GENERAL ROUTE AND MECHANISM OF THE REARRANGEMENT OF THE 4-SUBSTITUTED 5-HYDROXY-3-OXOCYCLOPENTENES INTO THE 2-SUBSTITUTED ANALOGS^a

A. SCETTRI, G. PIANCATELLI,* M. D'AURIA and G. DAVID Istituto di Chimica Organica, Università di Roma, Italia

(Received in UK 6 June 1978)

Abstract—A general method of synthesis of hydroxycyclopentenones of type 6 starting from the isomeric compound 2 is described. This conversion is shown to occur through an alumina-catalyzed process of intramolecular bydration.

In a previous paper we reported a new and general method of synthesis of 3-oxocyclopentenes 2 by molecular rearrangement of suitable 2-furylcarbinols 1, catalyzed by acids or by zinc chloride¹ (Chart 1). The reaction was shown to proceed in a stereospecific manner yielding only one enantiomeric pair, characterized by the trans relationship of the OH group at 5 and the side chain at 4.

20: R = Me, R' = Ally! **21:** R = Me, R' = pheny!

 21: R = Me, R' = n-Bu **21:** R = Me, R' = 2-thienyi

 29: R = Me, R' = cyclohexyi **21:** R = Me, R' = p-tolyi

Chart 1.

The compounds 2 are very useful especially as they can isomerise into 3 - oxocyclopentene - 5 - hydroxy - 2 derivatives, particularly interesting for the prostaglandin and pyrethrolones synthesis.² In fact, recently, Stork *et al.* described a method for this conversion via the formation of the chloralhemiacetal 4, which by treatment with triethylamine, yielded the compound 5 in high yield.

This procedure represented an effective alternative to the known synthetic route involving an hydration-dehy-

dration sequence by treatment of 3 with dilute base: in fact, in this case the compound 5 was obtained in only a fair yield since the *trans* relationship of 4 and 5 substituents did not allow a relatively high rate of hydration.²

In this paper^b we wish to show that the direct conversion of the compounds 2 into 2-substituted 5-hydroxy-3-oxocyclopentenes 6 in a simple and convenient manner is achieved via an intramolecular migration of the alcoholic function.

In fact, after the adsorption of the compounds 2 on neutral or basic alumina for different periods, the subsequent elution gave high yields of 6, free of the starting materials (Table 1).

All the new products showed spectral data in complete agreement with these reported for similar compounds;³ e.g. 6a: IR spectrum (film, ν_{max} cm⁻¹): 3590, 3400, 1710, 1600. ¹H-NMR spectrum (CCL, δ): 7.58 (m, 2 H, aromatic protons), 7.51 (d, 1 H, 1-H; J = 3 Hz), 7.32 (m, 3 H, aromatic protons), 4.93 (m, 1 H, 5-H), 3.20 (broad s, 1 H, -OH), 2.91 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 6 Hz), 2.40 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 2 Hz).

The reaction mechanism could not be explained in terms of a two-step sequence including the addition of a

[&]quot;This investigation was supported by the Italian C.N.R.

^{*}A preliminary communication was published by us.³

Ta	ble	1.

Starting compounds	Alumina	Reaction time/h	Products	Yield≸ .
28	neutral	8	<u>6e</u>	90
<u>2b</u>	basic	30	<u>6þ</u>	95
20	basic	16	60	85
24	besio	16	<u>64</u>	95
<u>2e</u>	neutral	24	<u>6e</u>	95
<u>21</u>	basic	48	65	95
<u>2</u> g	basic	48	<u>6</u> g	. 93
<u>2h</u>	neutral	7	ஷ	92
21	neutral	3	<u>61</u>	93
21	neutral	8	61	92

All yields refer to isolated, chromatographically pure products.

nucleophilic reagent and the following elimination of a leaving group: in fact 2a, after adsorption on alumina, deactivated with methanol, under anhydrous conditions, turned completely into the isomeric 3-oxocyclopentene 6a. Furthermore, by the usual treatment, the acetoxy-derivative 7 rapidly isomerised to compound 8.^c

These results completely exclude a mechanism via dehydration-hydration, with the initial formation of a cyclopentadienone intermediates and the subsequent addition of water to give the more stable α - β unsaturated ketone.

"The possibility that the rearrangement occurs via the formation of 2-substituted 3-methyl-3,4-epoxycyclopentanones was excluded since these compounds were never isolated.

"Recently this type of conversion was performed in a buffer solution at pH 8.5; the yields were fair, but no mechanism was proposed.⁵ The mechanism was demonstrated carrying out the rearrangement of 2h on neutral alumina, deactivated with D_2O . In fact, the isolated product 9 was characterized by the presence of one D atom at 4, as shown by the spectroscopic data (¹H-NMR and MS).

This result was in agreement with the proposed pathway (Scheme 1).

The slow step was the formation of the enolate 10, which rapidly rearranged into the isomeric, thermodynamically more stable, enolate 11^4 by migration of the alcoholic function.⁴ Furthermore, this mechanism could explain the greater reactivity of the compounds 2 with an aromatic substituent at 4: in fact, in these derivatives the rate of the slow step, the formation of the enolate 10, was remarkably enhanced by the more acidic nature of the proton at 4 and, therefore, rather mild conditions were sufficient. On the contrary, when R' was an aliphatic group, the lower mobility of the proton at 4 required both the employment of basic Al₂O₃ and longer times of adsorption.

The routes at present employed can be conveniently replaced by the described method, since it allows a rapid conversion of 4-substituted 5-hydroxy-3-oxocyclopentenes into the 2-substituted analogs using a simple and cheap procedure.⁴

Scheme 1.

EXPERIMENTAL

M.ps were determined on a Kofler block and are uncorrected. ¹H-NMR spectra were taken with a Jeol 60 HL spectrometer and with a Perkin-Elmer R 32 spectrometer using usually CCL₄ or CDCl₃ solns with TMS as an internal standard. IR spectra were taken with a Perkin-Elmer 257 spectrometer. Mass spectra were obtained with an AEI MS-12 spectrometer at 70 eV, by using direct insertion at source temp. of 150°. Commercial Merck silica gel and Woelm alumina were used for column chromatography. Merck precoated silica gel plates were used in tic. The chromatograms were detected by spraying with 5N H₂SO₄ and heating at 11° for 10 min.

2-Phenyl-5-hydroxy-3-oxocyclopentene 6a. After adsorption of 500 mg of 2b⁶ on alumina (10 g, basic, Brockmann grade III) for 8 hr, elution with 4:1 C₆H₆/Et₂O gave 450 mg of pure 6a, C₁₁H₁₀O₂, (90%), plates from hexane, m.p. 58-59°. (Found: C, 76.01; H, 5.90. Calc. for C₁₁H₁₀O₂: C, 75.84; H, 5.79%). MS, m/e: 174 (M⁺). For IR and ¹H-NMR data, see the initial section.

2-n-Hexyl-5-hydraxy-3-axocyclopentene Ga. After the adsorption of 500 mg of 2b⁶ on alumina (10 g, basic, Bromann grade III) for 30 hr, elution with 4:1 C₆H_d/Et₂O gave 475 mg of pure, oily 6a, C₁₁H₁₈O₂, (95%). (Found: C, 72.33; H, 10.05. Calc. for C₁₁H₁₈O₂; C, 72.49; H, 9.95%). IR spectrum (film, ν_{max} , cm⁻¹): 3400, 1710, 1635. 'H NMR spectrum (CDCl₃, 8): 7.14 (m, 1 H, 1-H), 4.90 (m, 1 H, 5-H), 3.30 (broad s, 1 H, -OH), 2.80 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 6 Hz), 2.28 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 2 Hz), 2.14 (m, 2H, allytic -CH₂-), 1.30 (sharp s, 8 H, 4 -CH₂-), 0.86 (t, 3H, -CH₃) MS, m/e: 182 (M⁺).

2-Methyl-5-hydroxy-3-oxocyclopentene 6c. After the adsorption of 500 mg of $2e^{6}$ on alumina (10 g, basic, Brockmann grade III) for 16 hr, elution with 4:1 C₆H₄/Et₈O gave 425 mg of pure oily 6c, C₆H₈O₂, (85%). (Found: C, 64.11; H, 7.15. Calc. for C₆H₈O₂: C, 64.27; H, 7.19%). IR spectrum (film, ν_{max} cm⁻¹): 3400, 1710, 1640. ¹H NMR spectrum (CDCl₃, 8): 7.22 (m, 1 H, 1-H), 4.90 (m, 1 H, 5-H), 3.40 (broad s, 1 H, -OH), 2.82 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 6 Hz), 2.24 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 2 Hz), 1.83 (d, 3 H, 2-CH₃, J = 1 Hz). MS, m/e: 112 (M⁺).

t - Butyl - 5 - hydroxy - 3 - oxo - 2 - cyclopentene - heptanoate 6d. After the adsorption of 500 mg of 2d' on alumina (10 g, basic, Brockmann grade III) for 16 hr, elution with 4: 1 CeHe/Et₂O yielded 475 mg of pure 6d, CuH₂₀O₄, as very dense oil (95%). (Found: C, 67.90; H, 9.41. Calc. for CuH₂₀O₄: C, 68.06; H, 9.28%). IR spectrum (1% CHCl₃, ν_{max} cm⁻¹): 3610, 1735-1710, 1640. ¹H NMR spectrum (CCl₄, δ): 7.05 (m, 1 H, 1-H), 4.85 (m, 1 H, 5-H), 4.20 (m, 1 H, -OH), 2.70 (dd, 1 H, 4-H; J₁ = 16 Hz, J₂ = 6 Hz), 2.30-2.00 (m, 5 H, 4-H, the allytic -CH₂-, and the -CH₂- α to the ester function). MS, m/e: 282 (M⁺).

Allethrolone 6e. After adsorption of 500 mg of $2e^1$ on alumina (10 g, neutral, Brockmann grade III) for 24 hr, elution with 1:1 C₄H₄/Et₂O gave 475 mg of pure, oily 6e, C₅H₁₂O₂, (95%). (Found: C, 70.85; H, 7.90. Calc. for C₅H₁₂O₂: 71.03; H, 7.95%). IR spectrum (film, ν_{max} cm⁻¹): 3400, 1695, 1640–1635. 'H NMR spectrum (CCl₄, δ): 5.65 (complex m, 1 H, -CH₂-CH = CH₄H₅), 5.02 (m, 1 H, -CH₂CH=CH₄H₆), 4.81 (m, 1 H, -CH₂-CH=CH₄H₆), 4.57 (m, 1 H, 5-H), 3.75 (broad s, 1 H, -OH), 2.85 (d, 2 H, -CH₂-CH=CH₄H₆), 2.65 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 6 Hz), 2.15 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 3 Hz), 2.05 (a, 3 H, 1-Me). MS, m/e: 152 (M⁴).

2 - n - Batyl - 5 - hydroxy - 1 - methyl - 3 - oxocyclopentene 62. After the adsorption of 500 mg of 22¹ on alumina (10 g, basic, Brockmann grade III) for 18 hr, elution with $C_{2}H_{2}/Bt_{2}O$ 1:1 yielded 478 mg of pure, oily 62, $C_{16}H_{16}O_{2}$, (95%). (Found: C, 71.31; H, 9.68. Calc. for $C_{16}H_{16}O_{2}$; C, 71.39; H, 9.59%). IR spectrum (film, ν_{max} cm⁻¹): 3400, 1690, 1643. ¹H NMR spectrum (CCL₄, 8): 4.62 (m, 1 H, 5-H) 3.95 (broad s, 1 H, -OH), 2.67 (dd, 1 H, 4-H, J₁ J₁ = 18 Hz, J₂ = 6 Hz), 2.12 (partially visible dd, 1 H, 4-H, J₁ 18 Hz, J₂ = 2.2 Hz), 2.07 (s, 3H, 1-CH₃), 1.35 (m, 6 H, 3 -CH₂-), 0.92 (t, 3 H, -CH₂-CH₃, J = 6 Hz). MS, m/e: 168 (M⁺).

2 - cyclohexyl - 5 - hydroxy - 1 - methyl - 3 - oxocyclopentene 6g. After the adsorption of 500 mg of $2g^1$ on alumina (10 g, basic, Brockmann grade III) for 48 hr, elution with 1:1 C₆H₄/Et₂O gave 465 mg of pure 6g, C₁₂H₁₈O₂, as very dense oil (93%). (Found: C, 74.28; H, 9.24. Calc. for C₁₂H₁₈O₂: C, 74.19; H, 9.34%). IR spectrum (film, ν_{max} cm⁻¹): 3400, 1685, 1638. ¹H NMR spectrum (CCL, δ): 4.50 (m, 1 H, 5-H), 3.32 (broad s, 1 H, -OH), 2.60 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 6 Hz), 2.12 (not completely visible dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 2.2 Hz), 2.07 (s, 3 H, 1-CH₃). MS, m/e: 194 (M⁺).

2 - Phenyl - 5 - hydroxy - 1 - methyl - 3 - oxocyclopentene Ga. After the adsorption of 500 mg of 2^h on alumina (10 g, neutral, Brockmann grade III) for 7 hr, elution with 1:1 C₄H₄/Et₂O gave 460 mg of pure Ga, C₁₂H₁₂O₂, (92%), plates from hexane, m.p. 102-104°. (Found: C, 76.42; H, 6.61. Calc. for C₁₂H₁₂O₂; C, 76.57; H, 6.43%). IR spectrum (1[^] CHCl₃, ν_{max} cm⁻¹): 3590, 3400, 1699, 1643, 1602. ¹H NMR spectrum (CCl₄, 8): 7.28 (m, 5 H, aromatic protons), 4.75 (m, 1 H, 5-H), 3.50 (s, 1 H, -OH), 2.85 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 6 Hz), 2.30 (not completely visible dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 2.2 Hz), 2.13 (s, 3 H, 1-CH₃). MS, m/e: 188 (M⁺).

2-(2-Thienyl)-5-hydroxy-1-methyl-3-oxocyclopentene 61. After the adsorption of 500 mg of 21¹ on alumina (10 g, neutral, Brockmann grade III) for 3 hr, elution with 1:1 C_4H_4/Et_2O gave 465 mg of pure 61, $C_{10}H_{10}O_2S$, (93%), needles from hexane, m.p. 89-90°. IR spectrum (1% CHCl₃, ν_{max} cm⁻¹): 3590, 3400, 1695, 1622. ¹H NMR spectrum (CCl₄, 8): 7.15 (m, 3 H, aromatic protons), 4.67 (m, 1 H, 5-H), 3.41 (s, 1 H, -OH), 2.87 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 6 Hz), 2.35 (partially visible dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 2.2 Hz), 2.30 (s, 3 H, 1-CH₃). MS m/e: 194.25 (M⁺).

2 - p - Tolyl - 5 - hydroxy - 1 - methyl - 3 - oxocyclopentene 6j. After the adsorption of 500 mg of 2j¹ on alumina (10 g, neutral, Brockmann grade III) for 8 br, elution with C₆H₆/Et₂O 1:1 yielded 460 mg of pure 6j, C₁₃H₁₄O₂, (92%), prisms from hexane, m.p. 86-87". (Found: C, 77.35; H, 6.96. Calc. for C₁₃H₁₄O₂: C, 77.20; H, 6.98%). IR spectrum (1% CHCl₃, ν_{max} cm⁻¹): 3600, 3400, 1700, 1643, 1612. ¹H NMR spectrum (CCl₄, δ): 7.14 (s, 4 H, aromatic protons), 4.70 (m, 1 H, 5-H), 3.12 (s, 1 H, -OH), 2.82 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 6 Hz), 2.35 (dd, 1 H, 4-H, J₁ = 18 Hz, J₂ = 3 Hz), 2.31 (s, 3 H, 1-CH₃), 2.12 (s, 3H, \emptyset -CH₃). MS, m/e: 202 (M⁺).

Rearrangement of 2a on Al₂O₂/MeOH. After the adsorption of 100 mg of 2a on dry alumina (3 g, neutral, deactivated with 0.3 ml of MeOH) for 7 hr, elution with $1:1 C_6H_d/Et_2O$ under anhyd conditions yielded 89 mg of a compound identical with an authentic sample of 6a, on the basis of the spectroscopic (IR and ¹H NMR) and physical data (m.p.).

4 - Phenyl - 5 - acetoxy - 3 - oxocyclopentene 7. 200 mg of 2a were treated with 2 ml Ac₂O and 2 ml pyridine at room temp. for 7 hr. Then the usual isolation procedure gave 240 mg of crude product which was chromatographed on SiO₂ very rapidly. The elution with 95:5 C₄H₄/Et₂O yielded 150 mg pure 7, C₁₃H₁₂O₃, as a very dense oil (60%). (Found: C, 72.04; H, 5.75. Calc. for C₁₃H₁₂O₃: C, 72.21; H, 5.59%). IR spectrum (1% CHCl₃, ν_{max} cm⁻¹): 1720, 1600. ¹H NMR spectrum (CCl₄, δ): 7.57 (dd, 1 H, 1-H, J₁ = 6 Hz, J₂ = 3 Hz), 7.20 (m, 5 H, aromatic protons), 6.32 (dd, 1 H, 2-H, J₁ = 6 Hz, J₂ = 1.5 Hz), 5.80 (m, 1 H, S-H), 3.47 (d, 1 H, 4-H, J = 3 Hz), 2.03 (a, 3 H, -OCOCH₃). MS, m/e: 216 (M⁺). 2 - Phenyl - 5 - acetoxy - 3 - oxocyclopentene 8. After the

adsorption of 100 mg of 7 on alamina (3 g, neutral, Brockmann grade III) for 1 hr, elution with 95:5 C₄H₆/Et₂O gave 91 mg of pure 8, C₁₃H₁₂O₃, as a very dense oil (91%). (Round: C, 72.31; H, 5.78. Calc. for C₁₃H₁₂O₃: C, 72.21; H, 5.59%). IR spectrum (1% CHCl₃, ν_{max} cm⁻¹): 1720, 1600. ¹H NMR spectrum (CCl₄, δ): 7.58 (m, H, aromatic protons), 7.51 (d, 1 H, 1-H, J = 3 Hz), 7.32 (m, 3 H, aromatic protons), 5.73 (m, 1 H, 5-H), 2.94 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 6 Hz), 2.40 (dd, 1 H, 4-H; J₁ = 18 Hz, J₂ = 2 Hz), 2.0 (S, 3 H, -OCOCH₃). MS, m/e: 216 (M⁺).

2 - Phenyi - 5 - hydroxy - 1 - methyl - 4 - d - 3 - oxocyclopentene 9. After the adsorption of 100 mg of 2h on alumina (3g, neutral, deactivated with 0.2 ml of D₂O) for 6 hr, elution with 1:1 C₄H₄/Bt₂O gave 91 mg pure 9, C₁₂H₁₁O₂D, (91%), plates from hexane, m.p. 104-108°. IR spectrum (1% CHCl₃, v_{max} cm⁻¹): 3600, 3400, 1690, 1640, 1600. ¹H NMR spectrum (CCl₄, 8): 7.36 (m, 5 H, aromatic protons), 4.72 (m, 1 H, 5-H), 2.55 (dd, 1 H, 4-H, J₁ = 6 Hz, J₂ = 2 Hz), 2.15 (s, 3 H, 1-CH₃). MS, m/e: 189 (M⁺).

REPERENCES

¹G. Piancatelli, A. Scettri, G. David and M. D'Auria, *Tetra*hedron, in press and refs therein.

- ²G. Stork, C. Kowalski and G. Garcia, J. Am. Chem. Soc. 97, 3258 (1975). ³G. Piancatelli and A. Scettri, Synthesis 116 (1977). ⁴P. Crabbé, Prostaglandin Research, pp. 177-78. Academic Press,
- New York (1977).
- ⁵D. Seebach, M. S. Hoekstra and G. Protschuk, Angew. Chem. 89, 334 (1977).
- ⁶G. Piancatelli, A. Scettri and S. Barbadoro, Tetrahedron Letters 3555 (1976).
- ⁷G. Piancatelli and A. Scettri, Ibid. 1131 (1977).