

Published on Web 05/06/2008

Reaction of a Copper–Dioxygen Complex with Nitrogen Monoxide (•NO) Leads to a Copper(II)-Peroxynitrite Species

Debabrata Maiti,[†] Dong-Heon Lee,^{†,II} Amy A. Narducci Sarjeant,[†] Monita Y. M. Pau,[§] Edward I. Solomon,[§] Katya Gaoutchenova,[‡] Jörg Sundermeyer,[‡] and Kenneth D. Karlin^{*,†} Departments of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, Chonbuk National University, Jeonju, Korea 561-756, and Stanford University, Stanford, California 94305, and Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany

Received February 29, 2008; E-mail: karlin@jhu.edu

Peroxynitrite (oxoperoxonitrate (1-), -OON=O) is a reactive agent generated by the near diffusion controlled combination of •NO (often called nitric oxide) and the superoxide anion $(O_2^{\bullet-})$ and is considered as a likely mediator of nitric oxide biochemistry and oxidative/nitrative stress injury.^{1,2} Metal ions in biological systems may be important in OON=O generation, stabilization, thermal transformation reactions (e.g., isomerization to nitrate (NO_3^-) or production of nitrite (+1/2O₂)), or activation toward substrate oxidation/nitration.²⁻⁴ Heme proteins have been recently well-studied with respect to their mediation of peroxynitrite formation and subsequent transformation to nitrate;^{1a,2,5} NO dioxygenases convert NO to nitrate using O₂, putatively via peroxynitrite intermediates.⁶ Metal complexes with Fe, heme, Mn, and Cu act as peroxynitrite decomposition (i.e., to nitrate) catalysts and may possess therapeutic applications.^{1,7} Discrete metal-peroxynitrite complexes are rare² but are suggested to form as transients from metal-NO + $O_{2(g)}$ or metal- O_2 + •NO_(g) reactions.^{3,8}

Following our interest in Cu oxidative chemistries, we note that the literature solution chemistry of copper ion with peroxynitrite is limited;^{4,9} no discrete copper-peroxynitrite species have been described. Here, we report the reaction of $\bullet NO_{(g)}$ with a Cu^I/O₂ adduct, [(TMG₃tren)Cu^{II}(O₂⁻)]⁺ (2), with end-on bound superoxo ligand, $\angle Cu-O-O = 123.5^{\circ}$, O–O = 1.280 Å.¹⁰ The product is a discrete peroxynitrite–Cu^{II} complex, formulated as $[(TMG_3tren)Cu^{II}(OON=O)]^+$ (3) (Scheme 1). This undergoes a thermal transformation to give a nitrite complex, [(TMG₃tren)-Cu^{II}(⁻ONO)]⁺ (4), plus dioxygen. The results suggest the viability of biological Cu^I/O₂/(•NO) peroxynitrite formation, that is, not coming from free superoxide plus •NO reaction (vide supra) and as perhaps already observed for CuZn superoxide dismutase (SOD)¹¹ and cytochrome c oxidase.¹² Peroxynitrite has been discussed with respect to CuZn-SOD, a vector for disease states; might mutant SODs not abrogate OONO toxicity (i.e., downstream oxidative or nitrative stress) or even produce peroxynitrite?11,13

Bubbling O_{2(g)} through a colorless solution of [(TMG₃tren)- $Cu^{I}B(C_{6}F_{5})_{4}$ (1) in 2-methyltetrahydrofuran (MeTHF) at -80 °C leads the EPR silent light green colored to complex $[(TMG_3 tren)Cu^{II}(O_2^{\bullet-})]B(C_6F_5)_4$ (2) $[\lambda_{max} = 447, 680, 780 nm$ (Figure S1)].14,15 With excess O2 removed by vacuum/purging(Ar), bubbling 2 with $\cdot NO_{(g)}$ (-80 °C; subsequent excess NO_(g) removed) gives a vellowish green complex, formulated as the peroxynitrite species $[(TMG_3tren)Cu^{II}(-OON=O)]B(C_6F_5)_4$ (3) (Figure S1, $\lambda_{max} = 314$ nm, $\varepsilon = 6900 \text{ M}^{-1} \text{ cm}^{-1}$).¹⁵ Direct evidence for the formation of **3** comes from electrospray ionization mass spectrometry (ESI-MS).¹⁵ Injection of -80 °C MeTHF solutions of 3 gives rise to a parent peak cluster with m/z = 565.15 and expected 63,65 Cu pattern for the $[(TMG_3tren)Cu^{II}(-OON=O)]^+$ cation (Figure 1a).¹⁵ When ¹⁸O_{2(g)} is used for the generation of 2, subsequent addition of $\bullet NO_{(g)}$ reveals

that the peroxynitrite- Cu^{II} peak shifted (by 4 mass units) to m/z 569.34 [Figure 1b; 65% incorporation (also with appropriate ^{63,65}Cu isotope pattern)], indicating that $[(TMG_3tren)Cu^{II}(^{-18}O^{18}ON=O)]^+$ has formed;¹⁵ the adjacent peroxo oxygen atoms are derived from O₂ (Scheme 1).16

As mentioned, X-ray structures are not known for peroxynitritemetal species.² For the one known isolated complex from Koppenol and co-workers, a k^1 -O-OONO binding in $[(NC)_5Co(-OONO)]^{3-}$ is expected.^{2,17} O- and N-bound ⁻OONO ligation in various geometries has been considered, especially for iron porphyrinate adducts.^{5b,18} DFT calculations, using B3LYP and a mixed triple- ζ basis set, suggest two possible structures for $[(TMG_3tren)Cu^{II}(-OON=O)]^+$ (3), a lower energy (by 9.3 kcal/mol in THF) form with monodentate k¹-O-OONO ligation in an overall trigonal bipyramidal (TBP) coordination (d₂ ground state), and a more square pyramidal (SP) form $(d_{x^2-y^2}$ ground

Figure 1. ESI-MS spectra: (a) $[Cu^{II}(TMG_3tren)(^{-}OON=O)]^+$ (3) at m/z= 565.15; (b) $[Cu^{II}(TMG_3 tren)(^{-18}O^{18}ONO)]^+$ (3), m/z = 569.34.

[†] The Johns Hopkins University.

Chonbuk National University

Philipps-Universität Marburg. Stanford University.

Figure 2. EPR spectrum of (a) 3 (red) and (b) 4 (green).

state) possessing a cyclic bidentate k²-O,O'-OONO peroxynitrite moiety, with one short equatorial and one long axial Cu-O distance (1.95 and 2.58 Å, respectively).¹⁵ One (TMG₃tren) guanidine arm functionality in the SP form is dangling, that is, not ligated, and this arm is replaced by the long Cu-O in the axial position. See Supporting Information for structural diagrams.¹⁵ The EPR spectrum of **3** is distinctly tetragonal with a $d_{x^2-y^2}$ ground state (Figure 2a), thus consistent with the latter (SP) and not the former (TBP) structure. In support of a pentacoordinate SP-type structure for 3 are a number of literature observations: (i) displacement of one arm of the tris(2aminoethyl)amine (tren) derivative five-coordinate Cu(II) complexes in solution is well-established;19 (ii) the solid-state structure of $[(TMG_3tren)-Mo(CO)_3]$ reveals one ligand arm to be uncoordinated;²⁰ and (iii) SP geometries for many pentacoordinate Cu(II) with tridentate analogues of tren (i.e., $[(N_3)Cu^{II}X_2]^{n+}$) and bidentate analogues of TMG₃tren are documented via X-ray crystallography.²¹

The thermal transformation properties of [(TMG3tren)Cu^{II}- $OON=O]^+$ (3) support its formulation and provide insights into the observed peroxynitrite chemistry. Prolonged storage of -80 °C solutions of 3, or warming to room temperature leads to >90% yields of the green Cu^{II}-nitrite (NO2⁻) complex [(TMG3tren)- $Cu^{II}(^{-}ONO)]B(C_6F_{5})_4$ (4) [$\lambda_{max} = 350$ (sh) (3200), 610 (700) nm, Figure S1], accompanied by the evolution of dioxygen (30-35% yield, 50% theoretical), as determined by trapping with a known Cu-based O2 carrier.¹⁵ The structure of 4 was determined by X-ray crystallography,¹⁵ revealing an η^{1} -O-nitrito bound to Cu(II) ion in an overall trigonal bipyramidal environment. DFT calculations¹⁵ on this structure show that it possesses a d_{z^2} ground state (Figure S12), and an EPR spectrum of 4 (Figure 2b) reveals the reverse axial spectrum expected.²² The dramatic EPR spectroscopic differences between "OONO (peroxynitrito) complex 3 and ONO⁻ (nitrito) compound 4 (Figure 2) highlight the distinctly different nature of these species.

The identification of nitrite complex 4 and O_2 , along with their yields (vide supra), further confirms the Scheme 1 stoichiometry and formulation of peroxynitrite complex 3. We find no evidence for Cu(II)-nitrate (NO₃⁻) formation, that is, peroxynitrite isomerization.^{15,23}

For 4, m/z = 549.45,¹⁵ but when the reaction sequence (Scheme 1) is carried out with ¹⁸O_{2(g)}, this shifts to m/z = 551.12 (78%) incorporation, based on an expectation of one of the two O2-derived atoms being incorporated),¹⁵ indicating that [(TMG₃tren)Cu^{II}- $(^{-18}\text{ONO})]^+$ (4) has formed. Clearly, an O–O cleavage reaction has occurred. An extensive literature ^{1a,24,25} known for HOONO conversion to nitrite and O₂ may apply; further studies are needed. In fact, related copper(aq) chemistry has been described.^{4,9c}

In summary, we have described here the formation, spectroscopic features, and thermal transformation chemistry of the first discrete Cu(II)-peroxynitrite complex. Further studies will focus on the reactivity of this peroxynitrite complex, likely involving peroxynitrite O-O cleavage chemistry. The work described here suggests that copper ion in biological media may facilitate Cu/O2/•NO and thus peroxynitrite chemistry, that is, oxidation and/or nitration.

Acknowledgment. This work was supported by a grant from the NIH (K.D.K., GM28962; E.I.S., DK31450).

Supporting Information Available: Details of synthesis; reactivity, product analyses, ESI-MS findings, DFT calculations, and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Goldstein, S.; Lind, J.; Merenyi, G. Chem. Rev. 2005, 105, 2457-2470. (b) Pacher, P.; Beckman, J. S.; Liaudet, L. Physiol. Rev. 2007, 87, 315-424
- Herold, S.; Koppenol, W. H. *Coord. Chem. Rev.* 2005, 249, 499–506.
 Ford, P. C.; Lorkovic, I. M. *Chem. Rev.* 2002, 102, 993–1017.
 Hughes, M. N.; Nicklin, H. G.; Sackrule, W. A. C. J. Chem. Soc. A 1971,
- 3722-3725
- (5) (a) Herold, S.; Rock, G. Biochemistry 2005, 44, 6223-6231. (b) Blomberg, L. M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Biol. Inorg. Chem. 2004, 9, 923-935.
- Gardner, P. R.; Gardner, A. M.; Brashear, W. T.; Suzuki, T.; Hvitved, A. N.; Setchell, K. D. R.; Olson, J. S. *J. Inorg. Biochem.* **2006**, *100*, 542. (a) Szabo, C.; Ischiropoulos, H.; Radi, R. *Nat. Rev. Drug Discovery* **2007**, (6)
- 6, 662-680. (b) Radovits, T.; Seres, L.; Gero, D.; Lin, L. N.; Beller, C. J.; Chen, S. H.; Zotkina, J.; Berger, I.; Groves, J. T.; Szabo, C.; Szabo, G. Mech. Aging Dev. 2007, 128, 173-181. (c) Mahammed, A.; Gross, Z. Angew. Chem., Int. Ed. 2006, 45, 6544-6547. (d) Shimanovich, R.; Hannah, S.; Lynch, V.; Gerasimchuk, N.; Mody, T. D.; Magda, D.; Sessler, J.; Groves, J. T. J. Am. Chem. Soc. 2001, 123, 3613–3614. (e) Schepetkin, I.; Potapov, A.; Khlebnikov, A.; Korotkova, E.; Lukina, A.; Malovichko, G.; Kirpotina, L.; Quinn, M. T. J. Biol. Inorg. Chem. 2006, 11, 499-513.
- (a) Clarkson, S. G.; Basolo, F. Inorg, Chem. **177**, 12, 1528–1534. (b) Roncaroli, F.; Videla, M.; Slep, L. D.; Olabe, J. A. Coord. Chem. Rev. 2007, 251, 1903-1930.
- (a) Geletii, Y. V.; Patel, A. D.; Hill, C. L.; Casella, L.; Monzani, E. React. Kinet. Catal. L 2002, 77, 277–285. (b) Geletii, Y. V.; Bailey, A. J.; Boring, E. A.; Hill, C. L. Chem. Commun. 2001, 1700–1700. (c) Babich, O. A.; Gould, E. S. *Res. Chem. Intermediat.* **2002**, *28*, 575–583. (d) Pellei, M.; Lobbia, G. G.; Santini, C.; Spagna, R.; Camalli, M.; Fedeli, D.; Falcioni, G. Dalton Trans. 2004, 2822–2828. (e) Kohnen, S.; Halusiak, E.; Mouithys-Mickalad, A.; Deby-Dupont, G.; Deby, C.; Hans, P.; Lamy, M.; Noels, A. F. Nitric Oxide 2005, 12, 252-260.
- (10) Würtele, C.; Gaoutchenova, E.; Harms, K.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Angew. Chem., Int. Ed. 2006, 45, 3867-3869.
- (11) (a) Kirsch, M.; de Groot, H. J. Biol. Chem. 2002, 277, 13379-13388. (b) Liochev, S. I.; Fridovich, I. Arch. Biochem. Biophys. 2002, 402, 166-171. (c) Estevez, A. G.; Crow, J. P.; Sampson, J. B.; Reiter, C.; Zhuang, Y.; Richardson, G. J.; Tarpey, M. M.; Barbeito, L.; Beckman, J. S. *Science* **1999**, *286*, 2498–2500.
- (12) Pearce, L. L.; Kanai, A. J.; Birder, L. A.; Pitt, B. R.; Peterson, J. J. Biol. Chem. 2002, 277, 13556-13562
- (a) Whitson, L. J.; Hart, P. J. Metal Ions Life Sci. 2006, 1, 179-205. (b) Valentine, J. S.; Doucette, P. A.; Potter, S. Z. Annu. Rev. Biochem. 2005, 74, 563-593.
- (14) Maiti, D.; Lee, D.-H.; Gaoutchenova, K.; Würtele, C.; Holthausen, M. C.; Sarjeant, A. A. N.; Sundermeyer, J.; Schindler, S.; Karlin, K. D. Angew. Chem., Int. Ed. 2008, 47, 82-85
- (15) See Supporting Information
- (16) Attempts to characterize 3 using resonance Raman spectroscopy were not successful, presumably due to compound decomposition.
- (a) Wick, P. K.; Kissner, R.; Koppenol, W. H. Helv. Chim. Acta 2000, 83, 748-754. (b) Wick, P. K.; Kissner, R.; Koppenol, W. H. Helv. Chim. Acta 2001, 84, 3057-3061
- (18) Silaghi-Dumitrescu, R. J. Mol. Struct. (THEOCHEM) 2005, 722, 233-237.
- (19) (a) Thaler, F.; Hubbard, C. D.; Heinemann, F. W.; van Eldik, R.; Schindler, .; Fabian, I.; Dittler-Klingemann, A. M.; Hahn, F. E.; Orvig, C. Inorg. Chem. 1998, 37, 4022–4029. (b) Pintauer, T.; Reinohl, U.; Feth, M.; Bertagnolli, H.; Matyjaszewski, K. *Eur. J. Inorg. Chem.* 2003, 2082–2094.
 Wittmann, H.; Raab, V.; Schorm, A.; Plackmeyer, J.; Sundermeyer, J. *Eur. J. Inorg. Chem.* 2001, 1937–1948.
- (21) (a) Herres, S.; Heuwing, A. J.; Florke, U.; Schneider, J.; Henkel, G. Inorg. (d) Individy, J., Harwing, H.S., 1949–1095, (d) Kickelbick, G.; Pintauer, T.; Matyjaszewski, K. New J. Chem. 2002, 26, 462–468. (c) Barlow, S. J.; Hill, S. J.; Hocking, J. E.; Hubberstey, P.; Li, W.-S. J. Chem. Soc., Dalton Trans. 1997, 4701–4703.
- (a) Lucchese, B.; Humphreys, K. J.; Lee, D.-H.; Incarvito, C. D.; Sommer, R. D.; Rheingold, A. L.; Karlin, K. D. Inorg. Chem. 2004, 43, 5987–5998.
 (b) Wei, N.; Murthy, N. N.; Karlin, K. D. Inorg. Chem. 1994, 33, 6093– 6100
- (23) We separately synthesized the nitrato-Cu^{II} complex [(TMG₃tren)Cu^{II}- $(-ONO_2)$]B(C₆F₅)₄ and determined its X-ray structure, UV-vis, EPR, and ESI-MS properties.
- (a) Kissner, R.; Koppenol, W. H. J. Am. Chem. Soc. 2002, 124, 234-239. (b) Pfeiffer, S.; Gorren, A. C. F.; Schmidt, K.; Werner, E.; Hansert, B.; Bohle, D. S.; Mayer, B. *J. Biol. Chem.* **1997**, 272, 3465–3470. (c) Coddington, J. W.; Hurst, J. K.; Lymar, S. V. *J. Am. Chem. Soc.* **1999**, 121, 2438-2443
- (25) Lymar, S. V.; Khairutdinov, R. F.; Hurst, J. K. Inorg. Chem. 2003, 42, 5259-5266
- JA801540E