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Even though aza-b-lactams have attracted interest because of
their biological activity[1] and their utility as intermediates in
organic chemistry (e.g., for the generation of a-amino acids
and hydantoins),[2–4] only limited progress has been reported
with regard to the enantioselective synthesis of this family of
heterocycles.[5] One attractive, convergent approach to the
formation of aza-b-lactams is the [2+ 2] cycloaddition of a
ketene with an azo compound [Eq. (1)].[6] To the best of our
knowledge, no stereoselective variants of this process have
yet been reported.

We have been exploring the use of chiral derivatives of
PPY (4-pyrrolidinopyridine; e.g., 1 and 2) as enantioselective
catalysts for an array of transformations,[7] including couplings
of ketenes with imines[8] or with aldehydes.[9,10] Although
there are no reports of nucleophilic catalysis for [2+

2] cycloadditions of ketenes with azo compounds, we were
intrigued by the possibility that our planar-chiral pyridines

might be effective in this role. Herein,
we establish that PPY derivative 1
effects the first catalytic asymmetric
synthesis of aza-b-lactams, through
[2+ 2] cycloadditions of ketenes with
azo compounds [Eq. (2)].

Initially, we examined the cyclo-
addition of phenyl ethyl ketene with
dimethyl azodicarboxylate (1.0 equiv).
We found that the planar-chiral PPY
derivative 1 serves as an effective

catalyst for the desired coupling, and generates the aza-b-
lactam in good yield and enantioselectivity (Table 1, entry 1; in
the absence of a catalyst there is no reaction: Table 1, entry 2).

Under the same reaction conditions, a related catalyst (2), as
well as a variety of chiral phosphines and cinchona alkaloids,
provide poor enantioselectivity or little of the cycloaddition
product (Table 1, entries 3–5).[11,12] The substituents of the azo
compound have a significant impact on the ee value and the
yield, with the methoxycarbonyl group affording the best
results (Table 1, compare entry 1 with entries 6–9). If

Table 1: Effect of changing the “standard” reaction conditions (outlined
in the equation below) in the nucleophile-catalyzed enantioselective
synthesis of aza-b-lactams.

Entry Change from the “standard”
reaction conditions

ee [%] Yield [%]

1 none 86 89
2 no (�)-1 – <5
3 (�)-2, instead of (�)-1 �15[a] 65
4 (+)-3, instead of (�)-1 <5 65
5 quinine, instead of (�)-1 – <5
6 R = CO2Et 80 85
7 R = CO2iPr 32 81
8 R = CO2CH2CCl3 20 20
9 R = CO(piperidinyl) – <5
10 ClCH2CH2Cl, instead of CH2Cl2 87 65
11 �30 8C 85 68
12 �10 8C 73 68

[a] A negative ee value signifies that the opposite enantiomer of the
product is formed preferentially.
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ClCH2CH2Cl rather than CH2Cl2 is employed as the solvent,
then the formation of the aza-b-lactam is less efficient (Table 1,
compare entry 1 with entry 10). The reaction temperature of
choice appears to be �208C (Table 1, compare entry 1 with
entries 11 and 12).[13]

The optimized reaction conditions can be applied to the
enantioselective synthesis of aza-b-lactams when starting
from a variety of ketenes (Table 2). If the alkyl group is

small (i.e., Me or a primary substituent), then the desired
heterocycle is generally produced with good (but not
excellent) enantioselectivity (� 85% ee ; Table 2, entries 1–
7). Fortunately, the ee values of the aza-b-lactam products is
readily enhanced by recrystallization (e.g., the product
generated from phenyl ethyl ketene can be obtained in>
99% ee after a single recrystallization; see Table 2, entry 2).
In the case of ketenes that bear a secondary alkyl group,
catalyst 1 typically furnishes the aza-b-lactam with very good
enantioselectivity and yield (> 90% ee ; Table 2, entries 8–
13).[14]

A plausible mechanism for this new nucleophile-catalyzed
method for the synthesis of aza-b-lactams is illustrated in
Figure 1. Interestingly, the configuration at the quaternary
stereocenter is different from that produced in Staudinger
reactions that are catalyzed by 1 [Eq. (3); Ts= 4-toluenesul-
fonyl],[8b] and which are believed to proceed through a similar
pathway.[15]

In conclusion, we have developed a new process, the
nucleophile-catalyzed [2+ 2] cycloaddition of ketenes with
azo compounds, to generate aza-b-lactams. In addition, we
have established that planar-chiral PPY derivative 1 effects
this convergent transformation to give good enantioselectiv-
ity, thereby providing the first catalytic asymmetric synthesis
of this useful family of heterocycles.

Experimental Section
General procedure: Solutions of the ketene (0.68 mmol) and
dimethyl azodicarboxylate (100 mg, 0.68 mmol) in CH2Cl2 (49 mL),
and of the catalyst (�)-1 (13 mg, 0.035 mmol) in CH2Cl2 (0.8 mL)
were prepared in a glove box. Following removal from the glove box,
the solutions were cooled at �20 8C for 10 min, before the catalyst
solution was added to the solution of ketene/dimethyl azodicarbox-
ylate by syringe. After the reaction mixture was stirred for 2 h at
�20 8C, the solvent was removed in vacuo and the residue was
purified by column chromatography.
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Figure 1. Possible mechanism for the nucleophile-catalyzed synthesis
of aza-b-lactams.
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