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We report a new class of dicyanoboron diketonates complexes which exhibit high
molar absorption coefficients, large Stokes shifts, high photostability and low
cytotoxicity.
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Abstract

A new class of dicyanoboron diketonates (B(&Nyvas synthesized and the
photophysical properties were investigated. The NB¢Ccomplexes exhibited high
molar absorption coefficients, large Stokes shifiggh photostability and low
cytotoxicity. Especially, the emission of tBCN), extended into the deep red region.
The extensiver conjugation and the presence of intramoleculargeh&ransfer (ICT)
transitions are responsible for their red-shiftedssion. Their fluorescence are very
sensitive to the polarity of the solvents. They hrghly emissive in low polarity
solvents, but weakly fluorescent in polar solven@ell imaging experiments
demonstrated its potential application as a probleioorganisms due to its excellent
imaging contrast. This strategy represents a faapproach to modulate the

photophysical properties of dyes.
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1. Introduction

Organoboron complexes are one of the most impotygets of fluorescent dyes
[1]. Notably, because of their large molar extianticoefficients, high emission
guantum vyields, and sensitivity to the surroundmgdium, boron dipyrromethene
dyes (BODIPYs) and boron diketonates have attragtadh interest in the fields of
molecular probes [2,3], optical imaging [4,5], Segsapplications [6], and laser dyes
[7,8]. In addition to the rich photophysical propes which they share in common
with BODIPYs, boron diketonates also show large tplmton absorption cross
sections, air stability, pronounced room tempegrtpinosphorescence and delayed
fluorescence when incorporated with polymer masrice the solid state [9,10].
Within this context, the synthesis and studies@bh diketonates have gained much
attention recently [11]. Various efforts have bewvade to tune the photophysical
properties of the organoboron complexes, whichiggsence, the alteration of the
transition energy levels of the dye molecules [T2]is change is often effected by
chemically modifying thert conjugation or the substituent groups. Extending t
absorption and emission properties of the dyeh¢odeep red/near-infrared region
would facilitate their application in biological s¢ms by avoiding interferences from
background autofluorescence, minimizing photodamageamples, and increasing
tissue penetration [13].For organoboron complexes, replacing fluorine vather

functional groups such as aryl, ethynylaryl etpresents a very simple and effective



method for such a purpose. For example, Ziessedl.ethave reported on the
substitution of fluorine of BODIPY by alkynyl, alkylaryl, ethynylaryl and aryl
groups [14] Such derivatives share not only improvement ofrtetbilities but also
large Stokes shifts in their emission spectra. dnt@ast, very few difluoroboron
diketonate derivatives, with fluorine replaced byhey groups as analogous
derivatives, have been reported [1H)formation such as emission properties in
solution and the solid state have not yet beenexdud

In line with our ongoing work on BODIPY and boroiketonates as fluorescent
sensors for the detection of biological thiols amadous metal ions in solution and in
living cells [16] we decided to extend our investigation toward rignithe
photophysical properties of diketonate derivatives.particular, we intended to
design boron 1, 3-diketonate dyes which are flumesin the deep red/near-infrared
region by simple methods and to apply themiforivo studies. In this paper, we
present the synthesis, absorption and fluorescemégsion properties, and theoretical
calculations of dicyanoboron diketonates (B(&Ng-3c, Scheme 1). The substitution
of fluorine by cyano group red shifted the emissio®5 nm. Especially, the emission
of 3c extended into the deep red region. The B(ddmplexes exhibited high molar
absorption coefficients, large Stokes shifts, gmodging contrast, high photostability

and low cytotoxicity.

Scheme 1. Structures of the difluoroboron diketonatés3b and dicyanoboron diketonatis-3c.



2. Experimental Section

2.1 General Experimental Methods

'H and *C NMR spectra were recorded on an Advance Bruke®M40
spectrometer (400 MHz) using tetramethylsilane (JMS an internal standard in
CDCl; at room temperature. Mass spectra (ESI) were rddaon Bruker Apex IV
Fourier Transform Mass Spectrometer. Mass speda Were obtained in the
positive ion mode on a Waters GCT premier. Foufi@nsform Infrared (FT-IR)
Spectra were recorded on a Varian Excalibur 310€@aned spectrometer.
Fluorescence spectra were determined on a Hitaeh60B spectrophotometer.
Absorption spectra were determined on a Hitachi 9088 UV-Visible
spectrophotometer. Fluorescence lifetimes were rdecb on Edinburgh F900
spectrometer. Tetrahydrofuran (THF) was refluxethvdodium in the presence of
benzophenone as indicator for 5 h and then didtilieder nitrogen. Other reagents
were analytical grade and were used without furtheification.

2.2 Synthesis
2.2.1 Synthesis dfa

la was synthesized by a standard Claisen condensatidar basic conditions
according to the literature [17] (Scheme S1). Thale product was recrystallized in
ethanol to givela as yellow needle crystals (2.06 g, 72.5%).NMR (400 MHz,
CDCl) § 17.11 (s, 1H, enol-OH), 7.96 (d, 4H), 7.00 (d, 4614 (s, 1H, COCHCO),
3.90 (s, 6H, OCH). 3¢ NMR (100 MHz, CDG) 6 192.90, 184.74, 164.09, 163.18,
131.43, 129.70, 129.21, 128.30, 114.09, 91.60,5%6.57. MS (EI) m/z calcd for

Ci17H1604 [M] " 284.10, found 284.11.



2.2.2 Synthesis dib

To a solution ofla (1.42 g, 5 mmol) in CECI, (40 mL), boron trifluoride diethyl
etherate (1.25 mL, 10 mmol) and triethylamine (1, Ml5 mmol) was added. After
being stirred for 6 h at room temperature in thekdilne reaction solution was washed
with water (50 mL) and brine (50 mL). The orgaragdr was dried over anhydrous
MgSO, and the solvent was removitvacuo to give the crude product. Purification
by flash column chromatography (silica gel, petaCHCI, 1:1) gavelb as a
yellow green powder (1.56 g, 94%) [17H NMR (400 MHz, CDCJ) § 8.14 (d,J =
9.0 Hz, 4H), 7.11 — 6.93 (m, 5H), 3.94 (s, 6H, QELRC NMR (100 MHz, CDGJ) 5
180.84, 165.32, 131.25, 124.56, 114.57, 91.53, B5MS (El) m/z calcd for
C17H1504BF> [M]* 332.10, found 332.11.
2.2.3 Synthesis dic

To a solution oflb (100 mg, 0.3 mmol) in C¥Cl, (20 mL), trimethylsilyl cyanide
(220uL, 1 mmol) and boron trifluoride diethyl etherafb uL, 1 mmol) were added.
After stirring at room temperature for 1 h, theatean solution was washed with
water (30 mL) and brine (30 mL). The organic layeas dried over anhydrous
MgSO, and the solvent was removitvacuo to give the crude product. Purification
by flash column chromatography (silica gel, pewoCHCI, 1:3) gavelc as a
yellow powder (55 mg, 53%JH NMR (400 MHz, CDC}) § 8.12 (d,J = 9.0 Hz, 4H),
7.14 — 6.94 (m, 5H), 3.96 (s, 6HFC NMR (100 MHz, CDCJ) & 179.78, 166.66,
132.08, 123.21, 115.06, 93.65, 55.99. HRMS (ESB odlcd for GgHisBNNaO,

[M+Na]*369.10205, found 369.10210.



2.2.4 Synthesis dla

2a was synthesized by a standard Claisen condensasiatescribed fota [17]
(Scheme S1). Purification by flash column chromedpgy (silica gel,
petroleum/ethyl acetate 4:1) gaeas a dark yellow solid. Yield 709%4 NMR (400
MHz, CDCk) & 17.09 (s, 1H, enol-OH), 7.94 (d= 8.9 Hz, 4H), 6.98 (d] = 8.9 Hz,
4H), 6.72 (s, 1H, COCHCO), 6.06 (ddbiz 22.5, 10.6, 5.3 Hz, 2H), 5.44 @= 17.3
Hz, 2H), 5.33 (dJ = 10.5 Hz, 2H), 4.61 (d] = 5.3 Hz, 4H, OCH). **C NMR (100
MHz, CDCk) 6 192.55, 184.57, 162.97, 162.07, 132.68, 132.471,.2173 129.79,
129.04, 128.44, 118.11, 117.99, 114.71, 114.6349%568.93. MS (EI) m/z calcd for
C21H2004336.14, found 336.14.
2.2.5 Synthesis db

2b was synthesized by the same methodllas Purification by flash column
chromatography (silica gel, petroleum/&Hp 1:2) gave2b as a bright yellow powder
[17]. Yield 90%.*H NMR (400 MHz, CDCJ) § 8.10 (d,J = 8.9 Hz, 4H), 7.11 — 6.91
(m, 5H), 6.06 (ddd) = 22.4, 10.5, 5.3 Hz, 2H), 5.45 @ = 17.3, 2H), 5.35 (dJ =
10.5, 2H), 4.65 (dJ = 5.2 Hz, 4H, OCH). *C NMR (100 MHz, CDGJ) § 184.64,
180.94, 164.40, 162.14, 132.74, 132.18, 131.34,2B31129.10, 128.50, 124.77,
118.50, 118.07, 115.31, 114.78, 91.65, 69.23, 69M6& (El) m/z calcd for
C21H1004BF>[M] " 384.13, found 384.14.
2.2.6 Synthesis dic

2c was synthesized by the same methodl@sPurification by flash column

chromatography (silica gel, petroleum/&H, 1:2) gave2c as a yellow solid. Yield



48%.'H NMR (400 MHz, CDCJ) & 8.09 (d,J = 8.8 Hz, 4H), 7.18 — 6.90 (m, 5H),
6.06 (dddJ = 22.2, 10.4, 5.2 Hz, 2H), 5.46 @z= 17.3 Hz, 2H), 5.37 (d} = 10.5 Hz,
2H), 4.69 (dJ = 4.9 Hz, 4H, OCH). **C NMR (100 MHz, CDGCJ) § 179.71, 165.66,
132.07, 131.72, 129.07, 123.23, 118.91, 118.17,7013.14.69, 93.70, 69.43, 68.94.
HRMS (ESI) m/z calcd for §H16BNoNaQ, [M+Na]* 421.13342, found 421.13403.
2.2.7 Synthesis @a

3a was obtained as a white powder by reaction of twgazetone and
trifluoroboron diethyl etherate. Yield 92%4 NMR (400 MHz, CDCY) § 8.07 (d,J =
7.3 Hz, 2H), 7.70 (tJ = 7.5 Hz, 1H), 7.54 (t) = 7.9 Hz, 2H), 6.60 (s, 1H), 2.43 (s,
3H, CH). 3c NMR (100 MHz, CDQdJ) 6 192.69, 182.91, 135.47, 131.21, 129.21,
129.01, 97.51, 24.75. MS (EIl) m/z calcd fops02BF> [M]* 210.07, found 210.07.
2.2.8 Synthesis @b

To a solution of3a (1.05 g, 5 mmol) in EtOH (60 mL), was added
dimethylaminobenzaldehyde (0.89 g, 6 mmol). Aftehad dissolved completely,
hexahydropyridine (6QL, 6 mmol) was added into the solution. After refhg at 80C
for 16 h, EtOH was removeth vacuo. The residue was washed with water and
extracted with CHCl,. The organic layer was dried over anhydrous Mga the
solvent was removeith vacuo to give the crude product. Purification by flaghutnn
chromatography (silica gel, petroleum etherfCH 1:4) gave3b as a blue powder
(600 mg, 35%)*H NMR (400 MHz, CDC)) § 8.12 (d,J = 15.2 Hz, 1H, Ar-CH=C),
8.05 (d,J = 7.5 Hz, 2H, Ar-H), 7.62 (] = 7.4 Hz, 1H, Ar-H), 7.56 (d] = 8.9 Hz, 2H,

Ar-H), 7.51 (t,J = 7.7 Hz, 2H, Ar-H), 6.71 (d] = 8.9 Hz, 2H, Ar'-H), 6.57 (d] =



15.2 Hz, 1H, CH=CH(CO)), 6.53 (s, 1H, (CO)CH(C®)I1 (s, 6H, Ch). *C NMR
(100 MHz, CDCY) 6 180.99, 178.86, 153.31, 149.67, 133.92, 132.72,183 130.91,
129.93, 128.90, 128.55, 128.28, 127.14, 121.91,161411.98, 97.06, 40.14. HRMS
(ESI) m/z calcd for gH1sBF.NNaQ, [M+Na]* 364.12943, found 364.12937.
2.2.9 Synthesis @c

3c was synthesized frorBb by the same method d€. Purification by flash
column chromatography (silica gel, petroleum et®EpCl, 1:2) gave3c as a dark
blue powder. Yield 42%'H NMR (400 MHz, CDC}) & 8.12 (d,J = 14.8 Hz, 1H,
Ar-CH=C), 7.97 (dJ = 7.4 Hz, 2H, Ar-H), 7.68 — 7.56 (m, 3H), 7.51Jt= 7.8 Hz,
2H, Ar-H), 6.73 (dJ = 9.0 Hz, 2H, Ar-H), 6.58 — 6.49 (m, 2H), 3.17 &, CH).
¥C NMR (100 MHz, CDG) 6 178.91, 176.01, 154.50, 153.07, 134.59, 133.81,
131.72, 129.11, 128.36, 121.98, 112.44, 112.344990.27. HRMS (ESI) m/z calcd
for C21H1sBNsNaQ, [M+Na]* 378.13788, found 378.13880.
2.3 Fluorescence quantum yields measurement

The fluorescence quantum yieldswere calculated from the relation shown in the

following equation:
By = Dsx (FA) X (AJFS) x (7ns)

in which u and s denote a dye and a standard, ctagplg, A is the absorbance at the
excitation wavelength; is the integrated emission area, anig the refractive index
for the solvent [18]

Fluorescence quantum yields;, for B-diketonate derivativeslp, 1c, 2b, 2c) in



CH.Cl, were calculatedrersus anthracene in EtOH as a standard method using the
following values: & (anthracene) =0.2hp?(EtOH) = 1.360, anchp’’(CH,Cl,) =
1.424 [19,20]. Optically dilute Ci€I, solutions of3-diketonate derivatives and EtOH
solutions of the anthracene standard were preparedm path length quartz cuvettes
with absorbances < 0.1. Quantum yield measuremes performed with excitation
at lex = 356 nm and emission integration range = 370+#00Fluorescence quantum
yields for B-diketonate derivatives3b, 3c) in CH,Cl, were calculatedversus
rhodamine B in EtOH as a standard method using fthlewing values: &
(rhodamine B) =0.51p°%EtOH) = 1.360, andp>Y(CH,Cl,) = 1.424 [19,20]. Optically
dilute CHCI, solutions of B-diketonate derivatives and EtOH solutions of the
rhodamine B standard were prepared in 1 cm pathtHequartz cuvettes with
absorbances < 0.1. Quantum yield measurements peefermed with excitation at
Jex = 500 nm and an emission integration range = SDAM.
2.4 Cell culture and cell imaging

HelLa cells were cultured in Dulbecco's Modified &y Medium (DMEM),
supplemented with 10% Fetal Bovine Serum (FBS),qién (100 units/mL), and
streptomycin (10Qug/mL) at 37 °C in a humidified atmosphere of 5%,G@ 24 h.
The cells were seeded in a glass-bottom cell ailtish (NEST Biotechnology Co.
LTD.) and incubated with M compound3c at 37 °C in a humidified atmosphere of
5% CQ for 6 h, then were replaced three times with frggiwth medium. Confocal
cell imaging was performed on a Nikon Eclipse Tinfozal laser scanning

microscopy (CLSM) with a TDKAI HIT live cell imagosystem. Fluorescence was



excited at 561 nm and emission was collected bg0a@20 nm band pass filter.
3. Resultsand Discussion
3.1 Synthesis and Characterization

The Claisen condensation reaction of acetophenotidanzoate gave the ligands
la-2a (Scheme S1 in supplementary data) [17], which exsstheir enol forms in
solution as indicated by tHel NMR. 1a-2a were then allowed to react with the boron
trifluoride-diethyl ether complex in the presenddra@thylamine in dichloromethane
to afford the corresponding BFEomplexeslb-2b. The B(CN) (1c, 2c, 3c) were
synthesized by treatment of the corresponding @iflboron diketonatedlly, 2b, 3b)
with trimethylsilyl cyanide (TMSCN) in the presencé boron trifluoride diethyl
etherate in ChCl, at room temperature (Scheme 2). The successfatigutons were

confirmed by*H and™*C NMR, IR and HRMS (see supplementary data).

Scheme 2. Synthesis of dicyanoboron diketonate complexes.

3.2 Optical Properties

Figure 1. (a) UV-vis absorption and (b) normalized fluoresm® spectra ofib-3b, 1c-3c in

dichloromethane (1.0 x TaM).
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Table 1. Photophysical Properties of Difluoroboron Diket@sasand Dicyanoboron Diketonates.

in dichlorometharfe solid state Energy

compd Fra®  Stokes e T ke ko' Frnax’ gaRac
[nm] ) [nm]  shift [nm] ! [ns] [10°sY [10°sY [nm] [eV]
412

1b 438 26 0.85 215  0.40 0.07 501 3.7144
(78200)
439

1c 464 25 0.66 223  0.30 0.15 547 3.5076
(78500)
411

2b 438 27 072 196  0.37 0.14 501 3.6409
(63200)
440

2c 466 26 024 205 012 0.37 550 3.4123
(69700)
535 A

3b 621 86 0.026 051  0.05 1.91 - 3.0287
(87800)
585 <0.00 A

3c 664 79 R 143 <0.00f 0.70 — 2.8491
(97600) 1

@ Measured at a concentration of 1.0 x>Ifol dni®. P The excitation wavelengths.() were as follows1b (c)
(356 nm),2b (c) (356 nm),3b (450 nm) andc (530 nm). &; is the relative fluorescence quantum yield estahat
using anthracened¢ = 0.27 in ethanol) fodb, 1c, 2b, 2c or rhodamine B ¢; = 0.5 in ethanol) foBb-3c as
standard.? Measured using time-resolved fluorescence measmenf Radiative rate constank (= &yz). |
Nonradiative rate constark,(= (1 - ®;)/z).  The e, were as followdb (410 nm),1c (440 nm),2b (410 nm),2c
(440 nm)."Too weak to be measured.

To examine the optical properties of the obtainedob dicyanodiketonates,
UV-vis absorption and emission spectra were carmigidin CHCl, (Figure 1). The
data are compared to those of the model &fnplexeslb-3b (Table 1). Substitution
of fluorine by cyano group strongly influences thiesorption and emission spectra.
1c-3c exhibited strong absorptiom & 60000 M' cm?) in the 440-580 nm region,

which are red-shifted > 25 nm compared to thosBFefcomplexes. Especially i8c,
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the absorption maxima shifted as much as 43 nm acedpto that oBb. The molar
absorption coefficients of B(Ch)omplexes are generally higher than those of the
BF, compounds. The emission maxima of B(gNjomplexes are red-shifted
proportionally with the absorption changes. In othrds, the Stokes shift didn’t
change much after cyano substitution.

As shown in Table 1, the organoboron,Bfyeslb and2b are highly emissive,
with fluorescence quantum yields in €, at room temperature are 0.85 and 0.72,
respectively. After substitution with cyano groupe quantum yields ofc and2c
decrease to 0.66 and 0.24. In light of the fact the nonradiative rate constanks)X
of 1c (0.15x18 s*) and 2c (0.37x18 s%) are higher compared with those Hj
(0.07x10 s%) and2b (0.14x18 s, there may be other processes in the nonradiative
decay of B(CNy) compounds responsible for the lower quantum yigds22].

The absorption and emission & and3c in CH,Cl, are in the deep red region
due to their more extensiveconjugation and the presence of intramoleculargeha
transfer (ICT) process. The molar absorption coffit ¢) of 3c is significantly
higher than those afb (c) and2b (c), which might be due to the extension rof
conjugation and the two substituted cyano groupstyMveak fluorescence was
observed foBb and3c in CH,Cl, for reasons to be discussed below. The Stokets shif
for 3b and3c are as large as 86 nm, which implies that theeelerge difference in
the molecular structures between the ground anideelxstates. The presence of ICT
process is indicated [23]. The excitation spectrdand3c almost match well with
their absorption spectra. (Figure S1)The emissioB(€N), complexes 1c and 2c)

12



were red-shifted 84 nm in their solid state withprect to those in solution, while the
emission of BEcomplexes 1b and 2b) in the solid state were red shifted 63 nm
compared with those in solution. These changes tnighdue to different packing
structures in the solids with different substitgefar the B and B(CN) complexes.
Fluorescence db and3c in the solid state was too weak to be observed.
3.3 Solvent Effects

Dye emission color tuning can also take advantdgsotvatochromism. Polar
dyes in particular can be sensitive to the proeemi their surroundings. The polarity
or dielectric constant of the local medium can @ftbe ground state or excited state
energies of fluorophores or both. To demonstragesthivent effect, the absorption
and emission 08b and3c in different solvents were measured (Figure 2,18 2band
3). The absorption spectra 8b and 3c show minor changes in different solvents,
which suggests that the difference among their mpiestate dipole moments in
different solvents is rather small. However, thiocohanges o8b and3c in different
solvents could easily be visualized by naked-eygufe S2 and S3). For example, the
color of 3c changed from pink to blue when the solvent wasighd from toluene to
acetonitrile. The fluorescence emission spectra3iof and 3c exhibit positive
solvatochromism in general. The fluorescence gqumantields of3b and3c, which are
high in toluene (0.5 and 0.28 respectively), aelow to be determined in the more
polar solvent such as methanol.

Typically, the fluorescence emission spectra froamiGI state are very dependent
on the polarity of solvents [24]. The fluorescempeantum yields are low in polar

13



solvents but high in low polarity ones. Consequgritie presence of an ICT process
in 3b and3c was indicated. Kinetic constants were also deteethifor radiative and
nonradiative deactivation pathways in various soiseand are collected in Table 2
and Table 3. The radiative constaktsf 3b and3c are found to decrease with the
polarity of solvents, accompanied by an increasehef nonradiative constaht,.
According to the energy gap rule [25], this deceessfluorescence quantum yield
(®%) and lifetime ¢) is attributed to the acceleration of internal wension (ic) as the
energy gap between the excited and the ground deieeases. Thus, the observed
positive solvato-kinetic effeatoes not arise from the population of different téng
species during the lifetime of the excited statd,the quenching of the highly polar

ICT state which is caused by an increaskof

Figure 2. Fluorescence spectra8if (a) and3c (b) in various solvents (1.0 x 2v).

Table 2. Absorption and Emission Properties3bfin Various Solvents.

solvent AP Amax [NM] (€) e Stokes shift o = ¥ kor
[nm] [nm/cmi}] [ns] [10°sY [10°sY
Toluene 0.02 519 (62400) 573 54/1820 0.50 242 210. 0.21
CHCly 0.15 530 (72600) 600 70/2200 0.17 2.55 0.07 303
THF 0.21 522 (71200) 611 89/2790 0.024 0.52 0.05 1.88
CH,Cl, 0.22 535 (87800) 621 86/2590 0.026 0.51 005 911.
Acetone  0.28 530 (69500) 582 52/1690 <0%0011.97  <0.001 0.51
CHsOH 0.30 528 (63400) 612 84/2600  <0.801 0.35  <0.00{ 2.86
CH,CN 0.31 535 (66600) 593 58/1830 <0.601 1.26 <0.001 0.79

@ Measured at a concentration of 1.0 ¥*>¥@ol dm®. ® Solvent polarity parameter ¢ 1)/(Z + 1)] - [(® -

14



1)/(2n? + 1)]) (ref 23).° The excitation wavelengths.() is 450 nm in all solvent§.& is the relative fluorescence
quantum yield estimated by using rhodamineIlB= 0.5 in ethanol) as standafdvieasured using time-resolved
fluorescence measuremeritRadiative rate constani (= @4/r;). 9 Nonradiative rate constari,(= (1 — ®)/x;). "

Too weak to be measured.

Table 3. Absorption and Emission Properties3uofin Various Solvents.

solvent AP Amax [NM] (€) P’ Stokes shift o w u kor
[nm] [nm/cmi}] [ns] [10°sY [10°sY
Toluene 0.02 572 (104400) 624 52/1457 0.28 253 .110 0.28
CHCly 0.15 580 (107700) 639 59/1592 0.021 0.63 003 551
THF 0.21 580 (92700) 659 79/2067 0.002 1.42 0.001 0.70
CH,Cl, 0.22 585 (97600) 664 79/2034 <0.001 1.43 <0.001 0.70
Acetone 0.28 585 (96100) 667 82/2102 <0bo1 1.99  <0.00f 0.50
CH;OH 0.30 586 (93100) 665 79/2027 <0.601 0.61  <0.00f 1.64
CH,CN 0.31 586 (92500) 675 89/2250 <0.601 1.30 <0.001 0.77

@ Measured at a concentration of 1.0 ¥*>¥@ol dm®. ® Solvent polarity parameter ¢ 1)/(Z + 1)] - [(® -
1)/(2n? + 1)]). © The excitation wavelengths.() is 530 nm in all solventd.d is the relative fluorescence quantum
yield estimated by using rhodamine B:(= 0.5 in ethanol) as standarfl.Measured using time-resolved
fluorescence measuremeritRadiative rate constank; (= @¢/z;). ® Nonradiative rate constark,(= (1 — @;)/z;). "
Too weak to be measured.
3.4 Theoretical Calculations

The Gaussian 03 software package [26] was useallfoomputational modeling.
The geometries fotb-3b and1c-3c were optimized with a density functional theory
(DFT) method, using the B3LYP//6-311+G* basis d@gure 3 shows the lowest

unoccupied molecular orbital (LUMO) and the highestupied molecular orbital
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(HOMO) for 1b-3b, 1c-3c. The corresponding energy gaps between LUMO and
HOMO are included in Table 1.

The substitution of fluorine by cyano group in theron diketonates did not
change the location of tha orbital of the 1,3-diketone group. As a resulte th
transition between the excited state and grountk staallowed because thert
excited states of these six compounds occupy tedbexcited state. In contrast, the
bathochromic shift experimentally observed for BlgMomplexes after cyano
substitution can be attributed to more pronounceeeting of the LUMO rather than
elevation of the HOMO. On the other hand, as inditeby the DFT calculations,
extended conjugation iBb and3c leads to elevation of the HOMO levels and thus the

observed bathochromic shift of the emission congariéh 1b (c) and2b (c) .

Figure 3. Calculated molecular orbital energy diagram awndessity surface plots of the frontier

orbitals (HOMO and LUMO) olb-3b, 1c-3c.

3.5 Confocal Fluorescent Images of Cells

Fluorescence probes are useful for imaging variblasogical functions and
diagnostic application. Considering the promisingldgical applications, some
cell-imaging experiments ¢ were conducted. In our experiment, HelLa cells were
incubated with3c at the concentration of @M for 6 h. We chose this dye because its
deep red fluorescence had minimal interference foaskground autofluorescence of
the cells. It is apparent from Figure 4 tBatcould readily penetrate cell membranes,
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and the strong intracellular fluorescence may Iebated to the distribution of the
dyes in the lipophilic environment of the cytoplasfithough 3c shows almost no
fluorescence @ < 0.001) in polar solvents, the fluorescence intgria cytoplasm
was sufficient to provide strong contrast for inmagidue to its possible enrichment
inside the low polarity microenvironment of cytogha Almost no background

fluorescence could be observed.

Figure 4. Confocal fluorescence images of living HelLa cdBg:bright field image of living HeLa
cells; (b) fluorescence image of living HelLa cétisubated with 1uM 3c for 6 h; (c) the overlap

of bright field and fluorescence images.

For a fluorescence probe to be of practical vabhetostability is very important
because of the possible temporal monitoring of dynaevents inside cells. To
evaluate the photostability of the probe, the deelbdyes3b and3c were irradiated in
toluene continuously at > 420 nm using a 500 W Xe lamp as the collimaight |
source. As monitored by UV spectra, the absorptitensity of3c could keep 93% at
567 nm after 15 min continuous irradiation, whhe intensity of3b dropped to 85%
(Figure 5). This indicates that the photostabitifythe cyano group substituted boron
diketonates derivatives is much higher than thaBfcompounds. The cytotoxicity
of 3c in HelLa cells was examined using the Cell Countig8 (CCK-8) assay.
The results indicate th&8t has low cytotoxicity (cell viability > 95%) afteéncubation
for 4 hours, even at 1M (Figure S4 in supplementary data).
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Figure 5. Photostability o8b and3c (1.0 x 10° M) in toluene.

4. Conclusions

In summary, we have synthesized a new class ofdatyoron diketonates from
difluoroboron diketonate derivatives. Dicyanoboiketonates show relatively high
molar absorption coefficients (> 60000Mn*) and larger red-shifts (> 25 nm) in
their absorption and emission spectra than do theesponding difluoroboron
diketonates. Especially, the fluorescence emisgiavelength of3c extended to the
deep red region (664 nm in @El,). The emission 08b and3c are very sensitive to
the polarity of solvents. The fluorescence quanyigtds of3b and3c are reasonably
high in low polarity solvents, but too low to betelenined in high polarity solvents.
Cell imaging experiments demonstrated the poteapalication of3c as a probe in
bioorganisms due to its good imaging contrast,ddgokes shift, low cytotoxicity
and high photostability. This strategy represenfacie approach to modulate the
photophysical properties of dyes.
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Captions

Scheme 1. Structures of the difluoroboron diketonatés3b and dicyanoboron diketonatis-3c.
Scheme 2. Synthesis of dicyanoboron diketonate complexes.

Figure 1. (a) UV-vis absorption and (b) normalized fluoresme spectra ofib-3b, 1c-3c in
dichloromethane (1.0 x Tav).

Figure 2. Fluorescence spectrad (a) and3c (b) in various solvents (1.0 x 204).

Figure 3. The calculated molecular orbital energy diagrard swdensity surface plots of the
frontier orbitals (HOMO and LUMO) afb-3b, 1c-3c.

Figure 4. Confocal fluorescence images of living HeLa cdBg:bright field image of living HelLa
cells; (b) fluorescence image of living HelLa caéfisubated with 1uM 3c for 6 h; (c) the overlap
of bright field and fluorescence images.

Figure 5. Photostability oBb and3c (1.0 x 10° M) in toluene.
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Highlights
Dicyanoboron Diketonate Dyes. Synthesis, Photophysical

Properties and Bioimaging

® Dicyanoboron diketonates were synthesized and their optical properties were
studied.
® The emission of the dyes was extended to the deep red region.

® The dyes exhibited high molar absorption coefficients and high photostability.
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1. Normalized excitation spectra 8 and3c in dichloromethane
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Figure S1. Normalized excitation spectra 3f and 3c in dichloromethane: the

emission wavelength @& and3c were 619 nm and 657 nm, respectively.



2. Absorption spectra @b and3c in various solvents
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Figure S2. UV-vis absorption spectra and solutiolors of3b in various solvents (1.0 x Tov).
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3. Cytotoxicity

HelLa Cells (5000 per well) were seeded in a 96-plalle and incubated overnight to
allow cell attachment to the surface of the weller that, cells were replaced with
fresh growth mediun3c solutions were added to obtain various final cotretions
of 2, 4, 6, 8, 1uM and incubated at 37 °C in a humidified atmosploérg% CQ for

4 h, then stained with CCK-8 (1L per 100uL growth medium). The absorbance
was measured at 450 nm using an EnSpire® MultinRldee Reader (PerkinElmer,

U.S.A)). The data represented the means of duplioaéasurements in Figure S3.
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Figure S4 Cytotoxicity of 3c in HeLa cells for 4 h incubatioat 37 °C in a humidified atmosphere

of 5% CQ.



4. Synthetic route fola and2a
O OH
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Scheme S1. The synthetic route farand2a.

4-allyloxy acetophenone was given as colorlessidigifield 99%.'H NMR (400
MHz, CDCk) 8 7.95 (d, J = 8.9 Hz, 2H), 6.96 (d, J = 8.9 Hz, 26407 (ddd, J = 22.5,
10.5, 5.3 Hz, 1H), 5.44 (dd, J = 17.3, 1.5 Hz, 1534 (dd, J = 10.5, 1.4 Hz, 1H),
4.62 (d, J = 5.3 Hz, 2H, OGH 2.57 (s, 3H, Ck). Methyl 4-allyloxy benzoate was
given as colorless liquid by the same method. Y8i&h.'H NMR (400 MHz, CDGJ)

5 7.98 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz, 26Ip5 (ddd, J = 22.5, 10.5, 5.3 Hz,
1H), 5.42 (dd, J = 17.3, 1.5 Hz, 1H), 5.31 (dd, 305, 1.3 Hz, 1H), 4.59 (d, J = 5.3

Hz, 2H, OCH), 3.88 (s, 3H, Ch).



5. '"H NMR and®C NMR spectra ola-3c
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4 NMR of 1b in CDCk
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'H NMR of 1cin CDCk
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'H NMR of 2ain CDCk
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4 NMR of 2b in CDCk
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'H NMR of 2cin CDCk
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4 NMR of 3b in CDCk
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6. MS-EIl of 13, 1b, 23, 2b, 3a

MS-EI of 1a
Z¥2 39 (D.650) Cm {33:42-(20:28+43:56)) TOF MS El+
135.0335 2.76e5
100+
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| |
|
I |
108.0493 |
|
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77.0308
43.9802 109.0582 1350458 285.1168
al 640243 92'OFQ2 | EE e . 1270657 2151191 2410994 269.0898 || -
40 8D 80 100 120 140 160 180 200 220 240 260 280 |
MS-El of 1b
ZY4 432 (B.373) Cm (421:435-{407 :420+457:466)) 1UF MS B |
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100 -
331.1095
ae_
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ACCEPTED MANUSCRIPT

MS-EI of 2a
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ACCEPTED MANUSCRIPT

MS-EI of 3a

1521 (25.355) Cm (1511:1554-(1305:1508+1639:1881))
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7. HRMS-ESI oflc, 2c, 3b, 3c
HRMS-ESI of1lc

Peking University Mass Spectrometry Sample Analysis Report

Analysis Info

Analysis Name 14030210_20140306_000001.d Acquisition Date 362014 11:31:15 AM
Sample 1c Instrument Bruker Apex IV FTMS
Comment ES!| Positive Operator Peking University
lntensﬁ__ 14030210_20140306_000001.d: +MS
pal)
T 369.10210
1.54 364 14654
1 385 07643
1.04
i 338.34222
0.5
g 36231134
i 357 95063 302.17853
g 343098064
| 332.31582 R 355.14846 372.93445
0.0
330 240 350 360 370 380 390 miz
Meas. miz 1 Formula m/z err [mDal err[ppm] mSigma rdb e Conf N-Rule
36010210 1545360 C10H15BN2Na0O4 36010205 00 01 288 135 even ok
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HRMS-ESI of2c

Peking University Mass Spectrometry Sample Analysis Report

Analysis Info

Analysis Name 14030210_20140306_000003.d Acquisition Date A6/2014 11:36:54 AM
Sample 2c Instrument Bruker Apex IV FTMS
Comment ES| Positive Operator Peking University
Imens%- 41521244 14030210_20140306_000003.d: +MS
*109
1.5
1.0 421 13403
0.5
: 425 13414
| 38527031 398.12324 40227123 407 22535
0.0 L_‘l oo il vasiga o] m__'.h_JuL oo bl Jh AP TRGE T T AT VORI i TR T ¥
' 305 400 405 410 415 420 425 430 miz
Meas. miz | Formula miz err[mDa] err[ppm] mSigma rdb e Conf N-Rule
42113403 976696 C23IH19BNZNaO4 42113342 -06 -1.458 322 155 even ok
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HRMS-ESI of3b

Peking University Mass Spectrometry Sample Analysis Report

Analysis Info
Analysis Name 14030210_20140306_000004.d Acquisition Date 3/6/2014 11:38:21 AM
Sample 3b Instrument Bruker Apex IV FTMS
Comment ES| Positive Operator Peking University
|r11~%‘r153Ii 14030210_20140306_000004.d: +MS
x1077
1 32214110
3_
2_
1 34214757
1
20414872 364 12937 T —
" 2?4.2[?399 i I \ ; : |. [ l 152 65290 | [ 393_[];5551 . 415.2|123a
280 300 220 340 360 380 400 420 miz
Meas. m/z I Formula m/z err [mDa] err[ppm] mSigma rdb e Conf N-Rule
34214757 14845302 C19H19BF2ZNO2 342.14748 01 0.3 90 105 even ok

36412637 1946922 C19H18BF2NNaO2 36412043 01 0.2 125 105 even ok



HRMS-ESI of3c

Peking University Mass Spectrometry Sample Analysis Report

Analysis Info
Analysis Name 13080335 20130822 000001.d Acquisition Date 822/2013 2:13:25 PM
Sample zy Instrument Bruker Apex IV FTMS
Comment ESI Positive Operator Peking University
IntenfE 13080335_20130822_000001.d: +MS
®108]
329 14489
5_
1 37813788
4_
204 14828
2_
353.26572 304 11182 11319708
il 305.11430
42239283
J_]!L lll 4 .| I.IL iL. o .‘]" L J; 1l ‘.I“ Lh Ll lIJ &L LJ Jihl A | N Ll lu P i LiL : i ek
280 300 320 340 360 380 400 420 miz
Meas. miz # Formula Score miz err[mDa] err[ppm] mSigma rdb e Conf N-Rule

37813788 1 C21H1BEBN3NaO2 10000 37813380 09 24 11.0 145 even ok



8. FT-IR spectra olb, 1c, 2b, 2¢c, 3b, 3c

FT-IR spectra oflb
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FT-IR spectra ofc
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