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We report herein the first diaminocyclopent-2-enone-based catalytic chemodosimeter (3) for naked-eye
and turn-on fluorescent detections of Cu?* in pure aqueous solution. Compound 3 easily made available
from furan-2-carbaldehyde and 2-aminobenzoic acid was found to show a highly selective and sensitive
response toward Cu?* by way of Cu?*-coordination promoted formation of Stenhouse salt and subsequent

decomposition to highly fluorescent 2-aminobenzoate.

© 2008 Elsevier Ltd. All rights reserved.

Cu?* as the third abundant heavy metal ion in human body has
recently attracted much attention due to its obvious biological
importance and increasing environmental concerns.! Detection of
Cu?* with high selectivity and sensitivity represents hence a chal-
lenging subject. Fluorescence signaling is advantageous in many
respects such as high sensitivity and easy operation. Cu®" as a para-
magnetic species, however, shows an inherent fluorescence
quenching nature. As a consequence, most of the reported fluores-
cent chemosensors for Cu?* operate under fluorescence quenching
mode.>> Fluorescence signaling showing an enhancement is for
sensitivity reason prior to those exhibiting quenching,* especially
in aqueous solutions in which fluorescence could be weak because
of efficient quenching of highly polar water molecules. Fluorescent
chemosensors for detection of Cu®* in aqueous solutions with a
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fluorescence enhancement output have indeed been a subject of
many recent investigations;> however, those successful in pure
aqueous solutions remain rare.® We report herein a highly selective
yet simple chemosensor for Cu?>* with an enhanced fluorescence
output in pure aqueous solution.

2-Aminobenzoic acid (1, Scheme 1) has been widely employed
as a highly fluorescent label.” Indeed, 1 has a high fluorescence
quantum yield”™® of 0.56 in aqueous HEPES buffer solution (pH
7.4, 10 mM). Obviously, there is only 2-fold fluorescence enhance-
ment remaining for 1 upon metal binding, if any. It is known that
substitution of the amino group to form a secondary amine would
lead to the loss of fluorescence.”™ This provides a new entry for
controlling its fluorescence of 1. Reaction of 1 with aldehyde seems
suitable in this regard and would yield a good fluorescent sensing

0
H

NH

@ O,H
3

CO,H

Scheme 1. Chemical structure of 1-3.
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system if the product could undergo transformations into 1 in the
presence of an analyte.'®!! 3 reported herein was therefore ob-
tained,'! which indeed has a low fluorescence quantum yield of
0.012 in aqueous 10 mM HEPES buffer solution of pH 7.4. Inspired
by the regioselective Cu?*-catalyzed amination of only 2-bromo-
benzoic acid rather than its 3- and 4-isomers, due probably to a
similar Cu?*-aminoacid coordination motif in the transition sta-
te,%12 we expected that 3 might show a high selectivity toward
Cu?* by a fluorescence enhancement response with moiety 1 being
both the binding site and fluorophore.

A criterion for designing a chemodosimeter was considered that
it should be not only weakly fluorescent but also conditionally
stable (Fig. S1, Supplementary data). After screening a variety of
aldehydes, 3 was made available from a convenient one-pot
condensation of furan-2-carbaldehyde with 1 in ethanol (yield
85%).1113 Absorption spectrum of 3 in 10 mM aqueous HEPES buf-
fer solution of pH 7.4 showed three bands at 210, 252, and 330 nm,
respectively (Fig. 1a). In the presence of Cu?*, the band at 330 nm
was attenuated, while absorbance at shorter wavelength was in-
creased with an isosbestic point observed at 320 nm. It is worthy
to note that a new band appeared at 512 nm that increases at
low Cu?* concentration, whereas it undergoes a decrease at higher
Cu?* concentration (Fig. 1a and inset). Other transition metal ions
such as Hg?*, Pb%*, Zn?*, Cd?*, Ni%*, Ag", Co?*, and Fe?*, and some
alkali and alkaline earth metal ions were also tested (Fig. S2), but
showed no significant influence on the absorption spectrum of 3.
Selective interaction of 3 with Cu** was therefore made obvious.
The new band at 512 nm in the presence of Cu?" affording a purple
color makes it feasible for naked-eye detection of Cu?* (Fig. 2).
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Figure 1. Absorption (a) and fluorescence (b) spectra of 3 in the presence of Cu?*
over 0-2.0 x 107> M in aqueous 10 mM HEPES buffer solution of pH 7.4. Excitation
wavelength was 320 nm, an isosbestic point observed in the absorption titrations.
[3]=1.0 x 107*M (a) and 1.0 x 1075 M (b).
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Figure 2. Naked-eye detection of metal ions (1.0 x 107> M) in aqueous 10 mM
HEPES buffer solution of pH 7.4. [3] = 1.0 x 10~* M. Note that 1 uM Cu?* is easily
detected by naked eyes.

Fluorescence of 3 in the presence of metal ions in aqueous
HEPES buffer solution was monitored after assay condition optimi-
zations (Figs. S1 and S3). An enhanced emission was observed at
394 nm with increasing Cu?* concentration (Fig. 1b), whereas the
tested other transition and alkali and alkaline earth metal ions pro-
duced no significant variations. This indicates a high selectivity in
its fluorescence enhancement response of 3 toward Cu?" against
other metal ions (Fig. 3). The excellent selectivity was further dem-
onstrated in that the fluorescence enhancement by Cu?* was not
affected by the co-existence of other metal ions (Fig. 3 inset).

Optimization established that fluorescence enhancement of 3
showed a good linearity (r=0.998) over Cu?' concentration of
0.5-2.25 uM in aqueous buffer solution (Fig. S4). The detection
limit of Cu®* calculated on the basis of 3a/k'* is 15 nM or 1 ppb,
pointing to the high detection sensitivity. Counter anion of Cu?*
was found to exert no obvious influence on the fluorescence
response, with anions being ClO,~, ClI-, AcO~, SO,>~, and NO;~
(Fig. S5).

On the basis of the reversibility shown in the synthetic mecha-
nism (Scheme 1),'' and the known selective strong binding of
aminoacid with Cu?*,%®12 carbonyl oxygen in cyclopent-2-enone
should also take part in Cu?* binding,''® in addition to chelating
to the aminoacid moiety so that Cu®* acted as a Lewis acid to coop-
eratively promote decomposition of 3 to 1. Indeed, color changes
were observed for 3 in the presence of Cu?* as that observed in
the case of H" with the formation of purple Stenhouse salts 2
(Scheme 1).1'? It should be pointed out that the purple color
decreases with standing time or further increase in Cu?* concentra-
tion (Fig. 1a and inset). Decomposition of Stenhouse salts 2 to
colorless 1 was therefore suggested and the formation of 1 was
confirmed by TLC pattern, NMR, and ESI-MS data of the isolated
product. It has been proved that a catalytic chemodosimeter shows
a higher affinity toward an analyte than its decomposed product so
that the analyte could further re-interact with the chemodosime-
ter, affording a turnover number higher than 1.5" Although binding
constant of Cu?" to 1 was determined as 1.3 x 10* M~!, that of Cu®*
to 3 is unavailable, it is not straightforward to judge if 3 is a cata-
lytic or stoichiometric chemodosimeter.® We therefore deter-
mined the reaction order of Cu?* to be 1.6 (Fig. S6). It was hence
expected that, if 1 and 3 have the same binding constant toward
Cu?*, the actual concentration of Cu?" that interacts with 3 will
be reduced by a half in the presence of 1 equiv of 1 in a 3-Cu?*
(1:1) solution, assuming a 1:1 stoichiometry both of 1 and 3
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Figure 3. Fluorescent response of 3 toward metal ion at 2.5 x 107> M in 10 mM
aqueous HEPES buffer solution of pH 7.4. Inset shows the response toward Cu?* of
5x 1075 M plus co-existing metal ion at 2.5 x 10~> M. ‘All' means all the tested
interference metal ions are present but at a concentration of 5 x 107°M each.
[3]=1.0x 107° M.
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toward Cu®*. As a consequence, the fluorescent response rate
would decrease by a factor of ca. 0.33 when Cu?* concentration de-
creased from 1.0 x 107 M to 0.5 x 10°° M (cf. Fig. S6). In compe-
tition experiments, however, it was found that the fluorescent
response rate of 3 toward 1equiv of Cu?>* was not affected by
2 equiv of 1 (Fig. S7). These observations indicated that 3 bound
more strongly toward Cu?* than 1, likely due to more binding sites
in 3. This means that indeed Cu?* could re-interact with 3 after
decomposition of a previous molecule of 3, hence less than stoichi-
ometric amount of Cu?" being able to decompose 3 into 1. Although
it is still unable to get the real stoichiometry of 3 toward Cu?*, 20
turnovers of hydrolysis were observed assuming a 1:1 stoichiome-
try of 3-Cu?* complex (Fig. S8). Compound 3 was therefore con-
cluded a catalytic chemodosimeter, capable of accumulating and
amplifying the signal in response to Cu?*.5" We noted that the fluo-
rescence of 1 was not quenched by Cu?* under the tested Cu®* con-
centration (Fig. S9), which explained the observed fluorescence
enhancement of 3 even at high Cu?* concentration.

In summary, 3 was developed as a highly selective and sensitive
catalytic chemodosimeter for naked-eye and turn-on fluorescent
detections of Cu?* in pure aqueous solution with a detection limit
of 1 ppb. Fluorescence of aqueous solution of 3 was found substan-
tially enhanced by Cu?*, which was shown to result from a metal-
coordination promoted decomposition of 3 into highly fluorescent
1. Compound 3 therefore represents a new kind of ‘turn-on’ fluo-
rescent chemodosimeter for Cu?*.5* Other structural motifs on
amine substitution are in general possible to allow for extended
applications of the reported strategy in constructing chemodosi-
meters for supramolecular analytical chemistry.!®
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