This article was downloaded by: [University of Kiel]

On: 26 October 2014, At: 03:34 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International: The New Journal for Organic Synthesis

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/uopp20

A NOVEL METHOD FOR THE SYNTHESIS OF TELLUROFSTERS

Songlin Zhang ^a & Yongmin Zhang ^a

^a Department of Chemistry, Zhejiang University, Xi Xi Campus 34, Tian Mu Shan Road, Hangzhou, 310028, P. R. China Published online: 11 Feb 2009.

To cite this article: Songlin Zhang & Yongmin Zhang (1999) A NOVEL METHOD FOR THE SYNTHESIS OF TELLUROESTERS, Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 31:4, 450-453, DOI: 10.1080/00304949909355738

To link to this article: http://dx.doi.org/10.1080/00304949909355738

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

OPPI BRIEFS Volume 31, No. 4, 1999

Brown, H. B. Henbest and E. R. H. Jones, J. Chem. Soc., 3172 (1952); I. Nilsson, U. Berg and J. Sandström Acta Chem. Scand. (B), 38, 491 (1984).

- 11. Unpublished results from our laboratory.
- 12. Fisher reduced nickel powder, Cat. No. N-40 was employed.

A NOVEL METHOD FOR THE SYNTHESIS OF TELLUROESTERS

Songlin Zhang and Yongmin Zhang'

Department of Chemistry, Zhejiang University at Xi Xi Campus 34 Tian Mu Shan Road, Hangzhou 310028, P. R. CHINA

Organotellurium compounds have attracted considerable interest as reagents and intermediates in organic synthesis recently. From a number of methods, a convenient and general method to introduce a tellurium moiety into organic molecules is the reaction of metal tellurides with appropriate electrophiles. The use of ditellurides and samarium diiodide in THF/HMPA has also been reported recently to give telluride anions. As a powerful, versatile and ether-soluble one-electron transfer reducting agent, SmI₂ has played an ever-increasing role in organic synthesis⁴ since its introduction by Kagan and his group. Though SmI₂ is a useful reagent, its storage is difficult because it is very sensitive to air oxidation. On the other hand, metallic samarium is stable in air and its strong reducing power (Sm³⁺/Sm = '2.41V) is comparable to that of magnesium (Mg²⁺/Mg = -2.37V), superior to that of zinc (Zn²⁺/Zn = -0.71V). These properties prompted us to use it directly instead of samarium (II) iodide. Herein, we report that reductive cleavage of Te-Te bond in ditellurides by Sm/ZrCl₄ system led to telluride anion species, which react with acyl halides or anhydrides to give telluroesters in good yields under mild and neutral conditions.

The formation and reaction of samarium aryltellurolates generated in situ from the cleavage of the corresponding ditellurides with Sm/ZrCl₄ reductive system, are shown in the Scheme. The

Volume 31, No. 4, 1999 OPPI BRIEFS

formation of telluride anion species with Sm/ZrCl₄ is similar to that with SmI₂.³ The results of our experiments are summarized in the **Table**. In summary, we have developed a novel method for the preparation of telluroesters as single product by simple manipulation under mild and neutral conditions.

EXPERIMENTAL SECTION

Melting points were obtained on a electrothermal melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a Brucker 80 MHz instrument in carbon tetrachloride as the solvent and tetramethylsilane as an internal standard. IR spectra(KBr) were determined on a PE-683 spectrometer. Tetrahydrofuran was freshly distilled from sodium benzophenone ketyl before use. Acyl halides and anhydrides were commercially available and were used without further purification. The reaction was performed in a Schlenk type glass apparatus and under a nitrogen atmosphere.

TABLE. Yields, Physical Constants and Spectral Data of 2

Entry	Yield (%)	mp.	lit. mp., bp.b (°C, °C/torr)	IR (CO) (cm ⁻¹)	¹ Η ΝΜ R (δ)
2a	87	70-71	70-72 ⁷	1685	7.02-8.03 (m)
2 b	84	69-72	71-728	1690	7.20-7.75 (m)
2c	82	76-78	77-79 ⁹	1690	7.20-7.70 (m)
2d	79	64-66	65-68 ⁷	1685	7.10-7.70 (m)
2e	93	64-66	65-6711	1680	2.35 (3H, s), 6.90-7.10 (2H, m), 7.30-7.70 (5H, m), 7.90-8.15 (2H, m)
2f	90	110-112	111-11211	1670	2.35 (3H, s), 6.90-7.20 (2H, m), 7.40-7.90 (6H, m)
2g ^a	72	oil	105-110/0.3 ⁷	1720	2.40 (3H, s), 7.00-7.33 (3H, m), 7.51-7.80 (2H, m)
2h ^a	76	oil	108-110/0.3 ⁷	1720	0.86 (3H, t), 2.50(2H, q), 7.00-7.30 (3H, m), 7.40-7.73 (2H, m)
2i	80	oil	105-110/0,3 ⁷	1740	2.40 (3H, s), 7.00-7.33 (3H, m), 7.51-7.80 (2H, m)
2 j	70	oil	140-144/0.310	1720	0.89 (3H, t), 1.40 (18H, m), 2.50 (2H, t), 7.00-7.21 (3H, m), 7.50-7.71 (2H, m)
2k	75	oil	136/3 ⁷	1676	0.90 (3H, t), 1.15-1.96 (4H, m), 2.85 (2H, t), 7.20-7.90 (5H, m)
21	70	oil	165/312	1680	0.90 (3H, t), 1.16-1.98 (4H, m), 2.75 (2H, t), 6.95-7.70 (4H, m)

a) From anhydride. b) Lit. data given in references.

General Procedure.- Samarium powder (0.15g, 1mmol, 99.9%), zirconium tetrachloride (0.04g, 0.2mmol) and the ditelluride (0.5mmol) were placed in a well-dried, three-necked round bottom flask containing a magnetic stir bar. The flask was flushed with nitrogen several times. Tetrahydrofuran (10mL) was added through a rubber septum by a syringe. The mixture was stirred at room tempera-

OPPI BRIEFS Volume 31, No. 4, 1999

ture under an atmosphere of nitrogen, the red solution gradually became brown within 2h, indicating that the Te-Te bond had been reductively cleaved by Sm/ZrCl₄ and that the samarium aryltelluride (ArTeSmCl₂) had been generated. Acyl halides or anhydrides (1.5 mmol) were then added by syringe and stirred at room temperature for 1h. A 0.1 N HCl (20mL) and diethyl ether (50mL) were added. The organic layer was washed with water (20mL x 2) and dried over anhydrous Na₂SO₄. The solvent was removed in vacuum. The crude product was purified by preparative TLC on silica gel (100:1 light petroleum-ethyl acetate as eluent for all products).

Acknowledgements.- We are grateful to the National Natural Science Foundation of China (Project No. 294938004 and 29872010), the NSF of Zhejiang Province, China and Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, for financial support.

REFERENCES

- a) S. Patai, and Z. Rappoport, The Chemistry of Organic Selenium and Tellurium Compounds, John Wiley, Chichester England, Vol.1, 1986; b) C. H. Schiesser and M. A. Skidmore, J. Chem. Soc., Perkin Trans. 1, 2689 (1997).
- a) S. Uemura and S. Fukuzawa, J. Am. Chem. Soc., 102, 4438 (1980); b) K. Sasaki, Y. Aso, T. Otsubo and F. Ogura, Tetrahedron Lett., 26, 453 (1985); c) D. H. R. Barton, D. Bridon and S. Z. Zard, ibid., 25, 5777 (1984).
- 3. a) S. Fukuzawa, Y. Niiomoto, T. Fujinami and S. Sakai, *Heteroatom Chemistry*, 1, 492 (1990); b) Y. M. Zhang, Y. P. Yu and R. H. Lin, *Synth. Commun.*, 23, 189 (1993).
- a) G. A. Molander, Chem. Rev., 92, 29 (1992); b) G. A. Molander, Org. React., 46, 211 (1994);
 c) G. A. Molander and C. R. Harris, Chem. Rev., 96, 307 (1996); d) S. L. Zhang and Y. M. Zhang, J. Chem. Res., 6, 350 (1998); e) S. L. Zhang and Y. M. Zhang, Synth. Commun., 28, 3999 (1998); f) S. L. Zhang and Y. M. Zhang, J. Chem. Res., 1, 48 (1998).
- 5. a) P. Girard, J. L. Namy and H. B. Kagan, J. Am. Chem. Soc., 102, 2693 (1980); b) H. B. Kagan and J. L. Namy, Tetrahedron, 42, 6573 (1986).
- R. Yanada, N. Negoro, K. Tanada and T. Fuji, Tetrahedron Lett., 3271 (1997) and references cited therein.
- 7. J. L. Piette and M. Renson, Bull. Soc. Chim. Belges., 79, 383 (1970).
- 8. K. Sasaki, Y. Aso, T. Otsubo and F. Ogura, *Chemistry Lett.*, **6**, 977 (1986).
- 9. S. A. Gardner and H. J. Gysling, J. Organomet. Chem., 197, 111 (1980).
- F. Hu, M. Qiu and X. Zhou, J. Hangzhou Univ., 20, 210 (1993); Chem. Abstr., 120, 298784q (1994).

Volume 31, No. 4, 1999 OPPI BRIEFS

11. S. A. Gardner and H. J. Gysling, J. Organomet. Chem., 197, 111 (1980).

12. J. L. Piette, D. Debergh, M. Baiwir and G. Llabres, Spectrochim. Acta, 36A, 769 (1980).

AN EFFICIENT ONE-POT SYNTHESIS OF

α-PHENYLSELENO-α,β-UNSATURATED NITRILES via ARSONIUM SALTS

Submitted by Gui-Sheng Deng, Zhi-Zhen Huang and Xian Huang* (06/02/99)

Department of Chemistry, Zhejiang University (Campus Xixi) 34 Tianmushan Lu, Hangzhou, 310028, P. R. CHINA

Functionalized vinyl selenides bearing α-electron-withdrawing groups such as the cyano group, have been found to be particularly useful radical acceptors, leading generally to fumaronitriles by treatment with a radical initiator, followed by dimerization and elimination of dialkyl diselenide. Vinyl selenides and ethylenes bearing electron-withdrawing groups, undergo [2+2]-cycloaddition to afford selenocyclobutanes. The selenyl group may readily be replaced by various groups to afford substituted unsaturated compounds. 3.4

 α -Phenylseleno- α , β -unsaturated nitriles have only been prepared by the addition of phenylselenenyl chloride, bromide or amide to the respective α , β -unsaturated nitriles, followed by elimination of hydrogen halide albeit in low overall yields.⁵ This has greatly stimulated our

interest in exploring an efficient one-pot synthesis of α -phenylseleno- α , β -unsaturated nitriles *via* the readily available arsonium salt 1 under mild condition in good yields. The arsonium iodide 1 reacted with phenylselenenyl iodide in the presence of anhydrous potassium carbonate at room temperature to produce the α -selenoarsonium iodide 2 which, without isolation, was treated with aromatic aldehydes to produce α -phenylseleno- α , β -unsaturated nitriles 3 in good yields; however, the yields were low with aliphatic aldehydes. The results are compiled in Table 1.