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Abstract: Construction of 1,2-dihydroisoquinolines and 1-alky-
lidenyl-1,2,3,4-tetrahydroisoquinolines through cationic gold(I)
complex catalyzed hydroamination of the corresponding alkynyl
carbamates has been demonstrated. In the presence of EtOH, the re-
action proceeded smoothly at room temperature with low catalyst
loading (1–3 mol%).
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Synthesis of substituted hydroisoquinolines has received
continuous attention because of their frequent occurrence
as key structural subunits in numerous biologically and
medicinally important molecules.1 Recently, we reported
a synthesis of 1,2-dihydroisoquinolines through addition–
cyclization of 2-(alkynyl)phenylaldimines in the presence
of an alkynophilic metal catalyst (Ni, In, or Au) and a
nucleophile.2,3 We became interested in expanding such
alkynophilic catalyst-mediated cyclization toward the
synthesis of different types of hydroisoquinolines.
Scheme 1 describes our approach which utilizes intramo-
lecular hydroamination of alkynyl carbamates in two
modes. Starting from 2¢-alkynylbenzylcarbamate A, if
6-endo hydroamination occurs, 1,2-dihydroisoquinoline
B should be obtained.4 On the other hand, when the one-
carbon homologue, 2¢-alkynylphenetylcarbamate C, is
cyclized in a 6-exo mode, 1-alkylidenyl-1,2,3,4-tetra-
hydroisoquinoline D will be formed.5 These reactions are
isomerization processes that possess high atom economy.
Moreover, if carbamates could act as a nucleophilic do-
main, the product will be enecarbamates, which are attrac-
tive synthetic intermediates due to their rich synthetic
transformations.6 In contrast to relatively nucleophilic
amines, hydroamination of alkynyl amides and carbam-
ates to form six-membered rings under mild conditions is
a challenging task.7

Transition-metal-catalyzed hydroamination of alkynyl
amine derivatives has been studied widely to access a va-
riety of nitrogen-containing molecules.8 However, there
are only a few examples of hydroisoquinoline forma-
tions.9 Usually in these examples, substituents on the ami-
no group are limited to alkyl or aryl groups, and high
catalyst loading at elevated temperature is necessary.

Scheme 1 Hydroisoquinoline synthesis through intramolecular
hydroamination

To investigate the 6-endo intramolecular hydroamination,
N-Boc-2-(phenylethynyl)phenylmethylamine (1a) was
treated with group 10 or 11 metal salts in 1,2-dichloro-
ethane (DCE) (Table 1). First attempt was carried out in
the presence of 10 mol% of PdCl2(PhCN)2 at 70 °C for 24
hours (entry 1). After aqueous workup and silica gel chro-
matography, the desired 1,2-dihydroisoquinoline 2a was
isolated in 5% yield with 63% of unreacted 1a.10,11 When
PtCl2 was used, starting material was consumed in 24
hours and 2a was obtained in 46% yield (entry 2). CuI or
Cu(OTf)2 was totally ineffective (entries 3 and 4). AgNTf2

gave a similar result in the case of PdCl2(PhCN)2 (entry
5). Although AuCl(PPh3) itself did not promote the cy-
clization (entry 6), a cationic gold(I) complex, generated
from AuCl(PPh3) and AgNTf2,

12 catalyzed the reaction ef-
ficiently.13,14 Upon stirring for one hour at room tempera-
ture, 2a was isolated in 75% yield (entry 7).
Encouraged by this result, the amount of catalyst was
reduced to 1 mol%, but 1a was not transformed complete-
ly to 2a even after 48 hours (entry 8). To accelerate the re-
action, addition of protic additives was examined. Though
AcOH and CF3CH2OH had less effect (entries 9 and 10),
by adding five equivalents of EtOH, the reaction reached
completion in two hours at room temperature to give 2a in
83% isolated yield (entry 11). Relatively stronger protic
acids such as CF3SO3H or AcOH are known to accelerate
gold-catalyzed hydroaminations15 as well as other gold-
catalyzed reactions.16 In contrast to these reports, less
acidic EtOH showed striking effect in our case.

Having the optimized conditions in hand, we carried out
the synthesis of a variety of 1,2-dihydroisoquinolines
(Table 2). Not only Boc but also Cbz, Ms or 4-methoxy-
phenyl (PMP) groups can be used as a substituent on the
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nitrogen (entries 1–3). The reaction rate increased in the
following order: PMP > Boc > Cbz > Ms, which can be
explained by the difference of nucleophilicity with respect
to the nitrogen atom. Influence of the electron density on
the alkynyl moiety was also observed. Though the cy-
clization of 3,5-dimethyl- or 4-chloro-substituted carbam-
ates 1e and 1f finished in two hours under the standard
conditions (entries 4 and 5), 5 mol% of the catalyst was re-
quired to complete the reaction of carbamate 1g which has
a 4-OMe substituent (entry 6). Alcohol 1h was converted
into dihydroisoquinoline 2h in good yield (entry 7). Un-
fortunately, the current reaction conditions were not effi-
cient for the 6-endo cyclization of alkyl acetylene
derivatives; the reaction of 2-(1-pentynyl)phenylmethyl-
amine 1i gave only 28% of the desired isoquinoline 2i to-
gether with a mixture of unidentified compounds (entry
8).10

The combination of AuCl(PPh3) and AgNTf2 in the pres-
ence of EtOH was also effective for the 6-exo intramolec-
ular hydroamination (Table 3). When N-Boc-phen-
ethylamine 3a was treated with 1 mol% of AuCl(PPh3)
and AgNTf2, the desired tetrahydroisoquinoline 4a was
obtained in 58% yield after stirring at room temperature
for 48 hours (entry 1). Stereochemistry of the double bond
was determined to be Z by NOE experiment, and support-

ed by the high-field shift of the N-Boc signal in 1H NMR
spectra.17 The reaction was highly stereoselective as no
formation of the E-isomer was detected. This high stereo-
selectivity is remarkable since stereoselective synthesis of
1-alkylidenyl-1,2,3,4-tetrahydroisoquinolines is often
troublesome.18 By increasing the amount of the catalyst to
3 mol%, the reaction completed in five hours to give 87%
isolated yield (entry 2). As in the 6-endo cyclization, sub-
stituents on the nitrogen atom influenced the reactivity.
The cyclization of N-methoxycarbonyl derivative 3b re-
quired 15 hours for completion (entry 3). Chlorophenyl
derivative 3c and tert-butylphenyl derivative 3d cyclized
without any difficulty (entries 4 and 5). The 1-pentynyl
derivative 3e also underwent the 6-exo cyclization to give
75% of butylidenyl tetrahydroisoquinoline 4e (entry 6).

In conclusion, syntheses of substituted hydroisoquino-
lines through 6-endo and 6-exo hydroaminations have
been developed.19 The combination of the cationic gold(I)
complex and EtOH was shown to promote the reaction ef-
ficiently at room temperature. From a scientific point of
view, remarkable acceleration by EtOH is of great inter-
est. The current method has promising advantage toward
practical uses because of the mild reaction conditions, low
catalyst loading, high chemoselectivity and high atom
economy.

Table 1 Hydroamination of N-Boc-o-alkynylbenzylamine 1a

Entry Catalyst 
(mol%)

Additive 
(5 equiv)

Temp 
(°C)

Time 
(h)

Yield 
(%)a

1 PdCl2(PhCN)2 (10) 70 24 5 (63)

2 PtCl2 (10) 70 24 46

3 CuI (10) 70 24 0b

4 Cu(OTf)2 (10) 70 24 0b

5 AgNTf2 (10) 70 24 7 (67)

6 AuCl(PPh3) (10) 70 24 0b

7 AuCl(PPh3) (10)
AgNTf2 (10)

r.t. 1 75

8 AuCl(PPh3) (1)
AgNTf2 (1)

r.t. 48 53 (28)

9 AuCl(PPh3) (1)
AgNTf2 (1)

AcOH r.t. 24 54 (16)

10 AuCl(PPh3) (1)
AgNTf2 (1)

CF3CH2OH r.t. 24 51 (30)

11 AuCl(PPh3) (1)
AgNTf2 (1)

EtOH r.t. 2 83

a The yield in parentheses shows the recovered yield of compound 1a.
b Only 1a was detected.
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Table 2 Synthesis of 1,2-Dihydroisoquinolines through Hydroami-
nation

Entry Substrate R1 R2 Time 
(h)

ProductYield 
(%)

1 1b Ph Cbz 4 2b 83

2 1c Ph Ms 7 2c 81

3 1d Ph PMP 0.5 2d 82

4 1e Boc 2 2e 87

5 1f Boc 2 2f 71

6a 1g Boc 2 2g 87

7b 1h Boc 3 2h 79

8 1i Pr Boc 6 2i 28

a AuCl(PPh3) (5 mol%) and AgNTf2 (5 mol%) were used.
b Reaction was carried out in CH2Cl2 due to the low solubility of 1h 
in DCE.
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