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Abstract: A new method for synthesizing a,b-acetylenic ketones
by palladium-mediated coupling of thiol esters with 1-alkynes is de-
scribed. The reaction could be applied to coupling of thiol esters
bearing various functional groups, such as aromatic bromides, and
ketones, with functionalized terminal acetylenes.
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a,b-Acetylenic ketones are useful synthetic precursors of
compounds such as chiral propargyl alcohols,1 a,b-unsat-
urated ketones, dienones,2 allylic alcohols, as well as a va-
riety of Michael addition products, and thus have served
as crucial intermediates for the synthesis of several natural
products.3 Among the synthetic methods which have been
developed to date,4 the most reliable and widely used are
reactions of metal acetylides with carboxylic acid deriva-
tives,5 and palladium-catalyzed coupling of acyl halides
with terminal alkynes in the presence of copper(I) and
amines.6–8 With respect to functional group compatibility,
these methods are limited in scope since the former proto-
col requires strong base to generate metal acetylides and
the latter necessitates acidic conditions for the preparation
of acid halides. In addition to these conventional methods,
several unique protocols have been reported, including re-
action of thiol esters and trimethylsilylacetylenes in the
presence of AgBF4,

9 and Friedel–Crafts type acylations of
trimethylsilyl alkynes.10 However, because of their lack of
generality, none of the currently accessible protocols is
suitable for the preparation of multifunctional a,b-ynones.

In the course of our investigation on the chemistry of thiol
esters, we have reported a Pd-catalyzed reduction to alde-
hydes with triethylsilane,11 and more recently, have de-
scribed a ketone synthesis by Pd-catalyzed coupling with
organozinc reagents.12,11c These processes, which involve
metal-catalyzed C-S bond scission and subsequent C-H or
C-C bond formation, proceed under exceptionally mild
conditions.13 Thus, their synthetic utility has been demon-
strated by their applications to the synthesis of complex
natural products.14,15 We now report a novel Pd-catalyzed
coupling of thiol esters with 1-alkynes to furnish a range
of a,b-acetylenic ketones.

Our project started with screening of the reaction condi-
tions using 3-(4-methoxyphenyl)propionic acid ethaneth-
iol ester (1) as the test substrate, which was readily
prepared from the corresponding carboxylic acid by the
mixed-anhydride method or with condensation reagents.12

When 1 was subjected to the conventional Sonogashira
conditions, the expected coupling product 2 was obtained,
although the yield was often as low as 17% (Table 1, entry
1).6 We found that the yield was dramatically improved by
addition of phosphine ligands, to a maximum of 64% us-
ing tri-2-furylphosphine (TFP, entry 5). Similar improve-
ment by addition of ligand was also observed with other
Pd-catalysts (entries 7–9). After extensive optimization,
the desired ynone 2 was finally obtained in 93% isolated
yield under the more concentrated conditions (0.5 M
based on 1) with a lower amount of reagents, [PdCl2(dppf)
(5 mol%), P(2-furyl)3 (12.5 mol%), and CuI (1.7 equiv)]
(entry 10).16 In addition, the choice of solvent is also an

Table 1 Palladium-Catalyzed 1-Alkynyl Ketone Synthesis with 
Various Thiol Esters

Entry Pd-catalyst Ligand Time (h) Yield (%)

1 PdCl2(PPh3)2 – 13 17

2 PdCl2(dppf) – 5 34

3 PdCl2(PPh3)2 PPh3 7 60

4 PdCl2(PPh3)2 BINAPb 7 63

5 PdCl2(PPh3)2 TFP 6 64

6 Pd(OAc)2 DPPFb 8 48

7 Pd(OAc)2 TFP 6 76

8 Pd2(dba)3 TFP 3 83

9 PdCl2(dppf) TFP 3 87

10c PdCl2(dppf) TFP 4 93

a 0.2 M solution based on the concentration of 1 was used.
b 0.30 Equiv of phosphines were used.
c PdCl2(dppf) (0.05 equiv), TFP (0.125 equiv), and CuI (1.7 equiv) 
were used in 0.5 M solution based on the concentration of 1.
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important factor. While the reaction in DMSO gave a
comparable result (87%), other solvents such as acetoni-
trile, THF, toluene, and benzene were ineffective, provid-
ing only 25% to 46% yield of 2.

Having established the optimal conditions, we then exam-
ined various alkynes as the coupling partner. As shown in
Tables 2,1-hexyne as well as an O-protected propargyl al-
cohol, an acetone adduct of acetylene, phenylacetylene,
and trialkylsilylacetylenes17 smoothly reacted to afford
the corresponding ynones in high yields (entries 2–6). It
should be noted that even the highly functionalized ace-
tylene, prepared18 from the Garner aldehyde,19 is compat-
ible with the reaction conditions (entry 7).

The generality of our method has been demonstrated us-
ing thiol esters bearing various functionalities (Table 3).
In addition to the substrates derived from aliphatic car-
boxylic acids (entries 1–3), a,b-unsaturated and aryl20

substrates could also be used under these reaction condi-
tions (entries 4–7). It is noteworthy that several functional
groups such as ketones, aromatic bromides, and chlorides
are compatible with this protocol.

Although the mechanistic detail of this reaction is not
clearly understood, the process would probably involve
transmetalation between an acylpalladium species and the
cuprous acetylides. Several experimental observations
support this process. First, the reaction in the absence of

the Pd-catalyst gave only 3% of the coupling product 2
with recovery of 1 (90%) even after 24 hours at 50 °C.
Second, it is crucial to use excess CuI, and the reaction
with 0.5 equivalents of CuI afforded only 25% of 2.21

These facts indicate that the copper(I) probably traps the
thiolate anion after transmetalation, thereby preventing
poisoning of the Pd-catalyst.

In summary, we have developed a mild and general meth-
od for the synthesis of a,b-acetylenic ketones from thiol
esters. Because of the unusually high chemoselectivity,
this protocol should provide a powerful alternative to the
preparation of functionalized ynones and may find wide-
spread use in organic synthesis.

Table 2 Palladium-Catalyzed 1-Alkynyl Ketone Synthesis with 
Various Thiol Esters

Entry Time (h) Yield (%)

1 2 94

2 1 68

3 2 93

4 4 83

5 1 95

6 2 77

7a 1 85

a 1.2 Equiv of alkyne was used.
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Table 3 Palladium-Catalyzed 1-Alkynyl Ketone Synthesis with 
Various Thiol Esters

Entry Substrate Time (h) Yield (%)

1 2 94

2 3 80

3 1 80

4 2 64

5 4 64

6 2 71a

7 1 74a

a Ca. 15% of the starting compound was recovered. Prolonged reac-
tion time gave the byproduct resulting from conjugate addition of 
ethanethiol to the product.
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