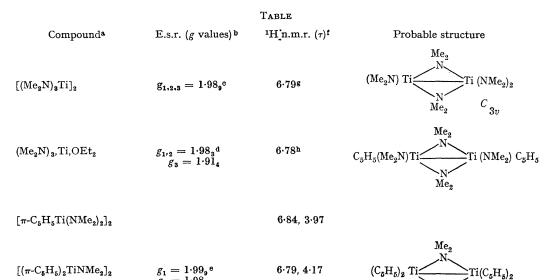
Lower Valent Dialkylamides of Titanium and Vanadium

By E. C. Alyea, D. C. Bradley, M. F. Lappert,* and A. R. Sanger

[Department of Chemistry, Queen Mary College, London, E1 (E.C.A. and D.C.B.) and School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ (M.F.L. and A.R.S.)]

Summary Novel dialkylamides of Ti^{III} which have alkylamido-bridged structures and exhibit fluxional behaviour and strong metal-metal interactions, together with the Ti^{II} derivatives obtained by disproportionation $2\text{TiX}(NR_2)_2 \longrightarrow \text{TiX}_2 + \text{Ti}(NR_2)_4$, afford valuable starting materials for the synthesis of bivalent and tervalent titanium complexes.

METAL DIALKYLAMIDES LMR₂ (where L represents the sum of all ligands other than one NR₂ group attached to the metal M) are interesting *inter alia* because (i) they are versatile intermediates in inorganic and organic syntheses,¹ (ii) the ligand(s) NR₂ may stabilise unusual co-ordination numbers (*e.g.* 3-co-ordinate FeIII and Cr^{III}),^{2,3} and (iii) their attempted preparation from $MCl_n/nLiNR_2$ may afford unusual⁴ or rearranged⁵ products.


We now report on the novel Ti^{III} and, more briefly, the Ti^{II}, V^{IV}, and V^{III} dialkylamides. Some data on Ti^{III} amides (all analysed satisfactorily) are summarised in the Table. They may be used as reagents for obtaining other d^{1} -complexes; for example, $(\pi$ -C₅H₅)₂TiNMe₂ reacts with several metal hydrides to give $(\pi$ -C₅H₅)₂Ti-metal complexes.⁶

The reaction $LMCl_n/nLiNR_2$ gave $Ti(NR_2)_3$ (R = Me or Et, but not Prⁱ or Bu^s) and $(\pi$ -C₅H₅)₂TiNMe₂. Only one

NMe₂ group was displaced from Ti(NMe₂)₃ by reaction with the protic compound HA, to yield $ATi(NMe_2)_2$ [A = π -C₅H₅, NEt_2 , NPr_2^i , or $N(SiMe_3)_2$; the significance of steric effects is further demonstrated by the failure of Pr₂NH to react with Ti(NEt₂)₃. Alcohols (MeOH or EtOH) readily displaced all NMe₂ groups from Ti(NMe₂)₃ (acacH \rightarrow Ti acac₃), π -C₅H₅Ti(NMe₂)₂, (π -C₅H₅)₂TiNMe₂ (the C₅H₅ groups are also suceptible to displacement by ROH), or V(NMe2)4 to give the corresponding alkoxides. Carbon disulphide and Ti(NEt₂)₃, failed to yield the corresponding trisdithiocarbamate and gave instead $Ti(S_2CNEt_2)_4$ and $Ti(S_2CNEt_2)_2$. Disproportionation was also observed upon attempted distillation of $XTi(NMe_2)_2$; volatile⁷ $Ti(NMe_2)_4$ and the black-green pyrophoric Ti^{II} compounds $(TiX_2)_n$ (X = NMe2, NEt2, NPr2, or Cl) were obtained. Similarly, distillation of the products obtained by treating VCl₃ with $LiNR_2$ (3 mol., R = Me or Et) afforded the volatile⁸ $V(NR_2)_4$.

In view of the current interest in Ti^{II} complexes,⁹ the synthetic possibilities of (i) the volatility-controlled disproportionation $2TiL(NR_2)_2 \rightarrow TiL_2 + Ti(NR_2)_4$; and (ii) the $Ti(NR_2)_2$ compounds containing reactive titanium-nitrogen bonds are significant and are being explored.

It is interesting that complete replacement of all the

^a Molecular weights were determined cryoscopically in C_6H_6 ; the compounds, except the brown powder $[(C_5H_5)TiNMe_2]_2$, are red-brown viscous liquids at ambient temperatures.

^b Approx. 10⁻²M-solutions; we thank Dr. A. Hudson and Mr. M. J. Kennedy for these data; the compounds are virtually diamagnetic.

^a Benzene solution, room temperature and -196° . ^d Ether solution, -196° .

• Benzene solution, -196°.

 t 60 MHz., 37°; all peaks are singlets; benzene or $C_{6}D_{6}$ solution.

⁶ At -80° in pentane peaks due to terminal and bridging NMe₂ are resolved, 2.2 Hz. apart. ^h Also broad multiplets (OEt₂) centred at τ 6.7 and τ 8.2.

 $g_2 = 1.98_3$ $g_{3} = 1.95$

chloride ligands of MCl_3 by NPr_2^i (from $LiNPr_2^i$) was not achieved for M = Ti or V, in contrast to $M = Cr;^3$ this may be related to the relative gain $(d^3 \gg d^1 \text{ or } d^2)$ in C.F.S.E. in forming trigonal $M(NPr_2^i)_3$ from tetrahedral $[ClM(NPr_2^i)_2]_2$.

We thank the S.R.C. and the European Office of the U.S. Army for support.

Me2

(Received, June 16th, 1969; Com. 860.)

¹ Cf. (for Sn^{IV} compounds), K. Jones and M. F. Lappert in "Organotin Compounds," ch. 6, ed. A. K. Sawyer, Marcel Dekker, New York, 1969.

- (ork, 1969).
 ^a D. C. Bradley, M. B. Hursthouse, and P. F. Rodesiler, Chem. Comm., 1969, 14.
 ^a E. C. Alyea, J. S. Basi, D. C. Bradley, and M. H. Chisholm, Chem. Comm., 1968, 495.
 ^d D. C. Bradley and I. M. Thomas, Canad. J. Chem., 1962, 40, 449, 1335.
 ⁵ R. Bonnett, D. C. Bradley, and K. J. Fisher, Chem. Comm., 1968, 886.
 ⁶ M. F. Lappert and A. R. Sanger, unpublished work.
 ⁷ D. C. Bradley and I. M. Thomas, J. Chem. Soc., 1960, 3857.
 ⁸ I. M. Thomas, Tanad. J. Chem., 1961, 39, 1386.
 ⁹ G. W. A. Fowles, T. E. Lester, and R. A. Walton, J. Chem. Soc. (A), 1968, 1081.