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Abstract: Asymmetric p-allylic substitution of meso-1,4-diacet-
oxycyclopentene and meso-1,4-diacetoxycyclohexene with various
nucleophiles was performed with an amphiphilic polystyrene-
poly(ethylene glycol) (PS-PEG) resin-supported chiral imidazoin-
dolephosphine-palladium complex in water as a single reaction me-
dium under heterogeneous conditions to give the corresponding 1-
acetoxy-4-substituted cycloalkenes with up to 99% ee.

Key words: p-allylpalladium, asymmetric catalysis, aqueous me-
dia, polymer support, palladium catalyst

The catalytic asymmetric functionalization of carbon
frameworks has become an important goal in modern syn-
thetic organic chemistry. However, aqueous- and hetero-
geneous-switching of a given organic transformation is
rapidly gaining importance for its ability to provide safe
and green chemical processes.1–5 If asymmetric catalysis
can be achieved in water with immobilized chiral cata-
lysts, the reaction would become what many consider an
ideal organic transformation. We have recently developed
amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG)
resin-supported chiral phosphine-palladium complexes
which promote the asymmetric allylic substitution of a ra-
cemic mixture of allylic esters with various nucleophiles
in water under heterogeneous conditions with excellent
enantioselectivity.6 Thus, for example, the asymmetric al-
lylic substitution of a racemic mixture of cycloalkenyl
carbonate with carbon, nitrogen, or oxygen nucleophiles
was catalyzed by the amphiphilic PS-PEG resin-support-
ed chiral palladium complex 1 in water to give the corre-
sponding cycloalkenyl malonates, amines, or aryl ethers,
respectively, with enantioselectivities of 90–99% ee,
where the reactions proceeded via formation of the p-al-
lylpalladium intermediates and subsequent enantioposi-
tion-selective nucleophilic attack (Scheme 1). Our
continuing interest in the utility of the polymeric chiral
catalyst under aqueous conditions led us to study its po-
tential in the enantioselective desymmetrization of meso-
cycloalkene-1,4-diesters where the stereoselectivity
should be induced mainly at the p-allylic formation step
via the enantioposition-selective oxidative addition
(Scheme 2).7,8

Scheme 1 Asymmetric p-allylic substitution via enantioselective
nucleophilic attack (representative example of previous work)

Scheme 2 Asymmetric p-allylic substitution via enantioselective p-
allylpalladium formation (working hypothesis of the present work)

Here we wish to report preliminary results on the aquacat-
alytic asymmetric desymmetrization of the meso-cy-
cloalkenyl-1,4-diacetate via p-allylic substitution with
carbon, nitrogen, and oxygen nucleophiles, which was
promoted by the palladium complex anchored onto the
amphiphilic PS-PEG resin-supported (3R,9aS)-[2-aryl-3-
(2-diphenylphosphino)phenyl]tetrahydro-1H-imida-
zo[1,5-a]indol-1-one in water under heterogeneous condi-
tions to give the corresponding hemi-substituted products
with up to 99% ee.
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Scheme 3

The aquacatalytic asymmetric desymmetrization of the
meso-cycloalkene-1,4-diesters via p-allylic substitution
was examined for alkylation and amination of cis-1,4-di-
acetoxycyclopentene (meso-2) (Table 1, entries 1 and 2).
Thus, a mixture of the cyclopentene diacetate meso-2 and
diethyl malonate (1.0 equiv to 2) in water was shaken at
0 °C for 18 hours in the presence of 5 mol% palladium of
the amphiphilic resin-supported chiral imidazoindole-
phosphine-palladium complex 1 (average diameter = ca.
100 mm, Pd loading = 0.28 mmol/g, 1% DVB cross-
linked)9 and cesium carbonate as base (entry 1).10 The re-
action mixture was filtered and the resin beads were
rinsed with a small portion of ethyl acetate. The combined
extract was concentrated and the resulting crude residue
was chromatographed on silica gel to give 56% isolated
yield of the hemialkylated product (1R,4S)-4 along with
the dialkylated product 8 (4%).11 We were pleased to find
that the enantiomeric purity of (1R,4S)-4 was 91% ee as
determined by GC analysis using a chiral stationary phase
column (Cyclodex CB). Amination of meso-2 was carried
out with dibenzylamine (2 equiv) in water at 0 °C for 18
hours to give 91% ee of the hemiaminated 5 in 62% iso-
lated yield (entry 2).

With this highly enantioselective desymmetrization pro-
tocol in hand, we turned our attention to demonstrating the
catalytic as well as stereoselective potential of the asym-
metric aquacatalysis in the hemietherification of the
meso-diacetate 2 with phenolic nucleophiles. Though
quite a few reports on the palladium-catalyzed asymmet-
ric p-allylic hemi-substitution of meso-cyclic 1,4-diesters
with carbon and nitrogen nucleophiles have appeared so
far, research on the asymmetric hemietherification with
oxygen nucleophiles has been limited to isolated reports,12

and therefore still remains a challenging target. The reac-
tion of 1,4-diacetoxycyclopentene, meso-2, with phenol
as a nucleophile under similar water-based conditions at
0 °C gave 99% ee of 6a in 64% isolated yield where the
disubstituted product 8 was obtained in 14% yield
(Table 1, entry 3).13 The enantiomeric excess of the phe-
nol ether 6a was slightly decreased (98% ee) when the re-
action was carried out at 25 °C (entry 4). The
etherification took place smoothly in water at 25 °C with
phenols bearing ortho substituents. Thus, 2-benzyloxy-
phenol (b), 2-chlorophenol (c), and 2-bromophenol (d) re-
acted with meso-2 to afford the corresponding hemiethers
6b, 6c, and 6d in 45, 52, and 53% yields with 97, 94, and

95% enantiomeric purities, respectively (entries 5–7).
Sterically hindered 2,6-dimethylphenol (e) gave 90% ee
of 6e in 59% yield under similar conditions (entry 8). The
reactions with 3-methoxyphenol (f) and 4-tert-butylphe-
nol (g) also gave the desired hemiethers 6f and 6g in 43
and 52% isolated yields with 96 and 94% ee values, re-
spectively (entries 9 and 10). The cyclohexenyl ester
meso-3 also underwent etherification with phenol to give
95% ee of 7 in 37% yield (entry 11).

In the asymmetric etherification of meso-2 with phenol (a)
it was found that the enantiomeric purity of the hemiether
6a was dependent on the yield of the disubstituted product
8 (Scheme 4). Thus, in order to decrease the formation of
the diether 8, the asymmetric etherification was carried
out with a fivefold excess of meso-2 at 25 °C to give the
hemiether 6a and the diether 8 in 72% and 5% yields, re-
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Table 1 Asymmetric p-Allylic Substitution of meso-1,4-Diacet-
oxycycloalkenes in Watera,14

Entry Product Yield (%)b ee (%)

1 4 56
(8: 4%)

91

2c 5 62
(8: –d)

91

6a–g

3 6a Ar = Ph
(at 0 °C)

64
(8: 14%)

99

4 6a Ar = Ph
(at 25 °C)

55
(8: 12%)

98

5 6b Ar = 2-BnOC6H4 45
(8: –d)

97

6 6c Ar = 2-ClC6H4 52
(8: 17%)

94

7 6d Ar = 2-BrC6H4 53
(8: 16%)

95

8 6e Ar = 2,6-diMeC6H3 59
(8: 4%)

90

9 6f Ar = 3-MeOC6H4 43
(8: 14%)

96

10 6g Ar = 4-t-BuC6H4 52
(8: 11%)

94

11 7 37
(8: 11%)

95

a All reactions were carried out in H2O at 0 °C for 18 h (entries 1–3) 
or 25 °C for 6 h (entries 4–11) with 5 mol% Pd of 1. The ratio of 2 (or 
3) (mol)/nucleophile (mol)/Pd (mol)/Cs2CO3 (mol)/H2O (L) = 
1:1.0:0.05:0.9:1.0, unless otherwise noted.
b Isolated yield.
c Reaction was carried out with amine (2 equiv) without Cs2CO3.
d Not isolated.
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spectively, where the enantiomeric purity of 6a was 84%
ee. The reaction with meso-2 and phenol in an equimolar
ratio gave 98% ee of 6a in 55% yield along with 12% of
8. A similar trend was also observed at 0 °C; the reaction
in a 1:1 mol ratio of meso-2/phenol gave 6a in 64% yield
(99% ee) and 8 (14%), and that in a 5:1 mol ratio gave 6a
in 72% yield (93% ee) and 8 (5%). Though the detailed ki-
netic study on asymmetric induction steps is not clear be-
cause of the complication of the side reactions (e.g.,
hydrolysis of acetate, oxidative addition of allyl phenyl
ether), the kinetic resolution at the second etherification
forming 8, preferentially via ent-6, must contribute to the
increase of the enantiomeric excess of the hemiether 6a
(Scheme 5).

In summary, the asymmetric palladium-catalyzed p-allyl-
ic substitution of meso-cycloalkenyl-1,4-diacetates was
achieved with carbon, nitrogen, and oxygen nucleophiles
in water with an amphiphilic polymeric chiral palladium
complex to give the corresponding hemi-substituted prod-
ucts with high enantioselectivity of up to 99% ee. A de-
tailed kinetic study and synthetic application are currently
under investigation in our lab and will be reported in due
course.
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23 +63.8 (c = 1.0, CHCl3). 
1H 

NMR (CDCl3): d = 7.29 (t, J = 7.8 Hz, 2 H), 6.96 (t, J = 7.3 
Hz, 1 H), 6.92 (d, J = 7.8 Hz, 2 H), 6.24 (d, J = 5.8 Hz, 1 H), 
6.12 (d, J = 5.3 Hz, 1 H), 5.61 (br, 1 H), 5.17 (br, 1 H), 2.97 

(dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.89 (dt, J = 4.0, 
14.6 Hz, 1 H). 13C NMR (CDCl3): d = 170.77, 157.77, 
135.05, 134.06, 129.53, 115.34, 79.55, 76.74, 37.94, 21.08. 
IR (ATR): 1733, 1493, 1366, 1228, 1087, 889, 754, 692, 628 
cm–1. MS (EI): m/z (%rel intensity) = 218 (0.7) [M+], 43 
(base peak). Anal. Calcd for C13H14O3: C, 71.54; H, 6.47. 
Found: C, 71.49; H, 6.53. CAS registry number: 210701-
09-0.
1-Acetoxy-4-(2-benzyloxyphenoxy)-2-cyclopentene (6b): 
[a]D

28 –20.5 (c = 1.0, CHCl3); 97% ee. 1H NMR (CDCl3): 
d = 7.43–7.27 (m, 4 H), 6.89–6.98 (m, 5 H), 6.26 (br d, J = 
4.8 Hz, 1 H), 6.09 (br d, J = 4.8 Hz, 1 H), 5.57 (br, 1 H), 5.17 
(br, 1 H), 5.12 (s, 2 H), 2.93 (dt, J = 7.3, 14.6 Hz, 1 H), 2.04 
(s, 3 H), 1.98 (dt, J = 4.3, 14.6 Hz, 1 H). 13C NMR (CDCl3): 
d = 170.88, 149.49, 148.28, 137.32, 134.67, 133.73, 128.45, 
127.78, 127.29, 122.21, 121.70, 117.09, 115.60, 81.72, 
76.79, 71.31, 38.08, 21.13. IR (ATR): 1732, 1499, 1452, 
1366, 1236, 1212, 1083, 1012, 896, 742, 697, 627 cm–1. MS 
(EI): m/z (%rel intensity) = 324 (1) [M+], 91 (base peak). 
Anal Calcd for C20H20O4: C, 74.06; H, 6.21. Found: C, 
73.94; H, 6.28.
1-Acetoxy-4-(2-chlorophenoxy)-2-cyclopentene (6c): [a]D

26 
–58.0 (c = 1.0, CHCl3). 

1H NMR (CDCl3): d = 7.37 (dd, J = 
1.8, 7.9 Hz, 1 H), 7.20 (dt, J = 1.8, 7.9 Hz, 1 H), 6.95 (d, J = 
7.9 Hz, 1 H), 6.92 (t, J = 7.9 Hz, 1 H), 6.26 (d, J = 5.5 Hz, 1 
H), 6.14 (J = 5.5 Hz, 1 H), 5.60 (br, 1 H), 5.17 (br, 1 H), 2.99 
(dt, J = 7.3, 14.6 Hz, 1 H), 2.06 (s, 3 H), 1.96 (dt, J = 4.3, 
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1-Acetoxy-4-(2-bromophenoxy)-2-cyclopentene (6d): 
[a]D

25 –100.8 (c = 1.1, CHCl3); 95% ee. 1H NMR (CDCl3): 
d = 7.55 (dd, J = 1.2, 7.9 Hz, 1 H), 7.25 (td, J = 1.2, 7.3 Hz, 
1 H), 6.94 (d, J = 1.2 Hz, 1 H), 6.85 (td, J = 1.2, 7.9 Hz, 1 H), 
6.26 (d, J = 5.5 Hz, 1 H), 6.14 (d, J = 5.5 Hz, 1 H), 5.60 (br 
t, J = 5.5 Hz, 1 H), 5.17 (br t, J = 5.5 Hz, 1 H), 2.07 (s, 3 H), 
2.00 (dt, J = 7.3, 14.6 Hz, 1 H), 1.96 (dt, J = 4.2, 14.6 Hz, 1 
H). 13C NMR (CDCl3): d = 170.79, 154.52, 134.60, 134.39, 
133.61, 128.37, 122.34, 114.99, 113.00, 81.34, 76.55, 38.00, 
21.07. IR (ATR): 1733, 1584, 1573, 1474, 1442, 1366, 1085, 
1029, 895, 748, 627 cm–1. MS (EI): m/z (%rel intensity) = 
296 (0.02) [M+], 43 (base peak). Anal. Calcd for 
C13H13BrO3: C, 52.55; H, 4.41. Found: C, 52.37; H, 4.37.
1-Acetoxy-4-(2,6-dimethylphenoxy)-2-cyclopentene (6e): 
[a]D

27 –41.4 (c = 1.1, CHCl3). 
1H NMR (CDCl3): d = 7.02 (d, 

J = 7.3 Hz, 2 H), 6.92 (t, J = 7.3 Hz, 1 H), 6.16 (d, J = 5.4 
Hz, 1 H), 6.05 (d, J = 5.4 Hz, 1 H), 5.52 (br t, J = 4.4 Hz, 1 
H), 4.81 (br t, J = 6.3 Hz, 1 H), 2.88 (dt, J = 7.3, 14.6 Hz, 1 
H), 2.30 (s, 6 H), 2.09 (s, 3 H), 2.06 (dt, J = 4.4, 14.6 Hz, 1 
H). 13C NMR (CDCl3): d = 171.09, 155.79, 136.60, 133.37, 
131.06, 129.16, 123.95, 84.66, 76.73, 38.51, 21.39, 17.46. 
IR (ATR): 1730, 1365, 1237, 1198, 1091, 903, 730, 649, 630 
cm–1. MS (EI): m/z (%rel intensity) = 246 (0.09) [M+], 43 
(base peak). HRMS (EI): m/z [M+] calcd for C15H18O3: 
246.1256; found: 246.1251. The enantiomeric excess was 
determined by HPLC analysis using a chiral stationary phase 
column [Chiralcel OD-H, eluent: n-hexane–2-propanol, 
50:1; flow rate: 0.5 mL/min; tR (major isomer) = 14.73 min 
and tR (minor isomer) = 13.98 min] to be 90% ee.
1-Acetoxy-4-(3-methoxyphenoxy)-2-cyclopentene (6f): 
[a]D

26 +57.5 (c = 1.1, CHCl3); 96% ee. 1H NMR (CDCl3): 
d = 7.18 (t, J = 8.5 Hz, 1 H), 6.52 [td, J = 2.4, 8.5 Hz 
(overlapped), 2 H], 6.48 (t, J = 2.4 Hz, 1 H), 6.24 (d, J = 5.5 
Hz, 1 H), 6.13 (d, J = 5.5 Hz, 1 H), 5.60 (br, 1 H), 5.16 (br, 
1 H), 3.78 (s, 3 H), 2.96 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 
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3 H), 1.88 (dt, J = 3.9, 14.6 Hz, 1 H). 13C NMR (CDCl3): 
d = 170.77, 160.87, 158.99, 134.98, 134.12, 129.95, 107.35, 
106.54, 101.88, 79.62, 55.24, 37.90, 21.04. IR (ATR): 1733, 
1602, 1491, 1366, 1235, 1199, 1150, 1087, 1015, 891, 837, 
765, 687, 629 cm–1. MS (EI): m/z (%rel intensity) = 248 (1) 
[M+], 43 (base peak). Anal. Calcd for C14H16O4: C, 67.73; H, 
6.50. Found: C, 67.51; H, 6.45.
1-Acetoxy-4-(4-tert-buthylphenoxy)-2-cyclopentene (6g): 
[a]D

27 +148.7 (c = 1.4, CHCl3); 94% ee. 1H NMR (CDCl3): 
d = 7.30 (d, J = 8.5 Hz, 2 H), 6.85 (d, J = 8.5 Hz, 2 H), 6.24 
(d, J = 5.5 Hz, 1 H), 6.11 (d, J = 5.5 Hz, 1 H), 5.60 (s, 1 H), 
5.14 (s, 1 H), 2.96 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 
1.89 (dt, J = 3.9, 14.6 Hz, 1 H), 1.37 (s, 9 H). 13C NMR 
(CDCl3): d = 170.79, 155.51, 143.66, 135.25, 133.90, 
126.30, 114.78, 79.61, 76.79, 37.98, 34.05, 31.48, 21.08. IR 
(ATR): 1736, 1511, 1365, 1232, 1185, 1087, 1013, 898, 829, 

732, 630 cm–1. MS (EI): m/z (%rel intensity) = 274 (0.2) 
[M+], 43 (base peak). Anal. Calcd for C17H22O3: C, 74.42; H, 
8.08. Found: C, 74.56; H, 8.22.
1-Acetoxy-4-phenoxy-2-cyclohexene (7): 1H NMR 
(CDCl3): d = 7.26–7.31 (m, 2 H), 6.92–6.97 (m, 3 H), 6.08 
(ddd, J = 1.2, 3.7, 10.0 Hz, 1 H), 6.07 (ddd, J = 1.2, 3.0, 10.0 
Hz, 1 H), 5.25 (br s, 1 H), 4.76 (br s, 1 H), 2.07 (s, 3 H), 1.87–
2.02 (m, 4 H). 13C NMR (CDCl3): d = 170.72, 157.52, 
131.10, 129.59, 121.06, 115.84, 70.27, 67.38, 24.92, 24.75, 
21.27. IR (ATR): 1730, 1597, 1492, 1371, 1226, 1079, 1035, 
958, 903, 754, 692 cm–1. MS (EI): m/z = 232 [M+]. The 
enantiomeric excess was determined by HPLC analysis 
using a chiral stationary phase column [Chiralcel OD-H, 
eluent: n-hexane–2-propanol, 50:1; flow rate: 0.5 mL/min; tR 
(major isomer) = 21.33 min and tR (minor isomer) = 18.48 
min] to be 95% ee.
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