and ii as a single diastereomer in 61% and 67% yields, 
respectively. The stereochemistry of i was confirmed by 
1H NOE experiment, and that of ii was assigned by 

‘;~&ZOM g;;&$?;’ 

analogy. 
i ii 
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