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ABSTRACT: Herein we report the hydrodefluorination reaction of
trifluoromethylated alkenes to access terminal monofluoroalkenes. The
use of LiAlH4 allowed the stereoselective synthesis of the terminal
monofluoroalkenes in good to excellent yields with good to excellent
diastereoselectivities. Mechanistic studies suggested a hydroalumina-
tion reaction followed by a stereoselective fluoride elimination.

Fluorine is one of the most intriguing atoms in the periodic
table. The intrinsic properties of the fluorine atom such as

its electronegativity and small radius, for instance, provide
specific physicochemical properties to organofluorine com-
pounds.1 Its introduction on a molecule can drastically change
the metabolic profile, the lipophilicity, the conformation, or the
hydrogen-bonding ability of a neighboring functional group,
for instance. These features readily explain its ubiquity in
pharmaceuticals and agrochemicals as well as the broad
portfolio of available fluorinated groups for the design of
bioactive molecules in discovery programs.2 As important
fluorinated motifs, it is worth mentioning the CF3, CF2H,
OCF3, or the SCF3 groups,3 for example. Among these
fluorinated groups, monofluoroalkenes are of high interest.4

The α-substituted monofluoroalkene motif is well recognized
as a bioisostere of the amide bond, whereas the terminal
monofluoroalkene motif is considered as a mimic of an
enol.2e,5

It is noteworthy that these terminal monofluoroalkenes are
found in a significant number of bioactive compounds, and the
stereoisomers often have different bioactivities (Figure 1).6

Therefore, the development of straightforward methods to
access terminal monofluoroalkenes in a stereoselective manner
has attracted much interest (Figure 2).4 Among the reported

methods to access this important motif, the olefination of
carbonyl derivatives is probably the most popular one, even
though it often suffers from a lack of stereoselectivity.7 Note
that Hu recently reported a stereoselective olefination protocol
affording the synthesis of terminal monofluoroalkenes with
high stereoselectivity.8 As alternative pathways, the nucleo-
philic fluorination of vinyl triflates or boronic acids using
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Figure 1. Bioactive molecules with terminal fluoroalkenes.

Figure 2. State of the art and present strategy.
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AgOTf9a or a Pd catalyst, respectively,9b as well as the cross-
metathesis reaction,10 although restricted to disubstituted
monofluoroalkenes, were reported.
The hydrodefluorination of gem-difluoroalkenes has also

been described using copper catalysts, for instance.11 Finally,
the halogen elimination on allyl fluorides has been widely
explored by the group of Paquin to build up monofluor-
oalkenes in the course of an allylic substitution reaction
(Figure 2).12 Surprisingly, no report has described the
synthesis of monofluoroalkenes from the corresponding
trifluoromethylated alkenes according to a controlled hydro-
defluorination strategy. As part of our research program
dedicated to the use of tri-, di-, and monofluorinated alkenes as
key building blocks to build up complex fluorinated
molecules,13 we sought to develop such an original approach
as a complementary strategy to the existing ones. Hence, we
report herein the stereoselective hydrodefluorination strategy
of trifluoromethylated alkenes to build up monofluoroalkenes.
After a careful examination of the reaction parameters using

the α,α,α-trifluoromethylstyrene 1a, we found that the use of 1
equiv of LiAlH4 in THF at room temperature allowed the
formation of the monofluoroalkene 2a in a very good 78%
NMR yield with a 95:5 diastereoisomeric ratio, and it was
isolated in a moderate 56% yield due to its high volatility
(Table 1, entry 1). The use of DIBAL did not afford the

desired product but led to the gem-difluoromethylalkene I in
74% NMR yield (entry 2).14 The use of 2 equiv of RedAl as a
reductant allowed the formation of the desired terminal
monofluoroalkene 2a in 62% yield but with a lower 85:15
diasteroisomeric ratio (entry 3). Finally, the use of lithium or
sodium borohydride did not afford the expected product
(entries 4 and 5). Then, with these optimized conditions in
hand, we explored the scope of this transformation to showcase
the panel of accessible terminal monofluoroalkenes (Scheme
1).
First, the reaction was tested on α-trifluoromethylstyrene

derivatives. The reaction proceeded well with alkyl-substituted
aromatic rings whatever the position of the substituent at the
cost of an increase in the reaction temperature from room
temperature to 70 °C (2b−e). Isolated yields were somehow
lower than the NMR yields due to the high volatility of the

products, and the diastereosiomeric ratios were excellent,
except for the ortho-methyl-substituted styrene 2d (82:18). A
styrene derivative with a phenyl substituent at the para position
2f as well as the naphthyl derivative 2g were isolated in good
yields with good dr. The presence of strong electron-donating
groups at the para or meta position required an increase in the
reaction temperature from rt to 70 °C to obtain excellent yields
and a 95:5 dr (2h−j). Halogens and CF3 groups were also
tolerated, and the terminal monofluoroalkenes were obtained
in good yields with good dr (2k−n). In addition heterocyclic
derivatives were compatible under our standard conditions.
The thiophene derivative 1o was tested, and the corresponding
terminal monofluoroalkene 2o was isolated in moderate yield
with a moderate dr. The indole derivative 2p was obtained in
78% yield with an excellent dr, whereas the N-Ts-pyrrole-
substituted monofluoroalkene was isolated in 83% yield with a
88:12 dr. Then, β-substituted α-trifluoromethylstyrenes were
used in this hydrodefluorination reaction. A slight increase in
the LiAlH4 stoichiometry from 1 to 2 equiv was required to
ensure a complete conversion of the products into the
monofluoroalkenes. The presence of an alkyl chain did not
affect the reaction efficiency, and products 2r−t were isolated
in good to excellent yields. In all cases, the diastereoisomeric
ratio were excellent (>96:4). Unprotected alcohol 1t was
tested, and the product 2t was isolated in a decent 72% yield
with an 81:19 dr. Then, various protected alcohols were tested
to demonstrate the synthetic utility of our methodology.
Benzyl, MOM, and TBDMS protecting groups were well
tolerated, and the terminal monofluoroalkenes 2v−x were
isolated in good yields with excellent dr (up to 99:1). As part
of our interest in the use of β-trifluoromethyl acrylates as
versatile fluorinated building blocks,15 we sought to use them
to access the corresponding terminal monofluoroalkenes. A
slight increase in the LiAlH4 stoichiometry from 1 to 2.5 equiv
allowed the concomitant reduction of the ester group and the
hydrodefluorination process. A large panel of β-trifluoromethyl
acrylates was reduced into the terminal monofluoroalkenes in
good to excellent yields, whatever the substitution pattern. In
all cases, the diasteroisomeric ratio remained lower than those
obtained from the hydrodefluorination of α-trifluoromethyl-
styrenes (66:34 to 82:18 dr), and both diastereoisomers were
easily separable using silica gel flash chromatography. Finally,
the potential of this hydrodefluorination process was
demonstrated using the tetra-substituted trifluoromethylated
olefin 1ak. Using an extended reaction time, 1ak was readily
converted into the monofluoroalkene 2ak in a good 72% yield,
albeit with no diastereoselectivity. Unfortunately, some
substrates remained reluctant in our hand, highlighting the
limitation of the process. The β-alkyl-substituted β-trifluor-
omethylated acrylate and the β-trifluoromethylstyrene were
not reactive and showcased the need to have an aromatic
substituent on the trifluoromethylated alkenes. The β-
trifluoromethylated nitrostyrene and acrylonitrile were not
suitable substrates, and the hydrodefluorination product was
not observed.14 In the case of the phosphonate and sulfone
derivatives, the reaction proceeded, but the hydrodefluorinated
products were obtained in low yields (<30%).
Then, control experiments were carried out to get insight

into the mechanism of this hydrodefluorinative process
(Scheme 2). First, the influence of the olefin geometry was
evaluated with the E and Z isomers of β-trifluoromethyl
acrylate 1af. Regardless of the stereoisomer used, the
diastereoisomeric ratio and the yield remained unchanged,

Table 1. Synthesis of Monofluoroalkene 2a from 1aa

entry change from the standard conditions yield (%)b,c drd

1 none 78 (56) 95:5
2 DIBAL (4 equiv) 0
3 RedAl (2 equiv) 62 85:15
4 NaBH4 NR
5 LiBH4 NR

aReaction conditions: 1a (0.23 mmol), LiAlH4 (0.23 mmol), THF
(0.15 M), 21 h, rt. bYield determined by 19F NMR using 4-
nitrofluorobenzene as an internal standard. cIsolated yield is reported.
dDiasteroisomeric ratio (dr) was determined by 19F NMR on the
crude reaction mixture. NR = no reaction.
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demonstrating that the olefin geometry has no influence on the
stereochemical outcome of the reaction. To understand the

reaction mechanism, the reaction was performed with the α-
difluoromethylstyrene derivative 3 to ascertain if this species

Scheme 1. Scope of the Reactiona

a1 (0.3 mmol), LiAlH4 (0.3 mmol), THF (0.1 M), rt, 6−24 h. The major diastereoisomer is shown. b24 h reaction time. cYield determined by 19F
NMR using 4-nitrofluorobenzene as an internal standard. dReaction was carried out at 70 °C for 24 h. e6 h reaction time. fReaction was performed
on a gram scale (4.1 mmol). g20 h reaction time. h17 h reaction time. i2 equiv of LiAlH4 was used.

j2.5 equiv of LiAlH4 was used.
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might be a reaction intermediate. The hydrodefluorination
proceeded well, giving the target terminal monofluoroalkene in
an excellent NMR yield but with a poor dr of 56:44. This result
precluded the involvement of this species as a reaction
intermediate. To get further insights, the reaction from 1h was
interrupted after 8 h, and we have been able to isolate the gem-
difluoroalkene 4. The latter was then submitted to the standard
reaction conditions, giving 2h in a similar yield with a similar
dr compared to the those observed starting from 1h,
demonstrating its possible role as a reaction intermediate.
Finally, experiments with LiAlD4 were performed with 1g and
1u′ to understand the mechanism of the hydrodefluorination
reaction. The reaction of 1g with LiAlD4 clearly demonstrated
the incorporation of a deuterium atom on the terminal position
of the alkene and a single D atom at the allylic position of 2g.
Similarly, the reaction with 1u′ led to a similar incorporation of
deuterium on the monofluoroalkene and at the allylic position.
These results pointed out the two different sites of hydride
incorporation. Hence, with all of these data in hand, we
suggested the following mechanism (Scheme 3).
First, the hydroalumination of the α-trifluoromethylstyrene

1 led to the hydro-aluminated derivative A. A first fluoride
elimination afforded the gem-difluoromethylalkene B, which
has been isolated from the reaction mixture (vide supra). The
regioselectivity of the hydride incorporation was supported by
the deuteration experiment carried out with 1g (Scheme 2).
Then, a second hydroalumination occurred, providing a
transient Al-species C, which was then involved in a
stereoselective fluoride elimination to provide the (E)-

monofluoroalkene 2 as a major product. The stereochemical
outcome of this fluoride elimination could be explained using a
Newman projection of the different conformers potentially
involved in the antiperiplanar elimination of the fluoride ion.
Indeed, the predictive model (TS-1) that leads to the minor Z
isomer clearly highlights an electronic repulsion between the
fluorine atom and the aromatic ring,16 in contrast with TS-2,
which predicts the formation of the E isomer.
In conclusion, we reported a simple and practical method for

the synthesis of terminal monofluoroalkenes from trifluor-
omethylated alkenes. The reaction proceeded well with α-
trifluoromethylstyrenes derivatives, β-trifluoromethyl acrylates,
and tetrasubstituted trifluoromethylated olefins. The terminal
monofluoroalkenes were obtained in good to excellent yields.
The reaction proved to be diastereoselective in favor of the E
isomer. Mechanistic studies supported the succession of two
hydroalumination reactions followed by a final stereoselective
fluoride elimination to explain the reaction outcome and the
diastereoselectivity of the process. We hope that this simple
and practical method will be useful to build up stereoselectively
more complex terminal monofluoroalkenes to access fluori-
nated molecules of interest.
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